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ABSTRACT

This paper presents an empirical approach to measuring and
modeling the energy consumption of multicore processors.
The modeling approach allows us to find a breakdown of the
energy consumption among a set of key hardware compo-
nents, also called HW nodes. We explicitly model the front-
end and the back-end in terms of the number of instructions
executed. We also model the L1, L2 and L3 caches. Fur-
thermore, we explicitly model the static and dynamic energy
consumed by the the uncore and core components. From a
software perspective, our methodology allows us to correlate
energy to the executed code, which helps find opportunities
for code optimization and tuning.

We use binary analysis and hardware counters for per-
formance characterization. Although, we use the on-chip
counters (RAPL) for energy measurement, our methodology
does not rely on a specific method for energy measurement.
Thus, it is portable and easy to deploy in various computing
environments. We validate our energy model using two Intel
processors with a set of HPC codelets, where data sizes are
varied to come from the L1, L2 and L3 caches and show 3%
average modeling error. We present a comprehensive analy-
sis and show energy consumption differences between kernels
and relate those differences to the algorithms that are im-
plemented. Finally, we discuss how vectorization leads to
energy savings compared to non-vectorized codes.

CCS Concepts

•Computing methodologies → Modeling methodolo-
gies; •Hardware → Power and energy; •Computer
systems organization → Multicore architectures;
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1. INTRODUCTION
Power or energy models are widely used in the context

of dynamic power management and DVFS controllers [1, 3,
22]. They can serve as a tool to dynamically find hardware
(HW) parameters that are best suited for a given workload in
a computing system. Accurate power and energy modeling
of HW are also important components for software (SW) de-
velopment tools and HW/SW codesign tools [11, 12]. Gen-
erally, one needs a model in which power or energy is related
to the amount of each HW resource used in a given compu-
tation. We define HW resources (called HW nodes) as HW
components that can enhance the overall performance. This
allows expression of system or subsystem power or energy
as the sum of individual HW node contributions, so for each
computation the contributions of each node can be under-
stood. This paper gives a general procedure for generating
such models by iteratively refining high-level measurements
down to lower-level HW details, and in the limit to individ-
ual operations and instructions.

Our methodology is portable, as we rely on HW coun-
ters for performance and energy measurement, which are
available on most modern general purpose processors. In
this paper, we apply our methodology to estimate energy
consumption for multicore processors. We use the Running
Average Power Limit [5, 10] (RAPL) interfaces for energy
measurement and estimation. As we focus on Intel micro-
processors, such HW interfaces are provided to estimate the
core and uncore energy. Although errors are observed in
such HW estimates [9, 16], it allows us to deploy and apply
our methodology in various computing environments with-
out the need for physical HW probes. If physical HW probes
or an accurate high-level simulator were available for such,
our methodology could be applied directly to those physi-
cal energy measurements. The general procedure incremen-
tally produces as much detail as can be isolated by micro-
benchmark measurements and HW counters. The two key
parameters in our model are static power and dynamic en-
ergy consumption. We give lumped static power estimates
for core and uncore, as well as dynamic energy contribution
down to low-level nodes.
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The paper discusses our overall methodology and valida-
tion of the model, as well as some observations about the
results. These include comparisons of two HSW micropro-
cessors, comparison of numerical codelets, and relative en-
ergy consumption of scalar, SSE and AVX vector versions
of each codelet. This allows one to understand problems
with a HW design, e.g. which nodes are most important to
improve in a new system for a given workload. Also, the
results can be used in SW development tools to understand
what changes to make to each codelet to improve its overall
energy or performance/energy ratio for an existing system.

The main contributions of the paper are:

1. A way of separating static and dynamic power at the
level of the core and uncore:

(a) Using clock modulation [10] to estimate static
power of the core. Unlike DVFS, clock modu-
lation allows us to vary frequency while voltage is
kept constant.

(b) Using multicore runs to estimate uncore static
power. This allows us to vary the number of ac-
tive vs non-active cores. When all cores are non
active (deep C-States [10]), their voltage is set to
zero, exposing the uncore power consumption.

2. A general iterative model that starts with high-level
energy and performance measurements and derives lower
level node energy information by a series of micro-
benchmarking steps:

(a) Dynamic energy breakdown among all key HW
nodes, including those impacting performance.

(b) Multi-step methodology allowing isolation of the
energy contribution of all modeled HW nodes.

3. Energy comparison:

(a) Low level analysis of energy consumption by dif-
ferent codelets.

(b) Instruction set comparison.

(c) Architectural comparison.

This paper is organized as follows. Section 2 presents
our experimental setup and measurement methodology. Sec-
tion 3 motivates our energy modeling work. Section 4 de-
scribes the different steps of our energy modeling methodol-
ogy. Section 5 presents our experimental results. Section 6
presents some background on energy modeling. Finally, Sec-
tion 7 gives our conclusions/perspective.

2. EXPERIMENTAL SETUP

2.1 Hardware platforms
For our evaluation, we use two Intel test platforms, one is

a server machine and the other is a workstation/client. The
two machines exhibit differences in terms of the maximal
supported clock frequency and the size of the L3 cache.

• Haswell client machine (HSW-CL). The machine con-
sists of a single Xeon E3-1270 v3 processor. The proces-
sor has 4 cores running at 3.5 GHz maximal non-turbo
frequency. The four cores share an L3 cache of 8 MB.
In each core, the L1 instruction cache size is 32 KB,
the L1 data cache size is 32KB and L2 cache size is
256KB. The process technology is 22 nm.

• Haswell server machine (HSW-SE). The machine con-
sists of a single Xeon E5-2630 v3 processor. The pro-
cessor has 8 cores running at 2.4 GHz maximal non-
turbo frequency. The eight cores share an L3 cache of
20 MB. In each core, the L1 instruction cache size is
32 KB, the L1 data cache size is 32KB and L2 cache
size is 256KB. The process technology is 22 nm.

2.2 Measurement methodology
To ensure the predictability and the reproducibility of

our results [17], we turned off Hyper-Threading (HT) and
Turbo-boost (TB) in all our experiments. We also fixed
the CPU frequency in each processor to the maximal non-
Turbo frequency using the Linux user space governor. Con-
sequently, we prevent the OS/HW from changing the fre-
quency at runtime. Because prefetch can help or hinder per-
formance across codelets, for simplicity, we only run experi-
ments with prefetch off. While turning on Hyper-Threading
and HW prefetch does not limit the applicability of our
methodology, turning on Turbo-boost on can be a challenge
for any modeling methodology as voltage and frequency are
dynamically varied by the HW depending on various runtime
parameters without being fully exposed to the OS and appli-
cations. Though our modeling approach includes multicore
training runs, this paper presents only unicore validation
results and leaves multicore validation for future work.

To build the energy model, we created a set of dedicated
assembly micro-benchmarks to stress various HW compo-
nents. As for model validation, We run a set of kernels that
we call codelets. They are extracted from numerical recipes
(NR) [19, 20], where many families of algorithms are rep-
resented: Linear Algebraic Equations, Eigensystems, Fast
Fourier Transform and Partial Differential Equations. All
the codelets were carefully selected and they cover a wide
range of performance and code structure characteristics [19]:
single, double and mixed precision data, non-vectorized, par-
tially vectorized and fully vectorized, 1D and 2D loops, 1D
and 2D arrays, unit stride and non-unit stride memory ac-
cesses. There are also scalar, vector-vector, matrix-vector
and matrix-matrix types of computations. For each codelet,
we can control the data sizes, so we picked data sizes that
fit the L1, L2 and L3 caches.

The codelets were compiled using the Intel Icc compiler
version 15.0.0. In order to study the relationship between
vectorized code and energy efficiency, we created three ver-
sions of each codelet whenever possible.

• Scalar SSE (SC). Each codelet is compiled using the
-O3 -xSSE4.2 -no-vec flag. The compiler generates
pure scalar code using SSE4.2 instructions (the -no-

vec is necessary for codelets where the compiler can
generate vector code by default).

• Vector SSE (SSE). Each codelet is compiled using the
-O3 -xSSE4.2 flag. The compiler generates vectorized
code using the SSE4.2 instruction set.

• Vector AVX (AVX2) Each codelet is compiled using
the -O3 -xcore-avx2 flag. The compiler generates
vectorized code using the AVX2 instruction set.

There are 26 NR codelets, 19 are vectorizable and 7 are
purely scalar. As we can use the -no-vec flag, we can gen-
erate a total of 26 SC,19 SSE, 19 AVX2 codelets. So we used
a total of 64 codelets in our experiments.
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For energy measurements, we use the RAPL [10] inter-
faces present in each of our processors. They are a set of
non-architectural HW counters1 used for power management
like power limiting. Depending on the platform type (client
or server), these interfaces are organized into multiple do-
mains: the package (PKG), the cores (PP0), the graphics
(PP1) and the memory domain (DRAM). In our paper, we
use only the energy measurement capability of RAPL and
focus on the PKG domain. The PKG domain estimates
energy for all the chip including all cores and uncore com-
ponents. While we rely on RAPL, our methodology is not
bound to such interfaces. If physical HW probes for energy
measurement were available, then our methodology could be
applied directly to those physical energy measurements.

We use multiple metrics to express performance, power
and energy. We express performance rate as computational
capacity C[operations/second] (we also use flop in place of
operation), power as W [Watts], and energy as E[Joules],
E[Watt-hour]. As we deal with fine grained codelets, we
also express E in milli-Joules (mJ) or nano-Joules (nJ). The
quality of a computation (a codelet running on an architec-
ture) can be expressed in many ways and we use the qual-
ity metrics: C, C/W and C/E [4, 7]. C/W expresses a
traditional HW metric C/W [operations/energy] = O/E,
and C/E is a traditional system-level metric expressed as
C/E[perf/operating cost]. While traditional metrics are some-
times the reciprocals of these, we prefer graphs in which
higher is better.

3. MOTIVATION
Unlike many research efforts [1, 3, 22], we focus on energy

modeling instead of power because energy exhibits much
more variation than power. We focus on energy because its
dynamic range is much greater than the power range (nu-
merically), as shown in Figure 1. Figure 1 illustrates why
we consider energy instead of power. It also shows similarity
and monotonic order of total energy E and power W mea-
surements of all NR codelets regardless of the instruction
set. While this data is related to measurements on HSW-CL,
the same conclusions result from measurements on HSW-SE.

Figure 1 shows that while E has an approximate range of
45X, power has only an approximate range of 1.4X between
the observed minimal and maximal power consumption val-
ues. Although, these codelets were run with data sizes cho-
sen to come from the L3 cache, one may think that it is
unfair to compare energy values of different codes as these
codelets implement various algorithms with various opera-
tion counts. To tackle this issue, Figure 2 compares normal-
ized energy values against performance numbers for all NR
codelets. We make clear distinction between codelets that
belong to each instruction set category: SC, SSE and AVX.
On one side, the y-axis reports the E/O metric which rep-
resents the energy necessary to perform one floating point
operation. In fact, E/O = W/C, so energy per operation is
equivalent to the ratio of power by performance. The x-axis
shows performance C and it is expressed in terms of GFlops.

These normalized metrics allow comparing multiple codelets.
Figure 2 also shows that there is wide range between E/O =
W/C values on one hand, and C values on the other one.
In fact, W/C exhibits a 60 X range and C exhibits an 80 X
range. Furthermore, the hyperbolas fitted to each instruc-

1Also referred to as MSR.

tion set show less than 1 watt separating the SC, SSE and
AVX2 instruction sets (see equation numerators in Figure 2),
where the SSE curve is slightly above SC, and AVX2 is slightly
above SSE. This suggests that an energy model more easily
exhibits codelet differences than a power model.
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Figure 1: Energy and power range per codelet on
HSW-CL of 64 NR codelets in rank order
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4. ENERGY CONSUMPTION ESTIMATION
The idea behind our modeling approach is to identify key

HW components that impact performance and lead to ob-
servable energy consumption. Once these HW nodes are
identified, it is possible to associate energy weights propor-
tionally to their usage. The profiling information about HW
node usage can be obtained using static and dynamic anal-
ysis. Static analysis is performed on the extracted assembly
code using the MAQAO [15] framework. It allows us to ob-
tain metrics about the mix of instructions that are executed.
Dynamic analysis relies on hardware performance counters
and allows us to collect the memory traffic while executing
a code. Memory traffic can be defined as the cache line
movement between the L1 and L2 caches on one hand, and
between the L2 and L3 caches on the other hand.

4.1 Modeled HW nodes
We consider that a CPU consists of a set of cores, each

with private L1 and L2 caches and an uncore component.
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The uncore is shared between all the cores and it includes
the L3 cache. Moreover, each core consists of a front-end for
instruction decoding and a back-end for instruction execu-
tion. As we target HPC codes composed of multiple loop-
nests, we can classify the modeled HW nodes into four main
categories: floating-point execution units (FPU), integer ex-
ecution units (INT), front-end (FE) and memory (Caches),
all modeling the dynamic energy of a CPU.

• FE nodes. This class models the front-end stage. It
consists of a single node that models the energy con-
sumption when issuing micro-ops or instructions from
the front-end to the back-end.

• INT node. This is a single node that models the en-
ergy consumption when executing integer instructions,
e.g. used in the control flow of loops.

• FPU nodes. This class represents mostly floating-
point operations that are executed in the back-end
(dispatch). The modeled nodes/operations are ADD,
MUL, DIV and FMA. For all of these, a distinction is made
in terms of the number of bytes processed by each in-
struction, e.g. we model ADD32, ADD64, ADD128
and ADD256. This class has a total of 17 nodes.

• Cache nodes. This class models memory traffic be-
tween the core and the hierarchy of memory caches.
First, we model L1 nodes representing the energy con-
sumption of executing memory loads (LD) and stores
ST in the L1 cache. There are four LD and four ST

nodes; each captures the energy consumed when vary-
ing the data width of operations (32, 64, 128 or 256
bits). Next, are the L2 and L3 node. The former mod-
els the energy consumption for the data movement be-
tween the L1 and L2 caches. The latter models the
energy consumption of cache line movement between
the L2 and L3 caches. Both account for read and write
traffic.

Besides the nodes that model the dynamic energy, we also
explicitly model the static energy that is consumed in the
uncore and in the core. The static energy of the core is a
single quantity that accounts for the OoO engine, FE logic,
execution units, plus the L1 and L2 caches. The static en-
ergy of the uncore on the other hand covers the L3, IMC
and other components.

4.2 Modeling methodology
To precisely isolate the energy contribution of each mod-

eled HW node, we rely on an incremental methodology. As
depicted in Figure 3, we distinguish two main steps: 1)
static energy (Estatic) estimation and 2) dynamic energy
(Edynamic) estimation. Consequently, we express the total
energy using Equation 1.

Etotal
CPU = Estatic

CPU + Edynamic
CPU (1)

For the static energy, we first model the static energy of
the uncore Estatic

uncore, then we model the static energy of each
active core Estatic

core . For a given codelet, dynamic energy
consumption represents the aggregate energy of all the HW
nodes that are stressed while running that codelet. As dis-
cussed in Section 4.1, we consider FE, INT, FPU and cache
nodes to model the dynamic energy of a CPU.

All of the steps we follow rely on a set of dedicated micro-
benchmarks written in assembly code to stress the various
HW components that we want to model. Using this method-
ology, we believe that we can find a breakdown of the energy
consumption of any workload, regardless of the measurement
method . For example, we use the RAPL interface to mea-
sure total energy consumption, but energy measurements
using physical probes or simulation numbers could be used.

Total Energy
Equation 1

Static energy
Equations 2,3

Dynamic energy
Equation 7

Core estimation
Equations 5,6

Uncore estimation
Equation 4

FE estimation
Equation 8

INT estimation
Equation 9

FPU estimation
Equations 10,11

L1 estimation
Equations 10,11

L2 estimation
Equation 12

L3 estimation
Equation 13

Figure 3: Energy modeling diagram

4.2.1 Static energy estimation

Instead of estimating directly the static energy, which is
workload dependent, we estimate the static power W static

CPU .
W static

CPU of a multicore processor is modeled using Equa-
tion 2. The static energy of a workload can be computed as
the product of the static power W static

CPU and the measured
time duration T of the workload (Equation 3)

W static
CPU = ActiveCores×W static

core +W static
uncore (2)

Estatic
CPU = W static

CPU × T (3)

While we rely on varying the number of active cores to
estimate the static power of the uncore, we rely on the duty
cycle modulation [10] feature to estimate the static power
of the core. Duty cycle modulation also called T-states2 is a
mechanism for active power management available on Intel
processors starting from Pentium 4. It is a throttling mech-
anism used to modulate processor core frequency, mainly for

2T-states refer also to thermal states.
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thermal management techniques. Duty cycle modulation al-
lows processor power and temperature reduction by lowering
core activity to some predefined level.

Static power of the uncore. To estimate W static
uncore, we

run a pure floating-point code (no memory accesses). By ex-
cluding memory accesses, we avoid having dynamic power
consumed by L1, L2 or L3 accesses. Consequently, the total
power consumed by the chip consists of W static

uncore, W static
core

and W dynamic
core . We can then measure the total power con-

sumption of the chip while varying the number of active
cores that run the same FP code simultaneously. We model
the static power of the uncore using Equation 4. W static

uncore

is estimated as the intercept of the simple linear regression
when the number of active cores equals 0.

W total
CPU = ActiveCores× (W dynamic

core +W static
core ) +W static

uncore

(4)
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Figure 4: Estimation of uncore static power on HSW-

CL

Figure 4 reports the static power of the uncore on the HSW-
CL machine when the number of active cores is varied from 1
to 4. We assume that when C-States [10] is enabled and no
workloads assigned to the cores (not active), they enter into
deep sleep states where voltage is set to 0. We then consider
that since all the cores are turned off, the measured power
consumption is due to the uncore component. So we define
that power as the uncore static power.

Static power of the core. Once we estimate the power
consumption of the uncore, the second step is to model the
static power of the core. We consider that the static power of
the core includes all the core logic plus the static power of the
L1 and L2 caches. We make two main assumptions. First, to
avoid any measurement noise related to memory operations,
we use pure FP micro-benchmarks. Second, we run a copy
of our designed FP micro-benchmark on all the available
cores on the machine simultaneously, to ensure that no core
enters deep sleep states that may lead to wrong conclusions
about the static power estimation.

If we run codes that do not have memory requests, then
the total power of a CPU can be modeled using Equation 5.
For a fixed voltage V , β(V ) = W static

CPU (Equation 5). While
β(V ) expresses the static power of all active cores plus the
static power of the uncore as a function of V , α(V )× F ex-

presses the dynamic power of the core in terms of V and F .
This means that in order to estimate W static

core (V ), we need to
fix V and vary F such that W dynamic

core (F, V ) = 0. In the con-
text of our test machines, changing CPU frequency3 leads
to V and F being varied simultaneously. To overcome this
limitation, we use clock modulation to control the effective
frequency Feff while keeping the voltage constant.

W total
CPU = α(V )× Feff + β(V ) (5)

From Equation 5, if Feff = 0, then no dynamic power is
consumed by the CPU. This means that W total

CPU = β(V ) =
W static

CPU . From Equation 2, we can compute the static power
of each active core using Equation 6. Figure 5 shows an
example of how W static

core is estimated on the HSW-CL machine.

W static
core =

W static
CPU −W static

uncore

ActiveCores
(6)
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Figure 5: Estimation of core static power on HSW-CL

Table 1 reports estimated uncore static power values and
static power of each individual core on both HSW machines.

Static power HSWE3 (3.5GHz) HSWEP (2.4GHz)
Uncore (nJ/Cycle) 3.42 6.55
Uncore (Watt) 11.97 15.72

Per core (nJ/Cycle) 0.72 0.79
Per core (Watt) 2.52 1.89

Table 1: Static power estimated values on the HSW-CL

and HSW-SE machines. Values are expressed in terms
of nano-Joules/Cycle and in terms of Watts

4.2.2 Dynamic energy estimation

After estimating static power of each active core and static
power of the uncore, we focus on modeling the total dy-
namic energy. It consists of the sum of energy consumption
of all the HW nodes (N) that we consider as impacting per-
formance. Equation 7 summarizes the dynamic energy of a
CPU. Energy consumption of each individual node is propor-
tional to its usage/activity. For example, instruction/FPU

3CPU frequency change is also called a DVFS pair change.
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nodes are modeled in terms of the number of instructions
that are executed.

Edynamic
CPU =

N∑

node

Edynamic

node (7)

FE and INT nodes estimation. Our first step in mod-
eling dynamic energy consumption is to estimate 1) the FE
and the INT nodes. The former models the energy con-
sumption in the FE (Edynamic

FE ) in terms of the number of
instructions that are issued to the back-end IFE . The sec-
ond models the energy consumption (Edynamic

INT ) of executing
any number of integer loop-control instructions IINT .

We use Equations 8 and 9 to estimate the energy consump-
tion of the FE and INT components. To evaluate Edynamic

FE ,
we create micro-benchmarks where we vary the number of
non-operation instructions. Such instructions allow us to
isolate the behavior of the FE issue stage. While these in-
structions are issued by the FE and retired/committed by
the back-end, they are not dispatched to execution units/ports.
We emulate non-operations by running a set of XCHG
%AX,%AX instructions. Similarly, to evaluate Edynamic

INT ,
we use a micro-benchmark where we vary the number of exe-
cuted integer instructions of the kindADD%RAX,%RCX.
These INT instructions stress both the FE and back-end as
they are dispatched and use execution ports/units. Solving
the linear regression expressed by Equations 8 and 9, allows
us to compute the energy for decoding a single instruction
eFE , and energy to execute an integer instruction eINT .

Edynamic
FE = eFE × IFE (8)

Edynamic
INT = eINT × IINT (9)

LD, ST and FP nodes estimation. At this level, we
focus on estimating the dynamic energy of executing multi-
ple floating-point and memory (load and store) operations
that hit the L1 cache. We cover the cases of operations using
32, 64, 128 and 256 bits data width. For each desired data
width, we use a set of micro-benchmarks where various lev-
els of instruction mixes are created. While it is possible to
create a specific micro-benchmark for each instruction for
which we want to estimate energy, our observations show
that having a mix of instructions allows us to accurately es-
timate the cost of various instructions. In fact, using mixed
instruction micro-benchmarks helps to capture the complex
interactions arising from the Out-of-Order execution engine.

For each family of instructions that use a certain portion
of the available width, we solve systems expressed by Equa-
tion 10. For each instruction I ∈ {LD, ST, MUL, ADD,
DIV, FMA} with a width w ∈ {32, 64, 128, 256}, we can
express its energy by Equation 11.

Edynamic
FPU =

∑

I

∑

w

Edynamic
I,w (10)

Edynamic
I,w = eI,w ×NbInstI,w (11)

L2 energy estimation. Workloads with memory ac-
cesses that miss L1 but are L2 hits require modeling these L2
accesses explicitly. To this end, we designed micro-benchmarks
composed of a set of strided (64 byte granularity) memory

loads and stores. Each access triggers a distinct cache line
movement between the L1 and the L2 caches MemTrL2, de-
fined as the memory traffic between the L1 and L2 caches.
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Figure 6: Dynamic energy estimation of L2 accesses
per microbenchmark on HSW-CL

Once we measure the total energy and the number of
requests to L2, it is possible to solve a linear regression
represented by Equation 12, where eL2 represents the en-
ergy consumption regression variable for moving a single
cache line between the L1 and L2 caches. Since the micro-
benchmarks are composed of memory loads and stores plus
loop-control integer instructions, the LHS of Equation 12
is formed by summing over the energy contributions of FE,
INT and L1 nodes from the RHS of Equation 7. Figure 6
shows the L2 access energy estimation on HSW-CL when we
vary MemTrL2, the number of cache line requests to the L2
from the L1 cache.

Edynamic
L2

= eL2 ×MemTrL2 (12)

L3 energy estimation. The final step in processor dy-
namic energy consumption focuses on L3 memory access
hits. For model training purposes, we use the same micro-
benchmarks as for the L2 training, but we choose data sizes
to trigger distinct cache line requests to L3, so all the mem-
ory accesses will miss L1 and L2 but will hit L3.

To model the energy consumption for cache line move-
ment between the L2 and L3 caches, we define such traffic
as MemTrL3. We vary the number of distinct cache line
requests to L3 while measuring total energy and solve the
linear regression (Equation 13) to compute eL3 which is the
energy necessary to move one cache line between the L2 and
L3 caches. As in L2 modeling, the LHS of Equation 13
is formed by summing over the energy contribution of FE,
INT, L1 and L2 nodes from the RHS of Equation 7. Figure 7
shows the L3 access energy estimation on HSW-CL when we
vary MemTrL3, the number of cache line requests to L3,
where all the accesses are L1 and L2 misses.

EL3 = eL3 ×MemTrL3 (13)

Energy coefficient for modeled machines. By ap-
plying this methodology, it is possible to assign energy con-
sumption to individual HW node usage. Table 2 reports the
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Figure 7: Dynamic energy estimation of L3 accesses
per microbenchmark on HSW-CL

energy coefficient of the various HW nodes that we model
on both the HSW-CL and HSW-SE machines.

Energy (nJ)/ HW node HSWE3
(3.5GHz)

HSWEP
(2.4GHz)

FE (nJ/Inst) 0.11 0.08
INT (nJ/Inst) 0.14 0.13

ADD (SS/SD) 32/64 (nJ/Inst) 0.33 0.33
ADD (PS/PD) 128 (nJ/Inst) 0.33 0.33
ADD (PS/PD) 256 (nJ/Inst) 0.60 0.45
MUL (SS/SD) 32/64 (nJ/Inst) 0.16 0.13
MUL (PS/PD) 128 (nJ/Inst) 0.30 0.15
MUL (PS/PD) 256 (nJ/Inst) 0.33 0.25

DIV (SS) 32 (nJ/Inst) 3.76 4.19
DIV (SD) 64 (nJ/Inst) 5.59 5.46
DIV (PS) 128 (nJ/Inst) 5.21 4.80
DIV (PD) 128 (nJ/Inst) 6.32 6.15
DIV (PS) 256 (nJ/Inst) 11.83 11.20
DIV (PD) 256 (nJ/Inst) 14.09 17.05

FMA (PS/PD) 256 (nJ/Inst) 0.70 0.63
LD/L1 (SS/SD) 32/64 (nJ/Inst) 0.30 0.15
LD/L1 (PS/PD) 128 (nJ/Inst) 0.33 0.18
LD/L1 (PS/PD) 256 (nJ/Inst) 0.45 0.34
ST/L1 (SS/SD) 32/64 (nJ/Inst) 0.69 0.69
ST/L1 (PS/PD) 128 (nJ/Inst) 0.69 0.69
ST/L1 (PS/PD) 256 (nJ/Inst) 0.78 0.69
L2 (Read/Write) (nJ/64 bytes) 2.96 2.12
L3 (Read/Write) (nJ/64 bytes) 4.59 4.70

Table 2: Energy coefficients expressed in nano-Joule

5. VALIDATION AND RESULTS
We evaluated the accuracy of our energy model using the

NR codelets with data sizes chosen to run from L1, L2 and
the caches. All of our experimental results were obtained
by turning the HW prefetcher off. As the range of errors of
all codelets is similar regardless of the data sizes that are
chosen, this paper discusses only results of L3 data sizes due
to lack of space. As we assume uniform consumption among

cores, the presented numbers express unicore run results on
multicore systems.

5.1 Energy model error prediction analysis
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Figure 8: Energy prediction errors when running SC,
SSE and AVX2 codelets out of L3 on HSW-SE
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Figure 9: Energy prediction errors when running SC,
SSE and AVX2 codelets out of L3 on HSW-CL

Figures 8 and 9 summarize the errors observed when com-
paring energy measurement to energy values computed by
our model for HSW-SE and HSW-CL respectively. Though both
histograms report all the error independently of the used in-
struction set, we also show median, average, minimal and
maximal errors of the SC, SSE and AVX2 codelets. We can
make the following observations.

1. When errors are greater than 0, the model underesti-
mates energy consumption, otherwise, the model over-
estimates energy consumption. While the errors are
evenly split around the 0% error point on HSW-SE, they
are evenly split around the 3% point on HSW-CL.
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2. While the proportion of codelets for which energy is
overestimated is less than 20% on HSW-CL, that propor-
tion is less than 44% on HSW-SE though overestimation
does not exceed 5% in most cases.

3. On both machines, prediction accuracy varies little
across instruction sets. Observed minimal and maxi-
mal errors fall in the same range for SC, SSE and AVX2.

4. On both machines, the model overestimates energy
consumption for the same set of codelets, which we can
split into two sub groups: 1) unit stride and 2) non-
unit stride codelets. All codelets belonging to these
sub groups share the same memory access and compu-
tation patterns.

5. For this study, while energy underestimation is mainly
due to non-modeled instructions (like single to double
precision conversion instructions), we believe that en-
ergy overestimation is a consequence of the complexity
of isolating the energy consumption of each modeled
HW node independently.

5.2 Total energy characterization results
We can use the energy model in multiple ways. In this

paper, we limit our study to analyze the energy consumption
of different codelets on one hand, and differences in energy
between different instruction sets on the other hand.

As our codelets were compiled to generate a scalar (SC)
and two vector versions (SSE and AVX2), we study the energy
efficiency of codelets using the quality metrics of Section 2.
Figure 10 reports the average total CPU energy E, C/E and
C/W for all codelets with the same instruction set on both
test platforms. As expected, the more a codelet uses the
available vector width, the lower is the energy consumption,
and the higher are the ratios C/E and C/W . Figure 10
confirms that vectorization leads to higher performance and
lower energy.
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Figure 10: Average total energy (lower is better), C/E

(higher is better) and C/W (higher is better) metrics

across instruction sets on the HSW-SE and HSW-CL

Looking at C/E and C/W per codelet and per instruction
set in Figures 11 and 12 shows that according to the C/E

metric, almost all SSE codelets outperform SC versions by a
factor between 2 to 10X. Similarly, except for few codelets,
AVX2 outperforms SSE by up to 3X. Though the magnitudes
differ, we also observe the same trend in the C/W metric,
and all codelets behave similarly on both machines.
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Figure 11: C/E per codelet and per instruction set
on the HSW-SE and HSW-CL

As the analysis of C/E and C/W leads to the same over-
all observations, we focus on C/E and analyze the source
of variation between codelets. To do so, we consider SSE

codes running on HSW-CL. Figure 13 shows the C/E values
for each codelet sorted in increasing order. It also shows
corresponding C and E values using multiple y-axes.

Table 3 compares the details of 6 codelets selected from
Figure 13 for their diversity, arranged in increasing C/E or-
der (over a range of 300X). While high C/E represents an
attractive system metric, specific C and E values may vary
widely. The table shows a range of 32X for performance and
110X for energy. Table 3 also shows the origin of variations
in C and E values. The total amount of arithmetic (flop
count), and the performance limiters (one or more nodes
whose performance enhancements will enhance total system
performance for a given codelet) contribute to performance
as does memory activity. While all data sizes were chosen
to run from L3, the energy contributions give another view
of the HW nodes. Energy comparisons relative to these 6
codelets and absolute node energy relative to a given codelet
are shown in the last two columns. Relative and absolute
energy contributions of each node are also highlighted in
Figure 14.

Svd13 has the lowest C/E value, which clearly arises from
both poor performance and high energy because of its dom-
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Figure 12: C/W per codelet and per instruction set
on HSW-SE and HSW-CL

ination by division. In fact its relative static energy dom-
inates that of the other codelets, as shown in Table 3 and
Figure 14. Relative to other nodes dynamic energy, the FPU
(division dominated) and L3 consume most energy.

At the other extreme, svb3 has the highest C/E and per-
formance and low energy. svb3 implements a matrix-vector
multiply using single precision elements. Its performance is
limited by the RS (reservation station) and LM (load ma-
trix). Relative to other codelets, its energy is dominated
by L3 and to some extent the FE. Relative to other nodes,
its dynamic energy is quite balanced, though L3 energy is
slightly higher.

Rstrct is another codelet with high C/E and performance,
and relatively low energy. rstrct is a finite difference oper-
ator stencil that does red/black computation (stride 2 in 2
dimensions), so indexing covers only 1

4
of the total data per

iteration, reducing it from relax (also a finite difference op-
erator but using a divide). Performance is limited by the
PRF (physical register file) driven by its arithmetic. Its rel-
ative energy is dominated by L1 and the front-end, which
must process many arithmetic instructions, relative to other
codelets. Its dynamic energy is quite well balanced across
cache levels and FE.

The other 3 codelets fall in the middle with diverse char-
acteristics. One to note is svd11 which has the poorest per-
formance due to poor memory behavior, indicated by LFB
(line fill buffer) as its performance limiter. It is a 2d array
indexed to stride by the array size, which drives the cache
energy up.

Because the uncore is shared across many cores on chip,
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Figure 13: Computed C/E, C and total E for SSE

codes running on the HSW-CL machine

Codelet C/E Perf
(C)

MFlops Perf
limiter

E E high
rel to
codelets

Dyn E
high
rel to
nodes

Svd13 0.2 1.5 0.6 Divide 7.1 Static
uncore,
FPU

FPU,
L3

Relax 0.7 4.1 1.2 PRF,
some /

6.2 L2,
FPU

L2,
FPU

Svd11 0.9 0.5 0.01 LFB,
LDA

0.5 L2, L3 L3

Toep1 3.2 3.9 0.24 LM 1.2 L3 L3
Rstrct 5.9 4.8 0.19 PRF 0.8 L1, FE L3
Svb3 25.4 12.8 0.32 LM 0.5 L3,FE L3

Table 3: Energy and performance comparison of 6
SSE codelets selected from the C/E range

the percentage of dynamic energy will actually increase by
a factor proportional to the number of cores used for a mul-
ticore run.

5.3 Vectorization analysis results
It is a common belief that vectorization is most likely to

lead to better performance and energy savings. Figure 15
shows energy consumption of SC, SSE and AVX2. Codelets
are sorted relative to increasing order of SC energy. While
the y-axis on the left side reports energy values, the y-axis
on the right side reports the ratio of energy between SC to
SSE, between SC to AVX2 and between SSE to AVX2.

Clearly, vectorization causes important variations in en-
ergy reductions. We observe both extremes, nearly no effect
and high energy savings (about 4X). Moreover, as we re-
ported in Figure 10, Figure 15 shows that AVX2 and SSE

codelets are 2.2X and 1.6X more energy efficient on average
than SC codelets. However, it shows as far as L3 data is
concerned that AVX2 codelets are more energy efficient than
SSE ones by only 1.3X.

To highlight the HW nodes that benefit most from vector-
ization in terms of energy, consider the codelets discussed in
Table 3. As these codelets exhibit a wide range in E, they
are good candidates to illustrate energy efficiency due to vec-
torization. Table 4 shows the absolute energy contribution

23



svd13 rel26 svd11 toe1 rst29 svb3

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
1

1
0

Relative Energy Breakdown

 SSE onHSW−CL

E
n

e
rg

y
 b

re
a

k
d

o
w

n
 (

%
)

Static Uncore Static Core

FE/INT FPU L1 L2 L3

svd13 rel26 svd11 toe1 rst29 svb3

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
1

1
0

svd13 rel26 svd11 toe1 rst29 svb3

0
.0

0
.5

1
.0

1
.5

2
.0

Absolute Dynamic Energy Breakdown

 SSE onHSW−CL

E
n

e
rg

y
 b

re
a

k
d

o
w

n
 (

m
J
)

FE/INT
FPU
L1
L2
L3

svd13 rel26 svd11 toe1 rst29 svb3

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 14: Relative and absolute energy contribution of HW nodes on 6 selected SSE codelets.

of HW nodes for each of the selected codelets on the HSW-

CL machine. Energy breakdown information is provided for
each of SC, SSE and AVX2 versions of each selected codelet.
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Figure 15: Comparing total E of SC, SSE and AVX
codes on the HSW-CL machine

Overall, analyzing the energy breakdown of the 6 codelets
allows us to see that except for svd11, both static and dy-
namic energy are reduced when going from scalar to vector-
ized codelet. As far as dynamic energy is concerned, Table 4
shows that the dynamic energy of the L2 and L3 caches re-
mains unchanged regardless of the instruction set. This is
true as the memory traffic between the L1 and L2 caches
and the memory traffic between the L2 and L3 caches re-
mains the same (the same number of cache lines is required
to do the computations). In practice, most energy savings
are due to the FE, FPU and the L1. This can be explained
easily by the fact that these nodes correlate very well with
the number of instructions that are executed and vectorized
codelets usually lead to lower numbers of instructions than
scalar codelets, so energy is reduced accordingly.

Svd11 is among the codelets where vectorization does not
lead to energy savings. Svd11 is an LDA (leading dimen-
sion access) codelet, where only the arithmetic operations
are vectorized. Therefore, it is dominated by memory op-
erations. Since the data size is chosen to come from the
L3 cache, its dynamic energy is dominated by L2 and L3
accesses. Consequently, partial vectorization brings neither
performance nor energy savings. relax and rstrct (like
svd11) have a non-negligible number of scalar memory oper-
ations, but unlike svd11, these stencil codes also have vector-
ized memory operations. Consequently, vectorization brings
only unimportant energy improvements.

One of the codelets that benefits most from vectorization
is svb3, a matrix-vector multiply codelet with unit stride
memory accesses. Though its 2D data fits the L3 cache,
the vector part fits in the L1. So only the matrix elements
need to be brought to the L1. Moreover, as the matrix and
the vector are single precision floating-point elements, SSE
and AVX2 versions are able to process 4 and 8 elements in
each vector, respectively. This leads to the observed energy
savings. Though AVX2 instructions have twice the width
of SSE instructions, energy saved on this codelet does not
reflect that. In fact, the vectorized version of svb3 is RS and
LM performance limited. Consequently, SC to AVX2 energy
savings are only slightly higher than those of SC to SSE.

Vectorization is also effective on toep1. However, unlike
svb3, toep1 uses double precision elements instead of sin-
gle. Finally, even a high energy consumption codelet like
svd13 benefits from vectorization. In fact, as the L1, FPU
and FE energy drop to almost half, its static energy is also
reduced in the same proportion due to time reductions from
vectorization.

6. RELATED WORK
The need for dynamic power management techniques [1,

3, 22] or HW design trade-offs [13] has motivated many re-
search efforts to develop power and energy models for pro-
cessors. These models can be classified in terms of whether
they rely on some performance metrics (hardware perfor-
mance counters) or rely on cycle-accurate/RTL simulators.
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Codelet
Static E FE FPU L1 L2 L3 Total Dynamic

SC SSE AVX SC SSE AVX SC SSE AVX SC SSE AVX SC SSE AVX SC SSE AVX SC SSE AVX
Svd13 11.7 5.83 3.35 .13 .07 .05 1.22 .70 .74 .20 .10 .06 .15 .15 .15 .23 .23 .23 1.93 1.24 1.23
Relax 5.49 4.25 3.99 .26 .24 .29 .83 .47 .44 .29 .26 .23 .70 .66 .67 .32 .32 .32 2.40 1.96 1.95
Svd11 .32 .32 .32 .01 .00 .01 .00 .00 .00 .01 .01 .01 .06 .06 .06 .09 .09 .09 .17 .17 .17
Toep1 1.52 .90 .50 .05 .05 .02 .06 .04 .02 .10 .05 .02 .07 .07 .07 .10 .10 .10 .38 .30 .23
Rstrct .66 .57 .52 .03 .05 .04 .05 .03 .02 .06 .05 .04 .05 .05 .05 .07 .07 .07 .26 .24 .22
Svb3 1.21 .36 .21 .06 .02 .01 .08 .03 .02 .12 .02 .01 .03 .03 .03 .05 .05 .05 .34 .14 .11

Table 4: Absolute energy breakdown (mJ) of 6 selected codelets on HSW-CL machine

Architecture-level simulators like McPAT or CACTI-P [13,
14] can provide detailed and accurate information about en-
ergy or power consumption of modern multicore processors.
However, simulation speed can be a limitation for software
tuning and optimization.

To drive power management policies at runtime, many
power models were built using hardware performance coun-
ters. Similar to our work, the idea is to associate energy
weights to activity factors computed using hardware coun-
ters that correlate the most with performance. Such ap-
proaches are developed in [3, 22] and applied in the context
of DVFS controllers to adjust CPU frequency to the de-
mand on the machine. Though useful, these techniques do
not provide an accurate distribution of energy among the
different HW components or associate energy consumption
with code characteristics. As these models rely on general
linear regressions, some power or energy coefficients have
negative slopes which are meaningless from a physics point
of view. Consequently, it is hard to understand and estimate
the amount of power or energy that micro-architectural com-
ponents consume.

Bertran et al. [1] discuss an incremental methodology to
build a power model to isolate the power consumption of
main CPU components. The proposed model does not make
explicit separation between the static and dynamic power
consumption. Goel et al. [6] propose a methodology that
explicitly separates between dynamic and static power con-
sumption. However, the methodology they follow requires
some special boards (overclocked CPU for the gaming com-
munity) to model the static power. Such custom HW allows
explicit voltage tuning for core and uncore components.

McCullough et al.[18] compare the effectiveness of various
power modeling techniques for system components. Like us,
they turned off Turbo-Boost and HT. They conclude that
CPU power-models can lead to non-negligible prediction er-
rors due to hidden states, and advice to not rely on these
models. We agree that parameters that are not explicitly
exposed by HW may lead to prediction errors, but unlike
their tested modeling techniques, an incremental approach
can help isolating the energy contribution of various compo-
nents compared to single linear or non-linear regressions.

Sahoa et al. [21] discuss a methodology where energy con-
sumption is estimated in terms of the mix of vector instruc-
tions that are executed on the Xeon Phi processor. In fact,
no separation between the various operations is made as the
cost of a multiply can be very different from the one for
an add operation. Unlike these previous research efforts,
we correlate energy consumption to software characteristics
like the different instruction sets that the hardware supports.
We also make an explicit distinction between static and dy-
namic energy. This methodology allows us to be more fine
grained when associating energy to the generated code.

Other research efforts focused on studying energy effi-

ciency of different HW. Czechowski et al. [4] discuss energy
and power improvement for various generations of Intel pro-
cessors. Gupta et al. [8] study energy efficiency of the un-
core component compared to the core component. All these
studies focus on hardware and do not provide insight on how
effective the HW can be for a particular code.

From a software tuning perspective, Cebrián et al. [2] dis-
cuss energy savings due to vectorization using two bench-
marks. While they show and confirm that vectorization im-
proves performance while decreasing energy consumption,
they do not show which the components benefit the most
from vectorization. Thanks to our methodology, we can give
a detailed breakdown of energy consumption and drive soft-
ware tuning to generate better code.

7. CONCLUSION
In this paper, we presented a methodology to build linear

energy models for multicore processors. Our method starts
with high-level energy and performance measurement and
drives low-level energy breakdown information among a set
of HW nodes. Also, our methodology presents a new way of
separating static and dynamic power at the level of the core
and the uncore, using the clock modulation feature and a
series of multicore runs. Thus, our approach has the ability
to associate the energy consumption of various HW nodes
to the quality of the generated code, helping developers in
the process of code optimization and tuning.

Using a set of codelets, our experimental evaluation shows
an average error of 3%, regardless of the test machine, data
size (footprint) or the instruction set we use. These results
show that our methodology can be the basis of tools to ana-
lyze the energy efficiency of hardware and the quality of the
analyzed code. We show that while total static energy can
be as high as 80%, the static energy of the uncore component
can contribute up to 70% (Figure 14). Our numbers suggest
that this requires much attention as it is a good candidate
for energy consumption reduction.

Using a set of quality metrics, we analyze differences be-
tween various codelets and show that HW nodes consuming
most energy correlate well with performance limiters. In
fact, our method allows us to link energy consumption to
the various algorithms that are implemented in the codelets
we use. We can also show and explain why vectorization us-
ing the AVX2 and SSE instruction sets leads to higher perfor-
mance and lower energy consumption. Though few codelets
have similar energy consumption regardless of the instruc-
tion set, the general trend shows that AVX2 is more energy
efficient than SC or SSE.

Our work has been limited to multicore systems in through-
put mode, with prefetch, HT, and Turbo-boost disabled.
We plan to extend the model to deal with prefetch and HT
on. Since Turbo-boost has hidden HW state activities, con-
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trolled measurement and modeling are probably too difficult
to do with low, predictable errors. We do plan to extend
our methodology to parallel workloads on multicore systems,
and to accelerator-like systems.
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