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ABSTRACT
Black-box modeling techniques are used when modeling com-
puter systems with unknown internal structure or behavior
and/or when it is not feasible or too time consuming to
monitor a running computer system. The main challenge in
these situations lies in estimating values for the parameters
of these models, especially the values of service demands
at the various devices for each transaction class. These es-
timates have to be compliant with the input-output rela-
tionships observed through measurements. This means that
solving a model of the system with the estimated parameters
should yield the same outputs (e.g., response times) for the
same inputs (e.g., arrival rates or concurrency level). This
paper presents a method for automatically estimating ser-
vice demands for open, closed, single and multiclass queuing
networks (QN). The method is based on casting the estima-
tion problem as a non-linear optimization problem. How-
ever, because the solution of closed QNs does not have a
closed form, we need to resort to black-box optimization
techniques. The parameter estimation method presented
here is part of iModel, a framework for automatically deriv-
ing performance models of systems whose detailed charac-
teristics (structure and behavior) are unknown. Other por-
tions of the framework were discussed in detail in previous
publications by the authors. This paper illustrates the ideas
through several numerical examples and then applies them
to a multi-tiered operational system running OFBiz. The
estimated service demands closely satisfy the input-output
relationships at various workload intensity levels and can be
used for prediction purposes.
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1. INTRODUCTION
In our previous work, we described a framework called

iModel for the dynamic derivation of analytical performance
models in autonomic computing environments [1, 2, 3]. This
work is very important in autonomic computing systems
that rely on performance models to dynamically adjust their
configurations and system resources to respond to changing
workload demands. Our framework infers a system model
(queues and interconnections) and a workload model, which
are combined to produce an analytical performance model.

The system model is identified using reverse engineering
techniques to determine the architectural pattern that best
matches the system. The workload model is identified by
collecting and analyzing the system and application logs.
These logs represent the system’s observable behavior, such
as arrival rates, system’s concurrency level, and response
times. Depending on how much can be harvested from
the system and application logs, iModel determines the best
overall analytical model to select (black-box, white-box or
the right level of gray in between).

Understanding and analyzing user behavior and identi-
fying user-system interaction patterns is an active research
problem in workload modeling. However, the majority of the
literature in this area focuses on workload prediction and
proactive resource allocation, which are also natural out-
comes of our research in automated system model derivation.
In [11], the authors presented an on-line workload classifica-
tion mechanism for optimized forecasting method selection.
Based on the level of overhead (noise level) presented in
the various time-series-based workload classification meth-
ods, the proposed mechanism dynamically selects the ap-
propriate method using a decision tree. The decision tree
takes into account user specified forecasting objectives. The
authors in [10] proposed a trace-based approach for capac-
ity management. Workload pattern analysis uses a pattern
recognition step and quality and classification step, which
measure the difference between the current workload and
the pattern, computed as the average absolute error. The
authors also presented a process for generating a synthetic
trace to represent future workload demands. In [14], the au-
thors presented an approach for finding and characterizing
workload patterns from data traces and predicting future
workload patterns across virtual machines.

In our framework, user-system interaction patterns are
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used to produce Customer Behavior Model Graphs (CBMG)
[19] and Client-Server Interaction Diagrams (CSID) [19],
which are necessary in determining the characteristics of the
workload model as well as the system model. These inter-
action patterns are also necessary to determine whether the
system should be modeled as a closed or open QN.

A key aspect of automatically deriving a performance mo-
del is the determination of its parameters, which are divided
into workload intensity parameters and service demands for
each transaction class at each queue. The process of au-
tomatically characterizing the workload in iModel has been
addressed by the authors in a previous publication. Auto-
matically deriving the values of service demands in a non-
intrusive way is the goal of this paper. A first attempt at
that was presented by the authors in [2]. That approach
treated the computer system as a black box and estimated
the service demands by solving a non-linear optimization
problem in which the service demands are the decision vari-
ables.

The approach in [2] dealt with open Queuing Network
(QN) only and relied on the fact that open QNs have a
closed form expression for their solution. The method de-
scribed in [2] had another drawback, namely, it required
regular calibrations because it relied on a single measured
input-output relationship per class. This paper extends that
approach in two important ways: (1) service demands for
both open and closed QNs are estimated using a black box
optimization approach [8], i.e., a method in which the objec-
tive function and maybe some of the constraints do not have
a closed form expression but just an algorithmic way (e.g.,
Mean Value Analysis or Approximate Mean Value Analysis)
of computing the value of the function and/or constraint.
(2) the need for calibration is vastly reduced because the
method relies on a set of measured input-output points per
class and not on a single one as in [2].

The rest of the paper is organized as follows. Section 2
presents some background on system modeling and our pro-
posed approach. Section 3 provides a high-level descrip-
tion of iModel to provide the context of the contribution
of this paper. Section 4 describes our service demand es-
timation method in detail. The closed QN method is de-
scribed in sub-section 4.1 and the open QN method in sub-
section 4.2. Section 5 describes the implementation details
of the testbed used for validation and shows the results of
our experiments using OFBiz, JMeter, and the ELK stack.
Section 6 discusses some related work. Finally, Section 7 in-
cludes concluding remarks and discusses some of our future
plans related to the automatic derivation of system perfor-
mance models.

2. BACKGROUND
Computer system modeling requires a certain level of un-

derstanding of the application and system architecture and
behavior of the system being modeled. Just as important is
the understanding of how the users interact with the system
in terms of workload and patterns of use. When all such
details are available to performance engineers, it becomes
possible to employ white-box modeling techniques in which
detailed and precise models are developed, parameterized,
and tested.

When modeling existing operational systems, such infor-
mation may not be available or easy to gather, possibly be-
cause of the system complexity or the inability to conduct

detailed analysis of the software architecture and behavior.
In such cases, performance engineers resort to black-box or
gray-box modeling depending on how much can be gleaned
from system documentation, system log traces or from in-
terviews with software developers and system architects.

Black-box modeling is used when none of the internal sys-
tem details are known (or they are intentionally abstracted)
and focuses on the interfaces between system components.
Gray-box modeling can be used when white-box modeling
is costly or unnecessary while the black-box model is inac-
curate or fails to adequately represent the real system.

When modeling an operational system, where few internal
details are available, one might resort to reverse engineering
techniques, where source code is recovered and analyzed to
determine the application behavior and its impact on the
hardware resources. Another approach is to analyze system
logs and audit traces in order to understand the applica-
tion’s architecture and behavior. Reverse engineering the
source code is intrusive and assumes having proper access
to the application executables and permission to reverse en-
gineer them. However, system log and audit trace analysis
-although less accurate- is less intrusive while providing more
insight into the system internals than black-box modeling.

The problem we address in this paper is the ability to
derive analytic models of an operational system given only
experimental (testing environment runs) or system logs of
the system’s production environment.

3. THE IMODEL FRAMEWORK
Our framework, iModel, aims at automating the process

of building an analytic model of an operational system. The
automation engine of iModel parses and analyzes the sys-
tem’s configuration and log files in order to arrive at the
best fit workload model and system model. iModel includes a
knowledge base of well-known single-queue and queuing net-
work (QN) analytic models with their mathematical formu-
las or algorithmic solution and parameters. The automation
engine determines the best optimization technique and tool
to solve the analytic model depending on the system’s ar-
chitecture and observed behavior inferred from the log files.
The three main components of iModel are:

1. Workload Model Analyzer, which analyzes the user
behavior recorded in the various system and applica-
tion logs in order to develop Customer Behavior Model
Graphs (CBMG) [19] and Client-Server Interaction Di-
agrams (CSID) [19]. CBMGs are used to model the in-
teractions between the user and the system and CSIDs
are used to model the interaction between system com-
ponents, and, as a result, derive the system workload.

2. Performance Model Analyzer, which is the focus of
this paper, determines the possible system architec-
ture and application components and their intercon-
nections (communications) by analyzing configuration
and log files. Details of this step can be found in [1].

3. Performance Model Repository, which is used to find
the best-fit analytic model that matches the system
physical characteristics and user behavior. The model
is solved using the Performance Model Analyzer’s exe-
cution engine using solvers that are parameterized us-
ing the workload model and the model definition in
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the repository (metrics and input parameters and their
data types and constraint definitions).

Figure 1 shows the workflow of iModel, explained in detail
in [1]. The focus of this paper is on steps 7 and 8, in which
the model execution engine parameterizes the model using
the method described in this paper and solves it.

4. AUTOMATIC DERIVATION OF SERVICE
DEMANDS FOR QNS

The problem we address in this paper is that of deriving
service demands for a QN model of an operational system
from measured response times and workload intensity val-
ues. We show in this section how that can be done when the
goal is to model the operational system as a closed QN and as
an open QN. In the case of a closed QN model, the workload
intensity is given by the customer population (i.e., average
number of customers in the system) and in the case of open
QNs by average arrival rates. It is important to emphasize
that the fundamental assumption throughout our discussion
is that the systems we are interested are in production and
cannot be stopped for experimentation purposes nor can
they be subject to intrusive measurement techniques. We
only rely on data commonly available by system logs gener-
ated by such systems.

In general, we can say that a QN model computes the av-
erage response Rr for class r transactions through a function
fr described below

Rr = fr(D, ~W ) (1)

where D, shown below, is the matrix of service demands
where Di,r is the average service demand of class r (r =
1, · · · , R) transactions at queue i (i = 1, · · · ,K). The ser-
vice demand of a transaction at a queue is the total service
time of the transaction at the queue and does not include
waiting time at the queue.

D =



D1,1 D1,2 · · · D1,r · · · D1,R

D2,1 D2,2 · · · D2,r · · · D2,R

...
...

...
...

...
...

Di,1 Di,2 · · · Di,r · · · Di,R

...
...

...
...

...
...

DK,1 DK,2 · · · DK,r · · · DK,R


(2)

The vector ~W = (w1, · · · , wr, · · · , wR) is the vector of
workload intensities per class. In the case of open QNs,
wr = λr, which is the average arrival rate of class r transac-
tions. In the case of closed QNs, wr = Nr, i.e., the customer
population for class r (i.e., the concurrency level of class r).

The techniques described in this section are used to de-
rive the matrix of service demands D given a series of values
of response times Rr and the workload intensity levels for
which they were obtained. Numerical examples discussed
in this section show how response times can be successfully
predicted by an analytic model when the workload intensity
values are different from the ones used to derive the ser-
vice demands. In other words, the parameterized model has
predictive capability.

4.1 Closed QNs
In this subsection, we show how we can derive the service

demands that can be used to build a closed QN model of an
operational system for which we assume that we can measure
the response time and throughput of transactions submitted
to the system.

To illustrate our ideas, we start with a single-class closed
QN and then we generalize for multiple classes. In the single-
class case, the matrix of service demands D becomes the
vector ~D = (D1, · · · , Di, · · · , DK) of service demands.

Consider that time is divided intoM intervals t1, t2, · · · , tj ,
· · · , tM all of duration τ , that Ra

j is the average response
time of the transactions that completed during interval j
and that Ca

j is the number of transactions that completed
during that interval. Thus, according to Little’s Law [16],
the average number of transactions in the system during in-
terval tj is nj = Ra

j ×Xa
j where the throughput Xa

j during
interval tj is Ca

j /τ . The superscript a is used throughout the
paper to indicate actual values, i.e., values obtained through
measurements of the system as opposed to values predicted
by a model.

Let f described below be a function that computes the
computer system’s average response time R(n) when the
average number of transactions in the system is equal to
n. Besides n, the function takes as a parameter the vector
~D = (D1, · · · , Di, · · · , DK) of service demands for the K
queues in the QN. As indicated above, service demands do
not include waiting time and therefore are independent of
the system’s load, represented by n.

R(n) = f( ~D, n). (3)

There is no closed form equation for the function f , only
computational algorithms such as Mean Value Analysis (MVA)
and Approximate Mean Value Analysis (AMVA) [20, 18].

Our problem can then be be formalized as follows. Given
the sequence {(n1, R

a
1), · · · , (nj , R

a
j ), · · · , (nM , R

a
M )} find

the vector of service demands ~D. For each interval j we can
define the error ξj as

ξj = R(nj)−Ra
j = f( ~D, nj)−Ra

j . (4)

Equation (4) indicates the diference between the response
time computed by function f for a concurrency level equal
to nj given service demands ~D and the actual response time

Ra
j measured during that interval. We can find ~D by solving

the following optimization problem.

Minimize

M∑
j=1

ξ2j (5)

s.t.

M∑
j=1

ξj = 0

Di ≥ 0 i = 1, · · ·K
K∑
i=1

Di ≤ min
j=1,··· ,M

{Ra
j }.

The decision variables for the above problem are the ser-
vice demands in ~D, the objective function to be minimized
is the sum of square errors, the first constraint forces the
sum of the errors to be equal to zero, the second constraint
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Figure 1: iModel Flowchart

indicates that the service demands cannot be negative, and
the last constraint says that the sum of the service demands
is the lowest possible value for the response time, i.e., the
response time when there is no congestion.

This is a non-linear optimization problem that does not
have a closed form solution for the objective function nor for
its first constraint. Thus, we resort to black-box optimiza-
tion methods.

Solving the optimization problem above for the data in
Table 1 using Excel’s Generalized Reduced Gradient (GRG)
non-Linear solver provides the following values for service
demands: D1 = 1.512 sec, D2 = 1.781 sec, and D3 = 2.008
sec. It is important to note that the errors are all exactly
equal to zero even though we do not have a constraint that
requires that.

To check if the above service demands provide predictive
capabilities, we solve an MVA model using these service de-
mands for n = 7 and 11 and obtain the following response
time values: 16.291 sec and 23.850 sec, respectively.

Table 1: Sequence of values of nj, R
a
j , and Xa

j .

nj Ra
j (in sec) Xa

j

2 7.09 0.2821
4 10.71 0.3736
5 12.53 0.3991
6 14.36 0.4177
8 18.06 0.4430
9 19.92 0.4518
10 21.79 0.4589

Figure 2 shows measured response times as a function of
the concurrency level according to Table 1 (black triangles)
and the two points, for n = 7 and 11 (unfilled squares). As
it can be seen, the points computed by a model that uses the
service demands estimated by our method match the curve
obtained through measurements.

Figure 3 shows the measured throughput as a function
of the concurrency level according to Table 1 (black trian-
gles) and the two points, for n = 7 and 11 (unfilled squares)
predicted by a closed QN model that uses the derived ser-
vice demands resulting from the solution of the optimization
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Figure 2: Response time (in sec) vs. concurrency
level. Triangles: measured response time. Squares:
predicted by a model.

problem described above. As it can be seen and as expected,
the points computed by the QN model that uses the service
demands estimated by our method match the curve obtained
through measurements.

As another example of the power of the technique de-
scribed here, we present another example in which the sys-
tem is balanced (i.e., the service demands are the same for all
devices). The graph in Fig. 4 shows throughput values mea-
sured from a system (black triangles) for concurrency levels
equal to 2, 4, 6, 8, 9, 11, and 14. Applying our method
yielded the following demands: D1 = 1.503 sec, D2 = 1.501
sec, and D3 = 1.496 sec. The squares in the figure show
the throughputs obtained by using a closed QN model that
takes as inputs the service demands obtained by solving the
optimization model. The figure shows that the throughput
values obtained for concurrency levels equal to 1, 3, 5, 7,
10, and 13 (i.e., values not used in solving the optimization
model) match exactly what they should be.

We now provide the algorithm that can be used to com-
pute the average response time Ra

j , the average concurrency
level nj , and the throughput Xa

j for the intervals tj from an
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Figure 3: Throughput (in tps) vs. concurrency
level. Triangles: measured throughput. Squares:
predicted by a model.
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Figure 4: Throughput (in tps) vs. concurrency
level for a balanced system. Triangles: measured
throughput. Squares: predicted by the model.

operational system. We describe the algorithm for a single
class case (i.e., similar transactions) but assume that while
a system is in operation, its workload intensity and, conse-
quently, the response time and throughputs will vary over
time. The generalization for multiple classes is straightfor-
ward by segregating transactions based on their type (as
indicated in operational logs, most of the time by the URL).
The goal of the algorithm below is to determine time in-
tervals during which there is very little variability (within a
given tolerance η) in the average concurrency level nj during
the interval. Assume that an operational log of the opera-
tional system contains one entry per completed transaction.
Entry i is of the type (ti, Ri) where ti is the timestamp of the
entry and Ri is the response of the transaction that finished
at time ti.

Step 1: initialization TotalRespTime← 0; StartTime←
0; nprev

j ← 0; i← 0;

Step 2: accumulate response time i← i+ 1; TotalRe-
spTime ← TotalRespTime + Ri;

Step 3: compute concurrency level (see [18])

ncurr
j ← TotalRespTime/(ti − StartTime) (6)

Step 4: check tolerance If | ncurr
j − nprev

j | /ncurr
j > η

then nprev
j ← ncurr

j and go to Step 2;

Step 5: outputs nj ← ncurr
j ; Ra

j ← TotalRespTime/i;
Xa

j = i/(ti − StartTime).

An example of the execution of the algorithm above is
given in Table 2 that was generated from snippets of an
actual analysis of the log of a real operational system. The
table shows two identified intervals, one including entries
numbered 29-36 and the other for entries numbered 46-54.
The average concurrency level for the first interval shown in
the table is 5.32 and is equal to 7.36 for the second. Their
coefficients of variation are 0.05 and 0.09, respectively, i.e.,
very small. The average response times are 8.3 sec and 12.4
sec, respectivey, in these intervals.

Having presented the problem description for a single-
class closed QN case, we generalize the problem for multiple
classes. The equations below are an obvious generalization
of equations (3)-(5).

Rr( ~N) = fr(D, ~N) (7)

ξj,r = Rr( ~Nj)−Ra
j,r = fr(D, ~Nj)−Ra

j,r (8)

where ~Nj is the population vector observed at interval tj
and the optimization problem is

Minimize

R∑
r=1

M∑
j=1

ξ2j,r (9)

s.t.

R∑
r=1

M∑
j=1

ξj,r = 0

Di,r ≥ 0 i = 1, · · ·K and r = 1, · · · , R
K∑
i=1

Di,r ≤ min
j=1,··· ,M

{Ra
j,r} r = 1, · · · , R.

where fr(D, ~N) is computed using AMVA [18].

4.2 Open QNs
Similarly to the closed QN case, time is divided into inter-

vals t1, · · · , tj , · · · , tM . For each interval tj , we can measure
the average response time per class, Ra

j,r, and the average
arrival rate λa

j,r per class.
The equations above are easily transformed into the open

QN case by changing the workload intensity vector from ~N

into the vector of arrival rates ~λ = (λ1, · · · , λr, · · · , λR).
We added a last constraint to the optimization problem to
guarantee that the utilization Ui =

∑R
r=1 λr×Di,r of device

i for all devices i = 1, · · · ,K is less than one.

Rr(~λ) = fr(D, ~λ) (10)

ξj,r = Rr(~λj)−Ra
j,r = fr(D, ~λj)−Ra

j,r (11)
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Table 2: Example of interval computation based on real data for η = 0.005

.

i Completion time (ti) Response time (sec) (Ri) TotalRespTime ncurr
j nprev

j Error n̄curr
j

29 27.52 13.23 0 132.872 4.83 4.62 0.0431 -
30 27.63 3.336 136.208 4.93 4.83 0.0207 -
31 29.06 18.77 154.978 5.33 4.93 0.0755 -
32 28.95 3.663 158.641 5.48 5.33 0.0267 -
33 30.3 4.01 162.651 5.37 5.48 0.0207 -
34 30.49 3.197 165.848 5.44 5.37 0.0132 -
35 32.6 16.311 182.159 5.59 5.44 0.0264 -
36 33.39 4.102 186.261 5.58 5.59 0.0017 5.32

- - - - - - - -
46 41.42 5.129 260.197 6.28 6.39 0.0164 -
47 41.85 6.563 266.76 6.37 6.28 0.0144 -
48 42.19 29.899 296.659 7.03 6.37 0.0936 -
49 42.28 4.993 301.652 7.13 7.03 0.0144 -
50 42.10 22.807 324.459 7.71 7.13 0.0744 -
51 44.10 29.812 354.271 8.03 7.71 0.0405 -
52 43.87 5.583 359.854 8.20 8.03 0.0206 -
53 47.01 3.722 363.576 7.73 8.20 0.0606 -
54 47.33 3.038 366.614 7.75 7.73 0.0016 7.36

where ~λj is the vector of arrival rates at interval tj and the
optimization problem is

Minimize

R∑
r=1

M∑
j=1

ξ2j,r (12)

s.t.

R∑
r=1

M∑
j=1

ξj,r = 0

Di,r ≥ 0 i = 1, · · ·K and r = 1, · · · , R
K∑
i=1

Di,r ≤ min
j=1,··· ,M

{Ra
j,r} r = 1, · · · , R.

Ui =

R∑
r=1

λr ×Di,r < 1 i = 1, · · · ,K.

In the case of open QNs, the function fr(D, ~λ) is computed
through the following well-known closed-form equation [18].

fr(D, ~λ) = Rr(~λ) =

K∑
i=1

Di,r

1−
∑R

r=1 λr ×Di,r

. (13)

Figure 5 shows an example in which the (arrival rate, re-
sponse time) pairs shown by the solid triangles were used
to solve the optimization problem described in Eq. (12) for
an open QN. The solution to this problem yields the follow-
ing set of service demands: D1 = 2.30 sec, D2 = 1.60 sec,
D3 = 1.60 sec, and D4 = 1.58 sec. We then used a sin-
gle class open QN model to compute the response times for
the following values of the arrival rate (in tps), which were
not used as input to solve the optimization problem: 0.04,
0.10, 0.14, 0.16, 0.22, 0.26, 0.30, 0.32, 0.36, 0.40, and 0.41.
The values of the response times predicted by the model are
plotted in Fig. 5 as unfilled triangles. As the figure illus-
trates, the predicted values match perfectly with the curve
that underlies the measured points.

We now show an example with two classes and three de-
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Figure 5: Average response time (in sec) vs. aver-
age arrival rate (in tps). Solid triangles: measured
response times. Unfilled triangles: predicted by a
model.

vices. Table 3 shows the measured arrival rates and mea-
sured response times per class for six measurement intervals.

Table 4 shows the matrix of service demands that resulted
from the solution of the optimization problem above.

Figures 6 and 7 use solid markers (triangles and squares)
to show the average response times for classes 1 and 2, re-
spectively, for the six intervals shown in Table 3. Addition-
ally, the unfilled markers in these figures show response time
values predicted for the average arrival rates shown in Ta-
ble 5 and computed by Eq. (13). The two predicted values
in each figure do not show a perfect continuity because the
values of the arrival rates for all classes impact all other
classes through the utilization of all devices (see denomi-
nator of Eq. (13)). Nevertheless, since the arrival rates for
which the prediction is shown in Table 5 are within the ar-
rival rates for two successive intervals, one can see how the
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Table 3: Measured arrival rates (in tps) and average
response times (in sec) per class.

Class 1 Class 2
Interval λa

j,1 (tps) Ra
j,1 (sec) λa

j,1 (tps) Ra
j,2 (sec)

t1 0.030 3.300 0.015 2.827
t2 0.050 3.475 0.045 2.977
t3 0.100 3.832 0.080 3.282
t4 0.300 5.792 0.150 4.910
t5 0.350 7.375 0.220 6.241
t6 0.450 13.992 0.320 11.656

Table 4: Derived service demands (sec).

Queue Class 1 Class 2

CPU 1.00 0.80
Disk 1 1.25 0.80
Disk 2 0.90 1.10

predicted values fall within the measured values. For exam-
ple, the first pair of arrival rates for which predictions are
shown in Table 5 is 0.2 tps and 0.09 tps for classes 1 and
2, respectively. In both cases, these arrival rates fall within
those of intervals t3 and t4. The corresponding predicted re-
sponse times also fall between the measured response times
for these intervals.

5. EXPERIMENTAL VALIDATION
This section presents a validation of the method described

in this paper on an experimental testbed. Our implementa-
tion used a number of supporting tools and technologies, in-
cluding Apache OFBiz (ofbiz.apache.org) and Apache JMe-
ter (jmeter.apache.org) for running the experiment, and Log-
Stash (www.elastic.co) for parsing system logs. We used
jMetal (see http://jmetal.sourceforge.net) as the optimiza-
tion framework for solving the non-linear optimization prob-
lem. This framework allows one to use various optimization
algorithms. After experimenting with several, we settled on
MOEA, which is an open-source evolutionary computation
library for Java that specializes in multi-objective optimiza-
tion. We also used an in-house implementation of the Ap-
proximate Mean Value Analysis (AMVA) algorithm.

Apache OFBizTM is an open source ERP (Enterprise Re-
source Planning) system from Apache. Logstash, which is
part of the ELK stack (Elasticsearch, Logstash, and Kibana,)
is an open source tool used to collect, organize, and parse
various system logs and uses templates defined using regu-
lar expressions to describe the log structure and parse its
contents. The output of Logstash is stored in Elasticsearch,
which is a document store and a search server, where doc-

Table 5: Computed average response times (in sec)
per class.

Class 1 Class 2
λ1 (tps) R1 (sec) λ1 (tps) R2 (sec)

0.20 4.466 0.09 3.805
0.40 9.132 0.25 7.680
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Figure 6: Average response time (in sec) for class 1
vs. average arrival rate (in tps). Solid triangles:
measured response time. Unfilled triangles: pre-
dicted by a model.
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Figure 7: Average response time (in sec) for class 2
vs. average arrival rate (in tps). Solid squares: mea-
sured response time. Unfilled squares: predicted by
a model.

uments are stored in JSON format (Java Script Object No-
tation).

Apache JMeter is an open source tool used to record, gen-
erate, and run multiple workloads. It uses different tech-
niques for spawning processes representing system users, and
it has many extensions for recording experiment results in
various formats.

5.1 Experimental Conditions and Assumptions
Our testbed uses Ubuntu Linux servers to host the OFBiz

ERP software suite, which was installed on a Tomcat 7.0
application server, and to host the MySQL database sup-
porting the OFBiz suite. Apache JMeter was used to record
and run a test plan that simulates different groups of users
performing the business function Order Entry.

Table 6 shows the Order Entry sequence of steps, called
workflow heretofore, performed by the users and captured
by JMeter. Most of the workflow steps are interactive, such
as login (step 2) and initorderentry (step 6). Other steps are
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performed by the system and do not require think time, such
as image loading and search lookahead, as in steps 4, 5 and 8,
where the system performs multiple AJAX (Asynchronous
JavaScript And XML) requests while the user is typing a
customer name or product name. Steps 4, 5, 8 and 9 are
repeated multiple times for a total of 21 transactions in a
workflow.

Table 6: Order Entry Workflow

no. Workflow Step

1 /ordermgr/main
2 /ordermgr/login
3 /ordermgr/orderentry
4 /ordermgr/LookupUserLoginAndPartyDetails (2)
5 /ordermgr/LookupCustomerName (3 times)
6 /ordermgr/initorderentry
7 /ordermgr/setOrderCurrencyAgreementShipDates
8 /ordermgr/LookupProduct (4 times)
9 /ordermgr/additem (2 times)
10 /images/GZ-1001/small.png
11 /images/GZ-9290/small.png
12 /ordermgr/quickcheckout
13 /ordermgr/updateCheckoutOptions/quickcheckout
14 /ordermgr/checkout

We used JMeter to run the workflow shown in Table 6
using 5, 10, 15, 20, 22, 25, 27, 30, 32, 35, 40 and 45 users,
called threads heretofore, under the following conditions:

1. Response time is defined as the time it takes to perform
all 21 steps of the workflow.

2. JMeter’s“Ramp-Up Period” is set to 30 seconds, which
is the time JMeter takes to ramp up to the full number
of threads.

3. JMeter’s “Delay Thread Creation Until Needed” is set
to true to eliminate the overhead of starting all threads
at the beginning of the experiment.

4. JMeter’s Loop Count is set to 10, which means that,
for each experiment, threads ran 10 times consecu-
tively. For example, an experiment with 10 users means
the workflow in Table 6 ran 100 times producing 2100
transactions.

5. Experiment ramp-up and ramp-down times. In order
to capture measurements during the system’s steady
state, we defined the measurement start time, T1, and
end time, T2, for each experiment as follows:

T1 = maximum start time of all workflows for all
threads.

T2 = minimum end time of all workflows for all threads.

For each of the 10 experiments, all threads that started
or ended prior to T1 or after T2 were removed from
the final measurements. By doing that, we eliminated
all partial workflows that might skew the average re-
sponse time or average throughput given our definition
of response time.

6. Think time between workflow steps uses a uniform ran-
dom timer between 0 and 3 seconds. The random think

time is only used between interactive steps. For exam-
ple, think time is added between all steps except steps
10 and 11 (image loading) and between the multiple
AJAX calls of steps 5 and 8 (LookupCustomerName
and LookupProduct).

To validate our method we performed the following steps:

Step 1 - Measurements Perform several measurements
on a system running the OFBiz ERP software suite for
several intervals to obtain the throughput and response
time. The results of our measurements are reported in
Table 7 for intervals t1-t12. Each line shows the num-
ber of clients generating requests in each interval. The
number of workflows generated in each interval var-
ied from 42 to 362 excluding the ramp-up and ramp-
down times (actual total workflows varied from 50 to
450.) We used Little’s Law [16] to obtain the concur-
rency level nj for each interval tj as the product of the
measured throughput and the measured response time
(i.e., nj = Xa

j × Ra
j ). Figure 8 shows the average re-

sponse time per workflow execution and Fig. 9 shows
the average throughput in workflows per second (wps).

Table 7: Apache OFBiz Results

Interval Xa
j (in wps) Ra

j (in sec) nj

t1 (5 users) 0.130 4.406 ± 0.145 0.575
t2 (10 users) 0.255 4.481 ± 0.149 1.141
t3 (15 users) 0.389 4.602 ± 0.149 1.788
t4 (20 users) 0.516 5.234 ± 0.123 2.700
t5 (22 users) 0.565 5.337 ± 0.141 3.016
t6 (25 users) 0.622 5.751 ± 0.398 3.574
t7 (27 users) 0.659 6.722 ± 0.168 4.427
t8 (30 users) 0.738 7.193 ± 0.191 5.307
t9 (32 users) 0.746 8.430 ± 0.225 6.286
t10 (35 users) 0.773 10.077 ± 0.257 7.785
t11 (40 users) 0.805 15.002 ± 0.372 12.076
t12 (45 users) 0.806 20.462 ± 0.465 16.497

Figure 8: Average response time (in sec) vs. con-
currency level.

Step 2 - Estimating Service Demands Apply the opti-
mization technique described in the previous sections
to estimate the service demands for the closed QN
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Figure 9: Average throughput (in wps) vs. concur-
rency level.

model that represents the experimental testbed. In
our example, we built a closed QN model with three
queues representing the Web server, the application
server, and the database server. The service demands
derived by solving the optimization model, using as in-
puts the data for intervals t1, t2, t3, t6 and t10 are 0.937
sec, 1.114 sec and 1.002 sec, respectively. Because the
concurrency levels for those five intervals are not inte-
ger, we used Approximate MVA, which uses the Bard-
Schweitzer approximation to solve closed QNs with
non-integer concurrency levels [22].

Step 3 - Prediction Using the closed QN model with the
service demands obtained in step 2, compute the through-
put and response time for concurrency levels not used
in step 2. See the Xmodel and Rmodel columns for in-
tervals t4, t5, t7, t8, t9, t11 and t12 in Table 8.

Step 4 -Validation Compare the response time values pre-
dicted by the model in step 3 with measured response
times for the same concurrency levels. If the values are
relatively close (i.e., on the order of 10% difference),
the service demand estimation process is validated and
the resulting closed QN model can be considered to
have predictive power. As it can be seen in the last two
columns of Table 8, the percent absolute error defined
as 100 × (measurement − model)/measurement for
intervals t4, t5, t7, t8, t9, t11 and t12 is small (less than
10% and—in most cases—less than 5%), which indi-
cates that the derived model has predictive power for
concurrency levels not used in the derivation of the ser-
vice demands. It is important to note that the largest
errors occurred for small concurrency levels (2.7 and
3.0 workflows) due to the fact that we used AMVA,
which does not provide a good approximation for low
concurrency levels. Also, production systems rarely
operate at such low concurrency levels.

Figure 10 shows five measured response times as a func-
tion of the concurrency level according to Table 8 (see black
triangles) and the seven points t4, t5, t7, t8, t9, t11 and t12
(white triangles). As it can be seen, the points computed
by a model that uses the service demands estimated by our
method match the curve obtained through measurements.

Figure 10: Response time (in sec) vs. concurrency
level. Solid Triangles: measured response time. Un-
filled Triangles: predicted by a model.

Figure 11: Throughput (in workloads per sec) vs.
concurrency level. Solid Triangles: measured re-
sponse time. Unfilled Triangles: predicted by a
model.

Figure 11 shows the measured throughput as a function
of the concurrency level according to Table 8 (see black tri-
angles) and the seven points t4, t5, t7, t8, t9, t11 and t12
(white triangles) predicted by a closed QN model that uses
the derived service demands resulting from the solution of
the optimization problem described above. As it can be seen
and as expected, the points computed by the QN model that
uses the service demands estimated by our method match
the curve obtained through measurements.

6. RELATED WORK
We have already referenced before our own prior work [1,

2, 3]. In this section we discus related prior work by others.
Some of the prior work that tackled the parameterization
of analytical models includes [5, 6, 7], where the problem of
estimating known model parameters is treated as an opti-
mization problem that is solved using derivative-free opti-
mization. The objective function to be optimized is based
on the distance between the observed measurements and the
corresponding points derived from the model. The authors
point out that the main problem is determining how to cou-
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Table 8: Validation with experimental results obtained using OFBiz Order Entry transactions.

Period No. Users Xj Ra
j nj Xmodel Rmodel % Rel. Error % Rel. Error

(in Wps) (in sec) (in Wps) (in sec) Throughput Resp. Time

t1 5 0.130 4.406 ± 0.145 0.575 NA NA NA NA
t2 10 0.255 4.481 ± 0.149 1.141 NA NA NA NA
t3 15 0.389 4.602 ± 0.149 1.788 NA NA NA NA
t6 25 0.622 5.751 ± 0.398 3.574 NA NA NA NA
t10 35 0.773 10.077 ± 0.257 7.785 NA NA NA NA

Comparison between measurements and model predicted results
t4 20 0.516 5.234 ± 0.123 2.700 0.56 4.80 -9% 8%
t5 22 0.565 5.337 ± 0.141 3.016 0.59 4.84 -4% 9%
t7 27 0.659 6.722 ± 0.168 4.427 0.67 6.58 -2% 2%
t8 30 0.738 7.193 ± 0.191 5.307 0.71 7.49 4% -4%
t9 32 0.746 8.430 ± 0.225 6.286 0.74 8.51 1% -1%
t11 40 0.805 15.002 ± 0.372 12.076 0.83 14.60 -3% 3%
t12 45 0.806 20.462 ± 0.465 16.497 0.85 19.32 -6% 6%

ple these two sets of points in order to arrive at an objective
function to be minimized. The proposed approach is applied
to a small set of single-queue models, whereas our approach
applies to single and multiclass open and closed QNs.

The work in [4] used Kalman filters to estimate resource
service demands for the purpose of system performance test-
ing. The authors attempted to find the workload mix that
would eventually saturate a certain system resource in a test
environment in order to determine the system’s bottlenecks.

The work in [15, 25, 26] addressed the problem of esti-
mating model parameters in highly dynamic autonomic en-
vironments in which Service Level Agreements (SLAs) (in
the form of Quality of Service (QoS)) have to be maintained
while offering optimal use of data center resources. The au-
thors proposed the use of a model-based estimator based on
Extended Kalman Filters, where the current state depends
on prior knowledge of previous states. Our approach, on the
other hand, relies on solving an optimization problem where
only current input and output values are known.

Menascé tackled the issue of model parameterization for
open QNs when some input parameters are already known [17].
The author proposed a closed-form solution to the case when
a single service demand value is unknown, and a constrained
non-linear optimization solution when a feasible set of ser-
vice demands are unknown. However, that work did not
propose a solution when none of the service demands are
known a priori.

In [9], the authors introduced a method for performance
parameter estimation using Kalman filters and Layered Queu-
ing Models. They used a clustering algorithm to determine
the optimal number of classes such that the LQN closely
tracks the behavior of the real system.

In [21], the authors presented three service demand esti-
mation methods (RPS, MLPS and MINPS) for multi-threaded
applications. RPS is used in single-processor systems, MLPS
is used in multi-processor systems and MINPS consolidates
both methods. Both RPS and MLPS methods over-estimate
the service demand in the type of workload they handle.
MINPS runs both methods and chooses the method that
produces the smaller estimated mean service time.

In [24], the authors presented a survey of service demand
estimation techniques, such as Kalman filter, optimization,
machine learning, and linear regression. The authors intro-

duced a classification scheme based on the input parameters,
output metrics and the ability of the estimation technique to
tolerate input data anomalies. In order to evaluate the accu-
racy of the various estimation techniques, the authors gener-
ated two data sets; one using an M/M/1 queuing simulator,
and another using a real system. MATLAB functions were
used to implement the estimation techniques, such as least-
squares regression and constrained non-linear optimization.
The accuracy of the estimation technique was assessed us-
ing the mean relative demand error, relative utilization er-
ror or relative response time error. The results presented
in the paper show how service demand estimation accuracy
is impacted by the length of sampling interval, number of
samples, number of workload classes, load level, delays dur-
ing processing and execution time. The experimental results
presented in the paper are meant to help performance en-
gineers decide which estimation technique to use given the
impact of variations in sampling intervals, workload classes
and execution time on the accuracy of the technique’s service
demand results. An example of the results is that estima-
tion techniques that rely on response time measurements are
not as negatively impacted by missing workload classes as
techniques that rely on utilization measurements.

The work in [13] proposes an approach based on queuing
networks to represent system configurations. They use sym-
bolic analysis and satisfiability modulo theory (SMT) to find
a model that fits continuous changes in run-time conditions.

In[12], the authors used the previously introduced Descartes
Modeling Language (DML) to illustrate how self-aware sys-
tems can manage their resources using a closed-feedback
loop (MAPE-K control loop). Their proposed online per-
formance prediction process takes into consideration the sys-
tem’s performance objectives, constraints and overhead. On-
line performance prediction is achieved by answering per-
formance queries that specify the performance metrics de-
sired and the constraints and overhead that would impact
the adaptation plan selection. Performance queries are im-
plemented using a declarative (and expressive) query lan-
guage. Using the DML instance of the system and the
performance query, the performance prediction process pro-
duces a model that is either fine grained, coarse grained or
black-box and—eventually—solves the model, thereby pro-
ducing performance query results. The framework uses a
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number of solving techniques to solve the generated model,
including bound analysis techniques based on Little’s law
and utilization law, LQN solver for solving LQN’s and a
combination of QNs and Colored Generalized Stochastic Petri
Nets. The experimental results show how parameterizing
the model at lower load levels (20% CPU utilization) can
be used to predict the system’s performance at higher load
levels within 5% error in resource utilization and 20% error
in mean response time.

7. CONCLUDING REMARKS AND FUTURE
WORK

This paper presented and validated a method to auto-
matically derive service demand parameters of open and
closed multiclass queuing network models. The input to
the method is a set of measured response times for differ-
ent levels of workload intensity (arrival rates or concurrency
levels). Then, a non-linear optimization problem is setup
where the objective function is the sum of square errors be-
tween the measured response times and the response times
computed by the QN model. The problem is that there is
no closed form expression for response times for closed QNs.
To overcome this problem we resorted to black box opti-
mization techniques. We validated our method by setting
up an experimental testbed to run the OFBiz suite. We
then took measurements, derived the service demands using
the method presented in this paper and then used the auto-
matically parameterized model to predict the response time
for non-measured workload intensity levels.

The method described in this paper can be applied to
situations in which the machines are multi-core. This can
be done by using Seidmann’s approximation [23] in which
a service center with a single queue and m servers (e.g.,
m cores) each with service demand D can be replaced in
the QN by a single server queue with service demand D/m
followed by a delay server with service demand D(m−1)/m.
The use of this approximation transforms an open or closed
QN with multiserver queues into one with only single server
queues.
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