
Accelerating Java Streams With A Data Analytics
Hardware Accelerator

Karthik Ganesan
karthik.ganesan@oracle.com

Ahmed Khawaja
ahmed.khawaja@oracle.com

Luyang Wang
luyang.wang@oracle.com

Shrinivas Joshi
shrinivas.joshi@oracle.com

Michelle Szucs
michelle.szucs@oracle.com

Melina Demertzi
melina.demertzi@oracle.com

Yao-Min Chen
yaomin.chen@oracle.com

Oracle Corp., USA

ABSTRACT
In this paper, we demonstrate how new technology from Or-
acle can be utilized to provide big data analytics acceleration
in a streamlined fashion. Specifically, our approach leverages
the acceleration capabilities of the Data Analytics Acceler-
ator (DAX) unit provided by Oracle’s T7/M7/S7 SPARC
processors and the Java Stream API to seamlessly acceler-
ate Java applications by up to 20X, while using drastically
fewer resources.

Keywords
Java; hardware accelerator; data analytics; big data

1. INTRODUCTION
With the ever increasing importance of data analytics, we

need approaches that allow us to process large amounts of
data efficiently and in a programmer-friendly manner. The
Java Virtual Machine (JVM) and the Java language have
been foundational in the execution of many big data analyt-
ics applications and frameworks. One of the features in the
Java language which allows the grouping and fast processing
of large data is the Java collections framework (JCF) and
the Java Stream API [3].

In this paper, we develop a standalone Java library that of-
floads the Java Stream API to the DAX on Oracle’s T7/M7/S7
SPARC systems to achieve high-performance data analytics
while using drastically fewer compute resources.

2. JAVA 8 STREAM API
The Stream API [3] was introduced in Java 8. One of its

key capabilities is to process data in collections, such as an
SQL query, to simplify data processing. Using this API, we
can write very abstract query-like code without going into
the details of iterating over the collection elements.

For instance, consider a Java method (Figure 1) which
iterates through an array of daily high temperature data

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3053664

and counts the number of days that temperature exceeded
90 degrees Fahrenheit (F). This traditional implementation
would typically be compiled into serial code ignoring the
large amount of data parallelism [1] in this logic and re-
sult in very long execution times. An experienced developer
could parallelize this code manually resulting in better per-
formance at much increased programmer effort.

private static int Hotdays_count_nonStreamWay (int[]

TemperatureArray) {

int count = 0;

for (int val : TemperatureArray) {

if (val > 90) count ++;

}

return count;

}

Figure 1: Java method to count no. of days temperature > 90F

The same logic could be implemented using Java 8 Stream,
as illustrated in Figure 2, in a less error-prone way and in
fewer lines of code. With Stream, we can explicitly spec-
ify whether an operation is data-parallel by using the con-
struct called parallel(). With this hint, the Stream library
automatically creates multiple threads to process the data
in parallel, which results in better performance on a multi-
threaded or multicore system.

private static int Hotdays_count_StreamWay (int[]

TemperatureArray) {

return DaxIntStream.of(TemperatureArray).parallel ().

filter(t->t>90).count();

}

Figure 2: Stream API to count no. of days temperature > 90F

While a thread-parallel implementation brings many per-
formance benefits, it still suffers from some overhead in terms
of thread creation and resource utilization. A hardware ac-
celerator targeted to speed up stream-style code can be more
performant than a thread-parallel implementation and get
the work done with dramatically fewer resources on the chip.

3. DAX FOR STREAM ACCELERATION
The DAX co-processor, seen in Figure 3 on Oracle’s T7/M7/S7

systems provides hardware acceleration for query-like oper-
ations and it is a great match for accelerating Stream func-
tions. DAX can perform specialized functions (including
Scan, Select, Extract, Fill, and Translate) at blindingly fast
speeds. Therefore, if DAX is exposed to Java through the
Stream API, we can achieve significant acceleration of mul-
tiple data analytics frameworks written in Java and other
JVM languages, such as Scala, with minimal effort from the
developer side. For instance, we can call the Stream API
from a program running on Apache Spark and get all the

157



benefits that DAX provides without the need of re-writing
the application from scratch for a specific platform or an
accelerator. The use of Stream API in the code is seamless,
but for best performance, needs to be written adhering to
certain patterns. Currently, the API supports offloading of
IntStream. Acceleration for other streams and object-based
streams is possible and left for future work. Best practice
documents are available online [2].

Figure 3: High-level view of a SPARC S7

4. STANDALONE LIBRARY
We create a standalone library available on Oracle Soft-

ware in Silicon Developer Cloud [4] with the same interface
as that of the standard Stream API with offloads to DAX.
Table 1 shows the Stream operations offloaded to DAX and
their correspondence to DAX primitives. The filter function
returns a stream consisting of the elements matching the
given predicate passed to this function. The map(ternary)
is a special usage of map function that returns an integer
array of zeroes and ones after applying a given predicate
specified as a boolean ternary operator. Based on this map-
ping to DAX primitives, an existing code that uses Stream
API can take advantage of the library and experience sig-
nificant performance improvement without any source code
changes, except for a minor change of adding an import
statement and using DaxIntStream instead of IntStream.

Stream Operation DAX Primitive
DaxIntStream.filter Scan and Select
DaxIntStream.allMatch Scan
DaxIntStream.anyMatch Scan
DaxIntStream.noneMatch Scan
DaxIntStream.filter.count Scan
DaxIntStream.filter.toArray Scan and Select
DaxIntStream.map(ternary).toArray Scan, Select, and Extract

Table 1: Mapping of Stream operations to DAX primitives

Figure 4: Control flow in the system architecure

The flowchart in Figure 4 shows the control flow in the
system architecture. First, the offload artifacts are gathered
in terms of predicate, pipeline characteristics, and the source

Outlier %tile Top-N Filter allMatch
0

5

10

15

20

25

3.6 4 4.1

10.7

21.8
Speedup with DAX (10 Million rows)

S
pe

ed
up

Figure 5: Workloads sped up by using DAX

data. The offload artifacts are checked against a few quick
rules to determine if offloading is possible. If the offload
artifacts are not conducive to offloading, the execution falls
back to the traditional stream implementation. If the of-
fload artifacts are conducive to offloading, the JNI gateway
is invoked with the offload artifacts. Runtime decisions are
made regarding whether to run an operation on the DAX
coprocessor or on the core based on detailed heuristics that
determine profitability in the back-end library. Only the
streams marked as parallel are offloaded to DAX.

5. USE CASES
The analytics use cases that involve SQL-style Java, such

as weather analysis, top-N integers, cube building, outlier
detection, percentile calculators, and the K-Nearest Neigh-
bor (KNN) algorithm benefit the most from our approach.

The standalone library for offloading stream functions to
DAX achieves up to 22 times faster execution of Java-based
analytics applications at significantly lower resource utiliza-
tion. In addition to the performance benefits seen by accel-
eration on DAX, we free resources on the cores to be used
for other operations. This results in less resource consump-
tion and cooler datacenters. Furthermore, because the DAX
hardware is exposed through an existing Java API, we can
write platform-agnostic Java code that gets automatically
offloaded to DAX “under the hood” on a SPARC platform.

The chart in Figure 5 shows the potential of this tech-
nology in speeding up some of the workloads we have ex-
perimented with. As part of a demo, we will showcase live
demonstration of the speedups from using this technology
to do fraud detection for an online retailer.

6. CONCLUSION
In this paper, we demonstrate how a new technology from

Oracle can be used to accelerate big data analytics. We de-
velop a standalone library that uses the Java Stream API
and the DAX provided by Oracle’s T7/M7/S7 SPARC pro-
cessors to achieve high performance (up to 22X faster than
Java-based analytics applications) while using drastically
fewer compute resources.

7. REFERENCES
[1] M. J. Flynn. Some Computer Organizations and Their

Effectiveness. IEEE Trans. Comput., 21(9):948–960,
Sept. 1972.

[2] K. Ganesan. Accelerating Java Streams with the
SPARC Data Analytics Accelerator.
https://community.oracle.com/docs/DOC-1006352.

[3] Java 8. Interface Stream. https://docs.oracle.com/
javase/8/docs/api/java/util/stream/Stream.html, 2016.

[4] Oracle. Software in Silicon Developer Cloud.
http://swisdev.oracle.com, 2016.

158




