
HyperStar2: Easy Distribution Fitting of Correlated Data

Zhihao Shang, Tianhui Meng and Katinka Wolter
Department of Mathematics and Computer Science

Freie Universität Berlin
Takustr.9, Berlin, Germany

{zhihao.shang, tianhui.meng and katinka.wolter}@fu-berlin.de

ABSTRACT
In this paper, we present HyperStar2, a tool for fitting Markov
Arrival Processes (MAPs) to empirical data. HyperStar2
uses a two-step approach, where the first step is cluster-
based fitting of phase-type distributions and the second step
is the construction of a correlation matrix. In the first step,
we use the cluster-based algorithm for Hyper-Erlang dis-
tribution fitting from HyperStar [1]. Based on the Hyper-
Erlang fitting result and the clusters of samples, in the sec-
ond step we construct the correlation matrix.

The tool targets engineers and scientists who need distri-
bution fitting for non-standard distributions but have little
interest in the underlying theory. Therefore the tool has
a GUI that offers graphical presentation of the data, the
fitted distribution and the empirical as well as theoretical
autocorrelation. We discuss the use of HyperStar2 in com-
mon application scenarios and the fitting algorithms behind
it.

We provide some numerical examples, which show the
abilities and limits of the fitting tool. We find that Hy-
perStar2 can fit distributions very well but for some auto-
correlation structures ProFiDo provides better results for
autocorrelation.

CCS Concepts
•Mathematics of computing → Markov processes;

Keywords
probability distribution fitting, phase-type fitting, MAP fit-
ting, tool description

1. INTRODUCTION
Markovian Arrival Processes (MAPs) play an important

role in the field of performance evaluation. MAPs have
a long history in stochastic modeling [2] and are powerful
modelling tools. MAPs, in theory, allow the representation
of almost all relevant stochastic behaviors that are observed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030243

in practice. MAPs were proposed in [3] and are widely used
for probabilistic analysis of communication network traffic
and stochastic modeling [4]. To capture empirical behavior
by MAPs, the parameters of a MAP have to be fitted ac-
cording to some trace resulting from observations. The most
general approach is to find a MAP that maximizes the like-
lihood according to the available traces. The EM algorithm
[5] can be used for this purpose and many specific variants
of the algorithm for MAP fitting are available [6]. There
are also some MAP fitting methods based on the two-phase
approach [7], which suggested splitting the task into two
phases: fitting of the inter-arrival times in the first phase
by a PH fitting method and fitting the correlation in the
second phase. However, it is still an open question what are
the statistics that capture the correlation structure of the
trace the best.

In recent years, several tools have been proposed [8, 9] that
provide good fitting results. But only users with deep under-
standing of the underlying concepts of the distributions and
the applied algorithms can use them well. The motivation of
our work is to develop a user-friendly tool which allows for
intuitive user interaction and provides direct user feed-back.
Using HyperStar2 requires no knowledge of the underlying
mathematics or theoretical foundations. The tool is used by
working directly with the empirical data.

In this paper, we discuss our cluster-based approach to
MAP fitting, implemented as HyperStar2, a tool with a
graphical user interface where the user can mark density
peaks of the empirical data to support the clustering algo-
rithm and improve fitting results. The rest of this paper is
structured as follows: We first introduce some basic concepts
of PH distributions and MAPs in section 2. We describe our
cluster-based fitting approach in section 3. Section 4 gives
an overview of our implementation of the HyperStar2 tool.
We evaluate the tool in section 5 by numerical experiments.
Section 6 concludes the paper with an outlook on future
work.

2. MATHEMATICAL BACKGROUND
A Hyper-Erlang distribution is a mixture of Erlang distri-

butions. We consider a Hyper-Erlang distribution that con-
sists of M independent Erlang distributions weighted with
initial probabilities α1, α2, ..., αM , where 0 < αm ≤ 1. The
number of phases in the mth Erlang distribution is denoted
with rm and the rate parameter of the mth Erlang distribu-
tion is denoted λm. The Hyper-Erlang distribution is com-
monly represented by a vector-matrix tuple (α,Q), where α
is the vector of initial probabilities and Q is the generator

139

http://dx.doi.org/10.1145/3030207.3030243

matrix. They are presented in (1) and (2).

α = (α1, α2, ..., αM) (1)

Q =

Q1 0

0 Q2

. . .

. . .
. . . 0
0 Qm

 (2)

where Qm is the generator matrix of the mth Erlang distri-
bution.

An essential feature of Hyper-Erlang distribution is that
an observation belongs to Erlang branch m always with
probability αm. This creates no correlation in the Hyper-
Erlang distribution. To reflect correlation of samples, a
MAP should be used instead of a Hyper-Erlang distribu-
tion.

A MAP of order n is usually defined by two n×n matrices
(D0,D1). Matrix D0 contains the rates of internal transi-
tion rates without an arrival and matrix D1 describes the
transition rates with an arrival. And D = D0+D1 is an irre-
ducible generator of the background n-state continuous-time
Markov chain (CTMC). Let ϕ be the steady-state probabil-
ity vector of the background CTMC, then ϕ is the solution
of the linear system ϕD = 0, ϕ1T = 1, where 1 is a row
vector of ones of the appropriate dimension. The pdf of a
MAP is

f(t) = πeD0t(−D01) (3)

and the lag-k correlation is computed as

ρk =
λ2π(−D0)−1P k(−D0)−11− 1

2λ2π(−D0)−1(−D0)−11− 1
(4)

3. THE FITTING ALGORITHM
In this section we discuss the theoretical aspects of the

fitting algorithm. The main idea of the algorithm is to con-
struct the D0 and D1 matrices separately. So there are two
steps in our MAP fitting algorithm. The first step is using
a cluster-based algorithm to fit the samples with a Hyper-
Erlang distribution. We use the generator matrix of the
Hyper-Erlang distribution as D0 matrix. After performing
the cluster-based fitting, we have the Hyper-Erlang distri-
bution and M clusters. The matrix D1 is constructed by
analysing the sample transitions between clusters and as-
signing the relative switching frequency between two clusters
to the respective transition probability.

3.1 Constructing the D0 matrix
The cluster-based fitting algorithm consists of clustering

and refinement. In the clustering step, the samples are clus-
tered using the k-means alorithm and each cluster is fit-
ted with an Erlang distribution. We use a probabilistic
re-assignment strategy for the cluster refinement. The re-
finement is repeated iteratively until either the parameters
in each Erlang distribution do no longer change or a max-
imal number of iterations has been exceeded. More details
can be found in our earlier work [1].

3.2 Constructing the D1 matrix
For a Hyper-Erlang distribution, the phase distribution

after an arrival is always α. For a MAP, the phase distri-
bution after an arrival depends on the phase immediately

before that arrival and D1 describes the transitions rate be-
tween phases, which are states of a CTMC.

Our approach is to analyse the relative frequency of tran-
sitions between clusters, and constructing the D1 based on
the transition frequencies. When an arrival occurs, let η(i,j)
be the probability that the next phase is j given the current
phase is i. We can obtain the element of D1 at row i col-
umn j by scaling η(i,j) with a proper factor because D1 and
η(i,j) describe the same thing using different notation. In
our MAP fitting algorithm, we construct D1 based on the
relative frequency of transitions between clusters.

After Hyper-Erlang fitting, a generator matrix Q for the
Hyper-Erlang distribution is obtained. If there are ki phases
in the Erlang distribution of cluster i it follows that D0 is
a K ×K matrix, where K =

∑M
i=1 ki. Because the matrix

D0 is associated with transitions without arrivals and we
use a generator matrix of a Hyper-Erlang distribution in
our MAP fitting algorithm, transitions with arrivals only
happen between Erlang branches. Every Erlang branch is
associated to a sample cluster and we analyze transitions
between clusters to obtain the transitions between Erlang
branches that are associated with arrivals. Let CS be a K×
K zero matrix and CS(r,c) be the element at row r column c.
We use matrix CS to count the transitions between clusters.

Let Bi be the first phase of the ith Erlang distribution
and Ei the last phase of the ith Erlang distribution. We can
get

Bi =

i−1∑
a=1

ka + 1 Ei =

i∑
a=1

ka. (5)

If a sample belongs to the ith cluster and the next sample
belongs to the jth cluster, where i may be equal to j, we
update the counter as below:

CS(Ei,Bj) = CS(Ei,Bj) + 1. (6)

We can set D
′
1 to the probability matrix for sample transi-

tions.

D
′
1 =

1

n− 1
CS. (7)

Let D
′

1(r,c) be the element of D
′
1 at position (r, c). Hence

D
′

1(r,c) is the probability that the sample generating process

transits from state r to state c. We assume D
′

1(r,c) equals
the probability that transitions occur between states in the

MAP. To get D1, we must convert the probability in D
′
1 to

state transition rates by scaling every element in D
′
1 with a

suitable factor. Let F be the matrix of factors and D1 is the
Hadamard product of D

′
1 and F.

D1 = D
′
1 ◦ F. (8)

The matrix D0 +D1 is an irreducible generator of a CTMC,
so

(D0 + D1)1 = 0, (9)

where 0 is a row vector of zeros of the appropriate dimension.
Let D1(r,c) be the element of D1 at row r column c. Com-

bining (8) and (9), then we can get

D1(r,c) =

 −D0(r)

D
′
1(r)

D
′

1(r,c) if D
′

1(r) 6= 0

0 if D
′

1(r) = 0
(10)

140

where

D0(r) =

K∑
c=1

D0(r,c) D
′

1(r) =

K∑
c=1

D
′

1(r,c) (11)

4. IMPLEMENTATION
We implemented the fitting method in the tool Hyper-

Star2. In earlier work [1] we found that the human user
can very often detect clusters much better than a fully au-
tomatic algorithm by marking the peaks in the distribution
as relevant values in the observations.

For most cases, users do not have to set the parameters
and HyperStar2 can provide good fitting results with the
default values after simply clicking the Fit button. If the
user is not satisfied with the fitting result, the peaks on the
histogram can be marked in the GUI. The density peaks are
used as the initial centers of the K-means algorithm. There
are also fitting parameters that can be set to improve the
fitting result. Table 1 lists some important fitting parame-
ters to control the behaviour of the fitting algorithm. The
tool can export the result after completion of the fitting pro-
cedure. It can only export plain text for now. Among our
the future work is the export of scripts that can generate
samples from the fitted MAP in some simulators.

Table 1: Fitting parameters
Parameter Description(default value)
fitter distribution to be fitted (MAP)
branch number of branch to be fitted (6)
reassignment maximum number of iterations (20)
shuffles number of reassignments in a iteration (2)

5. EVALUATION
In this section we demonstrate the fitting properties of Hy-

perStar2 by analysing some examples. We fit distributions
and evaluate the goodness of fit by comparing the empiri-
cal and the theoretical probability density function as well
as the lag-k correlation. We also compare our result with
the results from ProFiDo [8], which we found to be a very
versatile fitting tool. Computation of error measures is also
among our future work.

We show two examples that demonstrate the advantages
and disadvantages of our tool. We first generated samples
from a given MAP and then study how well HyperStar2 is
able to approximate this distribution. We use samples that
contain obvious peaks in the first example. There are not
many samples in the overlap area between clusters. There-
fore, it is clear which cluster a sample falls into and the esti-
mate of the relative frequency of transitions between clusters
in the sample sequence is highly accurate. In this case the
algorithm provides a good correlation fit. In the second ex-
ample, the samples do not contain as obvious peaks. Hence,
there are many samples in the overlap area between clusters.
These samples may be assigned to different clusters. The as-
signment may not impact the density fitting very much, but
we suspect that it impairs the autocorrelation fitting as the
estimate of relative frequencies of changes between clusters
in the sample sequence has much more uncertainty.

The branch parameter indicates into how many clusters
the data is splitted. This is a very import parameter in our

samples

0 2 4 6 8 10 12 14

p
d
f

0

0.5

1

1.5

2
samples

HyperStar2(2 branches)

HyperStar2(3 branches)

HyperStar2(3 branches)

ProFiDo

Figure 1: pdf of the first example

lag

0 2 4 6 8 10

c
o
rr

e
la

ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3
samples

HyperStar2(2 branches)

HyperStar2(3 branches)

HyperStar2(4 branches)

ProFiDo

Figure 2: correlation of the first example

algorithm as it impacts the fitting result severely. So we
show fitting results with different numbers of branches in
the two examples.

The first example uses a 6-state MAP with the following
matrices. Using this generator there are two states that
contribute strongly to the dynamics of the model, while the
remaining four states are less influential. This can also be
seen in Figure 1, where the empirical density has two peaks.

D0 =

−10 10 0 0 0 0

0 −10 0 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

D1 =

0 0 0 0 0 0
7 0 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.3 0 0 0.7 0 0

The first data set consists of 25000 samples generated from
this MAP. We fit the samples using HyperStar2 and ProFiDo.
Setting the branch parameter to 2, which means the algo-
rithm splits the data into 2 clusters and there are 2 Erlang
branches in the Hyper-Erlang distribution. Fig. 1 shows
the histogram of samples and the densities of the fitted dis-
tributions. The solid line represents the pdf of the result
from ProFiDo. The other three lines represent the pdf of
results from HyperStar2 using different parameter settings.
The red line shows the 2-branch result from HyperStar2, the

141

yellow and blue lines show the results for 3 branches and 4
branches respectively. From Fig. 1 we observe that Hyper-
Star2 fits this data set very well with 2, 3 or 4 branches.
ProFiDo provides a good fit of the density but is not able
to capture the second peak and the gap between the peaks
as precisely.

Fig. 2 shows the autocorrelation function of the resulting
MAP. As expected, the autocorrelation function is fitted well
by both tools. The figure indicates that the result with 2
Erlang branches is the best of the results we have computed
using HyperStar2. It is as good as the result from ProFiDo.

But for different numbers of Erlang branches the results
are not as good. The 3-branch and 4-branch results for the
density are not as good as 2-branch result, but they are also
very close to the samples’ autocorrelation.

In the second example, we approximate the following MAP:

D0 =

−0.2 0.2 0 0 0 0

0 −0.2 0.2 0 0 0
0 0 −0.2 0 0 0
0 0 0 −0.5 0.5 0
0 0 0 0 −0.5 0.5
0 0 0 0 0 −0.5

D1 =

0 0 0 0 0 0
0 0 0 0 0 0

0.16 0 0 0.04 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.02 0 0 0.03 0 0

We again generated 25000 samples from this MAP and fitted
them with HyperStar2 and ProFiDo.

We used 2, 4 and 6 branches. It is not easy to see the peaks
in this, so we did not mark any peak on the histogram. Fig.
3 and Fig. 4 show the fitting results.

samples

0 20 40 60 80

p
d
f

0

0.02

0.04

0.06

0.08
samples

HyperStar(2 branches)

HyperStar(4 branches)

HyperStar(6 branches)

ProFiDo

Figure 3: Probability density of the second example

Fig. 3 shows that both ProFiDo and HyperStar2 can fit
the distribution very well. Although there are 2 Hyper-
Erlang branches in the original MAP, HyperStar2 can still
provide a good fit with 4, or 6 branches.

From Fig. 4, we can see that ProFiDo fits the correla-
tion better than HyperStar2. But the distribution fit of
HyperStar2 is still better than that of ProFiDo. We assume
that HyperStar2 is less suited to capture relatively small
autocorrelation, which means that clusters have a strong
overlap. High autocorrelation typically shows as strongly
distinct clusters and those are captured much better by Hy-
perStar2 than less distinct clusters.

lag

0 2 4 6 8 10

c
o
rr

e
la

ti
o
n

-0.05

0

0.05

0.1

0.15
samples

HyperStar2(2 branches)

HyperStar2(4 branches)

HyperStar2(6 branches)

ProFiDo

Figure 4: Correlation of the second example

6. CONCLUSION AND FUTURE WORK
In this paper we have presented HyperStar2, a fitting tool

for correlated data and the algorithms behind it. We have
shown that HyperStar2 can capture the shape of a distri-
bution very well, but autocorrelation is not in all cases rep-
resented as well as done by ProFiDo. Numerical examples
show that the tool can fit empirical data with MAPs very
well. In the future, we will improve the accuracy of auto-
correlation fitting and provide the user with metrics for the
goodness-of-fit.

7. REFERENCES
[1] Philipp Reinecke, Tilman Krauß, and Katinka Wolter.

Cluster-based fitting of phase-type distributions to
empirical data. Computers & Mathematics with
Applications, 64(12):3840–3851, 2012.

[2] Marcel F Neuts. Matrix-geometric solutions in
stochastic models, volume 2 of johns hopkins series in
the mathematical sciences, 1981.

[3] David M Lucantoni, Kathleen S Meier-Hellstern, and
Marcel F Neuts. A single-server queue with server
vacations and a class of non-renewal arrival processes.
Advances in Applied Probability, pages 676–705, 1990.

[4] Alma Riska, Mark Squillante, Shun-Zheng Yu, Zhen
Liu, and L Zhang. Matrix-analytic analysis of a
map/ph/1 queue fitted to web server data.
Matrix-Analytic Methods; Theory and Applications,
pages 333–356, 2002.

[5] Peter Buchholz. An em-algorithm for map fitting from
real traffic data. In International Conference on
Modelling Techniques and Tools for Computer
Performance Evaluation, pages 218–236. Springer, 2003.

[6] Lothar Breuer. An em algorithm for batch markovian
arrival processes and its comparison to a simpler
estimation procedure. Annals of Operations Research,
112(1-4):123–138, 2002.

[7] Peter Buchholz and Andriy Panchenko. A two-step em
algorithm for map fitting. In International Symposium
on Computer and Information Sciences, pages 217–227.
Springer, 2004.

[8] Falko Bause, Peter Buchholz, and Jan Kriege.
Profido-the processes fitting toolkit dortmund. In
Quantitative Evaluation of Systems (QEST), 2010
Seventh International Conference on the, pages 87–96.
IEEE, 2010.

[9] Giuliano Casale, Eddy Z Zhang, and Evgenia Smirni.
Kpc-toolbox: Simple yet effective trace fitting using
markovian arrival processes. In Quantitative Evaluation
of Systems, 2008. QEST’08. Fifth International
Conference on, pages 83–92. IEEE, 2008.

142

	Introduction
	Mathematical Background
	The fitting algorithm
	Constructing the D0 matrix
	Constructing the D1 matrix

	Implementation
	Evaluation
	Conclusion and Future Work
	References

