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ABSTRACT
A multi-tier Internet server application needs to be analyzed
for its performance before it is released. Performance anal-
ysis is usually done by (a) load testing of the application on
a testbed and (b) building a performance model of the ap-
plication. While there are a plethora of Web load-generator
tools available, there are two problems with these tools: one,
the tests have to be configured manually, which can lead to a
time-consuming trial-and-error process until the desired per-
formance charts in the appropriate load ranges are obtained;
and two, the load generator tools do not produce output
that is directly useful for creating a performance model of
the application. In this paper, we present AutoPerf, a load
generator tool designed to meet two distinct goals, named
capacity analysis and profiling. The goal of capacity analysis
is to run a comprehensive load test on a Web application, in
an appropriately chosen range, at a minimal number of load
levels, while still producing an accurate graph of throughput
and response time vs load levels. The goal of profiling is to
generate a detailed server resource usage profile per request
type, without instrumenting the application code. This data
(e.g. CPU execution time by Web server for one request) is
crucial for parameterizing performance models of the appli-
cation. AutoPerf intelligently plans and configures its load
tests by using analytical results from queuing theory along
with some heuristics. Results show that AutoPerf is able to
run performance tests very efficiently while still producing
an accurate chart of performance metrics.

CCS Concepts
•General and reference → Performance; Measure-
ment; Experimentation; •Software and its engineering
→ Software performance;
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1. INTRODUCTION
A multi-tier server system that supports a typical Inter-

net application is usually subjected to load testing before
its release. Load testing involves the synthetic generation of
requests on the application deployed in a testbed at certain
load level so that its performance under that load level can
be measured. This load level is usually the number of users
who are simultaneously engaged in a session with the ap-
plication. A typical load test suite consists of experiments
conducted at gradually increasing load levels until the ap-
plication reaches saturation. Thus the primary purpose of
load testing is to determine the capacity of this application
on the testbed platform, usually in terms of the number of
users of the type being emulated, that it can support.

Load testing is carried out using one of several load genera-
tor tools that are available freely or commercially [7]. These
tools generally take as input a session description (list of
URLs that a user accesses in a session), the user think time,
and a test plan which typically specifies a starting load level,
an increment and an ending load level. For each load level,
the tools also need inputs such as warm-up time and overall
test duration.

The important outcomes of such a load test are the graph
of throughput vs load level and the graph of response time vs
load level. The capacity of an application maybe determined
either as the level after which throughput stops increasing,
or by the level after which a response time target is exceeded.
The nature of the throughput and response time curves is
also of interest to a performance analyst so as to understand
the behaviour of the application.

Load testing in this manner may require several itera-
tions before the test is properly configured. For example,
the range of load levels could be wrong - that is, the highest
load level turns out to be too low with respect to applica-
tion capacity, or the lowest load level could be too high with
respect to the capacity. In both cases, if the performance-
tester is not well-trained, performance tests could be misin-
terpreted, or it may take a long time and other resources to
figure out and run the load test in the correct range.

The time duration of the load test is another parameter
that can go wrong. It could be too short, in which case one
may not get steady-state values of the performance metrics
at each load level, or it could be too long, in which case the
overall test may take a long time.
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Another major pitfall of load testing, is running into client
bottleneck - that is, the load generating client process itself
reaches the maximum number of requests that it can gen-
erate on the local client resources. In our experience this
is the most common cause of mis-interpretation of results.
Typical server capacity is very high for modern servers, so
a highly scalable load generator is required to “load” such
servers. Sometimes the capacity of the application to serve
requests exceeds the capacity of the load generator clients
to issue requests. In such a case, when throughput flattens
out, if a performance analyst is not an expert, the capacity
of the client may get reported as the capacity of the server.

In this paper, we present AutoPerf - an automated load
testing tool for multi-tier Web applications. AutoPerf re-
quires no specification of load level ranges or test duration or
warm-up time for performing a capacity analysis test suite
that results in throughput and response time charts as a
function of load levels. AutoPerf produces this chart with a
minimal number of load tests, and ensures that the metrics
represent steady-state values. Furthermore AutoPerf uses a
platform-independent heuristic to be self-aware of its own
bottlenecking, and reports such bottlenecking to the user.

The key to making AutoPerf work intelligently is to run
profiler agents on each of the servers, which send server pro-
filing data to the load testing controller which runs on the
load generating client. The AutoPerf controller incorporates
several intelligent mechanisms, some of which make use of
the profiling data and apply well-known results from queu-
ing theory, to run the load test efficiently. We summarize the
novel mechanisms being used in AutoPerf in the following:

• Minimal configuration: The input provided to Au-
toperf just consists of the description of the URLs to
be fired, a probabilistic user session in terms of these
URLs, user think time, the IP addresses of the servers,
and the identifiers of the server processes. No other
configuration such as range of user load levels or du-
ration of a test is required. It auto-determines param-
eters such as:

– Minimum Load Level : AutoPerf ensures that load
tests at an unnecessarily low load level are not
run. It uses profiling data sent from the server to
determine the load level that will utilize the bot-
tleneck CPU to some minimum configured level
and sets that as the minimum of the range.

– Maximum load level detection: For CPU inten-
sive applications, AutoPerf determines the max-
imum load level at which load tests need to be
performed by using the CPU service demand at
each tier, which is used in the Kleinrock satura-
tion heuristic for queuing networks [9]. Thus, it
works for a multi-tier application. For non-CPU
intensive applications, where this heuristic can
overestimate the maximum load level, AutoPerf
detects such overload using a heuristic based on
the “power of a queue”, and breaks out of tests at
that load level.

– Intermediate load levels: In between the min-
imum and the maximum load levels, AutoPerf
runs load tests at an “optimal” number of load
levels - that is, it intelligently selects load levels
in such a way that the “actual” shape of the curve

is seen, yet load testing is not done at fine inter-
vals.

– Auto-setting the duration at a load level : AutoP-
erf auto-detects whether “steady state” has been
achieved at any particular load level and termi-
nates the test at a load level when the average
values of performance metrics have converged.

• Client bottleneck detection: AutoPerf uses a novel in-
dicator of client bottlenecking - if the achieved think
time as estimated using Little’s Law is much larger
as compared with the configured think time, AutoPerf
concludes that there is a client bottleneck. This is a
more reliable indicator of client bottleneck than client
CPU utilization.

• Resource demand profile per request, per tier, per re-
source: AutoPerf can be run in profiling mode, where it
takes as input a list of URLs whose resource demands
need to be profiled, and the load level at which they
need to be profiled. It runs the suite of tests required
to give the following per-request resource demands for
each URL, at each tier: CPU ms per request per server
process, Network bytes read and written per request
per host, disk bytes read and written per request per
host. This type of data is crucial for extrapolating re-
sults from load tests to scenarios for which tests have
not been carried out, by using models that need such
inputs.

The rest of the paper is as follows: Section 2 presents the
detailed design of AutoPerf and Section 3 presents experi-
ments conducted to validate and evaluate AutoPerf’s mech-
anisms. Section 4 discusses related tools and methodologies
and Section 5 concludes the paper.

2. AUTOPERF DESIGN
One of AutoPerf’s main goals is to automatically run a

suite of load tests on a typical multi-tier Web application,
so that graphs such as Throughput vs Number of Users, and
Response Time vs Number of Users as shown in Figure 3 are
generated without having to manually give inputs such as
minimum load level, maximum load level, step size, duration
of one load level, etc. We call this the capacity analysis mode
of running Autoperf. Thus, AutoPerf was designed with the
goal of producing the “curve” of these metrics vs load levels,
up to saturation and a little beyond, with only the input
from the user that is absolutely required to produce these
curves.

Autoperf’s second goal is to calculate resource demands
such as CPU ms per request at each server process on each
host, disk bytes read and written per host per request, and
network bytes read and written per host, per request. We
call this the profiling mode of running Autoperf.

The key components in AutoPerf architecture that sup-
port these goals are profilers that run on the server hosts.

Thus, AutoPerf’s input specification (given in the form
of an XML file) consists of only two required blocks: one
containing the URLs and session description, and one nam-
ing the hosts (IP addresses) and server processes names
which are possible bottlenecks in the Web application, which
should be profiled for their resource demands. AutoPerf ac-
cepts user session description in the form of a probabilistic
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Figure 1: AutoPerf Architecture

navigation graph i.e. the navigation probability from one
URL to the next, called a Customer Behaviour Model Graph
(CBMG) [10] and the think time between getting a response
and issuing the next request.

Apart from these inputs, there are some configuration pa-
rameters such as error thresholds and maximum number of
requests or profiler reading thresholds that AutoPerf uses in
its automation mechanisms, which are specified in a sepa-
rate configuration file (config.properties). However, unless
the user is an “advanced user”, this file need not be edited
for running a typical test.1 In the rest of this section we
describe the architecture and algorithms that achieve this
automation.

2.1 AutoPerf Architecture and Algorithms
Figure 1 shows an overview of AutoPerf’s architecture.
AutoPerf consists of two main modules: Profilers and the

Master Controller. Profilers are daemon processes that run
on the host machines on which server processes are running.
A profiler is responsible for accumulating resource usage in-
formation for a particular process. Thus AutoPerf requires
one profiler per server process. Profilers are instantiated
before generation of load. Profilers start and stop collect-
ing measurements when they receive instruction from the
Master-Controller. The profilers which are currently build
for Linux systems, use existing Linux measurement utilities
such as ps, vmstat and netstat to sample and send these
values to the controller.

The master in itself has two main components: controller
and client (which generates load on the application).

In capacity analysis mode, AutoPerf has to determine two
main settings using these components:

• The load levels (number of users) at which tests should
be run. This involves determining the minimum load
level, the maximum load level, and a minimal set of in-
termediate load levels such that a faithful throughput
vs load level curve is produced, from low throughput,
to saturation throughput.

• The duration of each load test. The throughput and
response time that we obtain from each load test is

1AutoPerf does offer a “manual override” option, where we
can specify the exact load levels at which to run load tests
at, and the duration of each such test.

expected to be at steady state, so AutoPerf needs to
ensure that adequate “warm up” has happened. Fur-
thermore, AutoPerf uses the CPU service demand of
a request at each server in its load level selection algo-
rithm, thus the duration of the test should be such that
an accurate estimate of this parameter is obtained.

Before a capacity analysis run begins, the controller first
simply initializes the profilers. Then, it starts its load level
selection mechanism, which determines the load level and
instructs the client to generate load (HTTP requests) at
that load level. After a load test at a particular level starts,
the Controller instructs the client to continue to generate
load until throughput convergence has been achieved (this is
a simple check based on the difference between consecutive
time-averaged values of throughput falling under a certain
threshold). At this point, the client stops sending through-
put and response time measurements to the controller, but
continues to generate load on the server for the purpose of
calculating the CPU service demand per request. The con-
troller now directs the profilers to start profiling the server.

The controller now starts receiving cumulative service de-
mand measurements from the profilers (cumulative CPU ms
used by each server process specified in the input file, net-
work bytes per host, and disk bytes per host). It uses this
and client-side request counts to estimate the average ser-
vice demand per request for various server resources. Load
generation continues further until CPU service demand con-
vergence check has been satisfied. Note that in capacity
analysis mode, this service demand is a weighted average of
CPU service demands of the various requests in the specified
session.

Now the controller uses this average service demand to
estimate the minimum and the maximum load levels.

We note here that many of the mechanisms related to
determining load levels in AutoPerf are currently centered
around CPU service demand per request of the server pro-
cesses. This is because AutoPerf is primarily built for typi-
cal transactional Web applications that tend to be heavier in
their CPU usage. However, AutoPerf uses a different set of
algorithms, not dependent on CPU service demand for de-
termining these parameters when the bottleneck tier is not
CPU-intensive.

In the following subsections, we describe the details of the
various mechanisms for automated load-testing and profil-
ing that are built into AutoPerf. Since the CPU service
demand estimation is at the core of many other algorithms
we describe that algorithm first.

2.1.1 Estimation of CPU service demand per request
The profiler agent deployed at the server periodically (ev-

ery 1 second) sends the cumulative service time of the server
process to the autoperf master. In Unix-based systems, it
gathers this value using “ps” utility. The master keeps track
of number of URLs nurls(t) processed till time t. Then, the
service time estimate at any point of time t is calculated as:

τp,CPU (t) =
Sp,CPU (t)

nurls(t)

where Sp,CPU (t), nurls(t) and τp,CPU (t) are the cumula-
tive CPU execution time of the process p till time t, the
number of URLs completed in this load test till time t and
the CPU service demand estimate at process p at time t.
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Figure 2: Service Demand Convergence Algorithm

While this basic method is obvious and straightforward,
there is a challenge of granularity in this. The ps utility
has a granularity of 1 second. Thus the cumulative service
demand sent from the server is rounded off to the nearest
integer value. Thus the service time estimate curve is a
saw tooth curve (Figure 2) because until one second worth
of execution time time is not accumulated, the cumulative
execution time value Sp,CPU (t) does not increment. The
decreasing trend in the graph is when Sp,CPU (t) remains
the same but nurls(t) increases. The “jump” is when there
is an increment of one second in Sp,CPU (t). Thus, since the
CPU service demand estimate keeps changing, a mechanism
is required to check whether the value has converged.

The convergence detection has to avoid some pitfalls - be-
cause of the saw-tooth nature of the curve, we cannot use
a routine check of the percentage difference between con-
secutive estimates decreasing below a threshold - since this
method can easily lead to a false convergence detection just
before a “jump” in the curve.

One way would be to detect convergence when the relative
jump magnitude itself goes under a certain threshold. How-
ever it can be shown that, the relative jump magnitudes are
not necessarily monotonically decreasing. Thus, we could
again falsely detect a local convergence. To overcome this,
we use an additional check of detecting a global convergence
of the jump sizes, and only then check for local convergence
of the service demand estimates.

Suppose consecutive readings of the profiler are Sp,CPU (t)
seconds of cumulative CPU service demand, with nurls(t)
URLs completed, and Sp,CPU (t + 1) seconds of cumulative
CPU service demand, with nurls(t + 1) URLs completed.
Suppose there is a jump in the service demand estimate; i.e.

Sp,CPU (t)

nurls(t)
<
Sp,CPU (t+ 1)

nurls(t+ 1)

The jump magnitude as a percent of the previous estimate
is

∆τp,CPU =

(
Sp,CPU (t+1)

nurls(t+1)
− Sp,CPU (t)

nurls(t)

)
× 100

Sp,CPU (t)

nurls(t)

Since nurl(t+ 1) > nurl(t)

Sp,CPU (t+ 1)

nurl(t+ 1)
<
Sp,CPU (t+ 1)

nurl(t)
.

Thus

∆τ <

(
Sp,CPU (t+1)

nurl(t)
− Sp,CPU (t)

nurls(t)

)
× 100

Sp,CPU (t)

nurls(t)

Now, suppose the host on which the process p is running has
N cores. It is obvious that the maximum possible difference
between Sp,CPU (t) and Sp,CPU (t + 1) on this server is N
seconds (in the extreme case that all N cores are busy with
the process p for the one second between t and t+ 1).

∆τ =
(Sp,CPU (t+ 1)− Sp,CPU (t))× 100

Sp,CPU (t)
<

N × 100

Sp,CPU(t)

Thus a strict “global” convergence check can be that

N × 100

Sp,CPU (t)
< ε (1)

since this implies that ∆τ < ε where ε is a pre-configured
threshold. Note that once this inequality is satisfied for t, it
will be satisfied for all future values u > t since Sp,CPU (t)
is monotonically increasing with t. Thus, this indicates a
global convergence of jump sizes.

While this condition works well, we find that it is overly
strict and convergence detection can take a long time. This
is because at low load, accumulating an Sp,cpu value that
is large enough so that the “maximum” possible percentage
difference goes below a threshold can take a long time. In-
stead we use a heuristic to arrive at an“expected”difference.
Consider a load test at a user level L, the running average re-
sponse time R(L) and a thinktime γ. The expected number
of URLs completed in one second is given by the expected
throughput of requests. For a closed system the throughput
is given by

∆(L) =
L

γ +R(L)

Given this, we can argue that at most each of these re-
quests could have kept one core busy for the entire second,
in the one second profiler interval. Thus, the consecutive
busy time values (Sp,CPU (t + 1) and Sp,CPU (t)) can then
be expected to be separated by ∆(L). For a server with N
active cores, we redefine 4S as

4S = min(∆(L), N)

When the load level and thus the throughput is low, and
N is high, we expect that the difference will be ∆(L). In
our modified global convergence check we replace the N in
Equation 1 by 4S. We flag global convergence as achieved
when

4S × 100

Sp,CPU (t)
< ε.

After global convergence is achieved, a simple “local” con-
vergence check is made where the variation in the values of
a moving window of consecutive service demand estimates is
calculated (maximum value - average value in the window).
Local convergence is flagged as achieved when this difference
goes below a configured threshold.
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While this approach eventually does result in a good esti-
mate of the average service demand, it may still sometimes
take prohibitively long time for the service demand to con-
verge, if the execution time is very small, the load level is
low, and the think times large. This results in a low rate of
requests being sent, which in turn results in the cumulative
CPU execution time not increasing fast enough. Thus the
profiler may keep reporting zero cumulative CPU time for a
long time (5-6 hours in an experiment that we ran).

To address this problem, we use the following heuristic
to break out of the service demand estimation loop: after a
certain max number (pmax) of profiler readings have been
received, if the maximum of the cumulative CPU execution
times reported for all the server processes is still zero, we
assume that the cumulative processing time on a bottleneck
server was some value Slow, which is currently set to a value
less than 0.5 seconds (since ps has 1-second granularity). If
this break happens at time t, the CPU service demand is
then estimated as

τp,CPU (t) = min

(
Slow

nurls(t)
, R(L)

)
. (2)

Here we use R(L) as the estimate of bottleneck service de-
mand at low load, if it is the lower of the two estimates.
If the load test results in such “timing out” it sets a flag
which indicates that “load level is too low”, which indicates
to the Controller that it should keep searching for the correct
“minimum” load level at which to run a load test.

There is another case that has to be considered: this is
where the maximum cumulative CPU execution time among
all the server processes reported is positive, but a few server
processes report zero cumulative CPU execution time, even
after pmax readings. In this case, we set an “ignore” flag
for each of these server processes, which indicates that the
controller will not wait for convergence of service demand for
these processes. Figure 2 shows three examples of varying
service demands, estimated fairly accurately by AutoPerf.

2.1.2 The Load Level Selection Algorithm
AutoPerf’s load level selection mechanism is designed to

solve two distinct problems:

• Figuring out the range - i.e., the maximum and the
minimum load levels that the load tests should be run
for. The maximum level should ideally be the one
where the application achieved its maximum through-
put. However, we have designed AutoPerf so that
it generates load just a little beyond this maximum.
We set the minimum to whatever keeps the bottleneck
server CPU busy at least ρmin fraction of time, where
ρmin is a configurable tool parameter whose default
value is 0.1.

• Once the range is known, minimizing the number of
load levels in between the minimum and the maximum,
at which a load test is run while still generating a pre-
cise graph of throughput vs load levels.

Determining the minimum load level
Our goal is to set the minumum load level to that which
achieves a certain minimum CPU utilization ρmin on the
“bottleneck” CPU server. For this, AutoPerf needs an esti-
mate of the CPU service demand per request on this bot-
tleneck server. AutoPerf starts its capacity analysis experi-
ments at minimum load level 1. As described in the above

section, if the loadtest “times out”with a“load level too low”
flag set, the controller uses the service demand estimate from
that run to estimate the minimum load level Nmin it should
run at, by using Utilization law as follows:

Nmin

R(Nmin) + γ
× τp,CPU (Nmin) = ρmin × ncores

Nmin(L) =
R(Nmin) + γ

τp,CPU (Nmin)
× ρmin × ncores

Nmin(L) ≈ R(L) + γ

τp,CPU (L)
× ρmin × ncores

where R(Nmin) and τp,CPU (Nmin) are estimated by R(L)
and τp,CPU (L) respectively. Note that we assume here that
no other system resource bottlenecks before the bottleneck
CPU reaches ρmin utilization.

Determining the maximum load level - CPU in-
tensive application
AutoPerf uses Kleinrock’s saturation number formula [9] as
a heuristic to estimate the maximum number of users the
server system can support. It can be shown that a closed
queuing network with M queuing stations, where expected
service demand at station i is τi, and average user think
time is γ, can support approximately Nmax number of users,
where

Nmax(L) =
γ +

∑M
i=1 τi(L)

τb(L)
× nb

cores (3)

where τi(L) is the CPU service demand at tier i at load level
L, and τb(L) = maxi τi(L) is the bottleneck CPU service
demand at load level L and nb

cores is the number of CPU
cores at the bottleneck tier.

Thus, at the end of a load test at load level L, AutoPerf
estimates all the service demands τi(L), based on measure-
ment data sent by the profilers, and calculates the Nmax(L)
using the above formula. Note that this estimate can keep
changing after each test at different load levels, since the
service demand estimates may keep changing.

The problem with the suggested method is that the re-
sult is valid only when the application has CPU bottleneck.
When CPU is not the bottleneck, the Nmax value deter-
mined by using CPU service demand is an overestimate,
and results in AutoPerf running load tests beyond the sat-
uration region, in the overloaded region of the capacity of
a server system. We have a mechanism to detect this sit-
uation. We will first describe AutoPerf’s basic load level
selection algorithm, and then present the overload detection
mechanism.

Minimizing the number of tests carried out
AutoPerf tries to minimize the number of experiments re-
quired to produce a “smooth” graph of throughput vs num-
ber of users. It does this by using a simple approach where
the throughput curve is approximated by a linear segments.
A recursive algorithm, is called after load tests at the two
endpoints of a range Lmin to Lmax have been carried out.
When called for this range, it firsts runs a load test at load
level Lmid = Lmin+Lmax

2
. Let Λ(L) denote the throughput

measured at load level L. Then if

Λ(Lmid) ≈ Λ(Lmin) + Λ(Lmax)

2

then no more load tests are required for this region. If
not, then the algorithm is recursively called for ranges
(Lmin, Lmid) and (Lmid, Lmax). After running tests in the
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minimum to maximum range, AutoPerf runs tests at every
load level from the estimated maximum to a level slightly
beyond this maximum.

In summary, AutoPerf first starts at Load level 1, and
then uses the minimum Load level selection algorithm to
ramp up to the minimum load level (Nmin). Using the CPU
service demand estimates from the load tests run so far, it
estimates the maximum load level Nmax of this application.
The recursive algorithm is called with this Nmin and Nmax

as its Lmin to Lmax range. Note that since CPU service
demand estimates are constantly updated, we may have a
new estimate of N ′max at the end of this run. In this case,
the recursive algorithm is called again in the (Nmax, N

′
max)

range.
Determining the maximum Load Level - non CPU

intensive application
The above algorithm works fine when CPU is indeed the
bottleneck resource of this server system. However, when
this is not the case, the Nmax estimate can turn out to be
much higher than the actual capacity of the system. When
experiments are run in the overloaded range of a server,
the throughput values can be highly unstable, resulting in
a jagged curve (see Figure 4) and the algorithm that is at-
tempting to find the linear segments to fit this jagged curve
can take a long time to terminate. Thus, we need a mecha-
nism to detect that (a) the load levels seem to be in overload
region and (b) the experiments seem to be stuck in a jagged
part of the curve.

We use a state-machine based approach to address this.
The state machine detects whether the current series of ex-
periments are in a “high load” region (load near saturation)
and further whether they are in an “overload” region (load
beyond saturation and system unstable).

The heuristic we use to detect “high load” uses the metric
of power of a queuing system (P (L)) [9] which is given by

P (L) =
Λ(L)

R(L)

This is combined metric which helps us determine the ideal
load level at which a queue provides good throughput - too
low would result in low throughput, and thus low power,
and too high would result in high response time and thus
low power. As load tests are done, we keep track of the
current maximum power (Pmax) and the load at which that
was achieved (LPmax) and the current maximum through-
put (∆max) and the corresponding load (L∆max). The state
machine starts in a normal load state (state 0). If the fol-
lowing conditions are detected at load level L:

P (L) < Pmax and L > LPmax

∆(L) < ∆max and L > L∆max

then the state machine moves to the next state (+1), which
indicates possible unstable state. The conditions essentially
tell us that the load level L is an “overloaded” load level,
since both Power and throughput at that level are lower,
even though the load level is higher than those levels at
which these metrics had higher values. If this happens Kovld

consecutive times, this indicates being “stuck” in the jagged
part of the curve and an overload state is confirmed. Oth-
erwise, the state machine moves back to the normal load
state.

If overload state is confirmed, we terminate the experi-
ment run and report the summary of results. Note that

because of the way the recursive algorithm described earlier
progresses, where the left side of the range is called first, we
can assume that when we are in the saturated region of the
curve, the tests corresponding to the load levels to the left
of this region have already been carried out.

2.1.3 Client Bottleneck Detection
One of the biggest pitfalls of closed loop load testing is

that often it is the load generating clients that are bottle-
necking. Thus as we see in later the experiments in Figure 5,
the throughput flattening could indicate either a client bot-
tleneck, or server bottleneck. We have developed a heuristic
independent of the hardware on which AutoPerf is run, to
detect client bottleneck. At the end of a run at a load level,
the think time achieved in the experiment is calculated using
Little’s law for closed loop systems [9] as follows:

γachieved =
L

Λ(L)
−R(L)

and is compared to the think time value provided as in-
put. Our claim is that if the achieved think time is much
higher than configured think time, this indicates that the
tasks related to generating the requests in a load generating
client were queuing for resources and not issuing requests in
a timely manner. This indicates a client-side bottleneck. In
AutoPerf, if achieved think time is higher than the config-
ured think time by a given threshold, we declare a warning
to the user on the screen. This alerts the user in case the
throughput is flattening out, that it could be due to client
capacity limit, rather than server capacity limit.

2.1.4 AutoPerf Profiling Mode
In this mode, the purpose of running an experiment is not

to find saturation throughput of an application. Instead, the
user specifies a list of URLs that (s)he would like to profile,
i.e. find per-request resource demands for. AutoPerf profiles
requests by generating load of only one type of request. E.g.
if a “login” request has to be profiled, AutoPerf issues only
logins, and uses the CPU service demand convergence algo-
rithms to output an accurate estimate of this parameter for
all the server processes being profiled. It also calculates disk
bytes read and written per host per request, and network
bytes read and written per host per request. Note that if in
a session based application a request requires, say, a “login”
before it can be executed, this can be specified to AutoP-
erf. AutoPerf executes the “pre-requisite” requests before it
profiles the subsequent requests.

3. EXPERIMENTAL EVALUATION
In this section we present results of experiments done to

evaluate the various automated mechanisms built into Au-
toPerf. We also evaluate the scalability of AutoPerf itself,
since the ability to generate high load is one of the most im-
portant requirements of a load generator tool. We do this by
comparing AutoPerf with popular load generator tools such
as Tsung [15] and JMeter [5]. On the server end, we eval-
uate AutoPerf under various scenarios such as a very high
capacity (“infinte server”) system, server system with CPU
bottleneck, server system with non-CPU bottleneck, and un-
der a well-known benchmark called “DellDVD”, in which we
validate AutoPerf’s mechanisms while using a probabilistic
navigation graph.
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Figure 3: Correctness validation - CPU bottleneck with
AutoPerf-Capacity Analysis mode and Tsung

3.1 Accuracy of AutoPerf’s mechanisms
To validate AutoPerf’s ability to faithfully recreate a

throughput and response time graph that a correctly but
manually configured tool would produce, we run it in “ca-
pacity analysis”mode to automatically run load tests for two
types of applications: CPU intensive, and non-CPU inten-
sive and compare the results with existing load generators
Jmeter [5] and Tsung [15].

3.1.1 CPU intensive Application
The application we used here is DellDVD. This is a two-

tier DVD store application with a Web server tier and a
database server tier. The testbed consisted of a 16 core In-
tel(R) Xeon(R) CPU E5-2650 v2 with 16GB RAM, with
only two cores enabled which hosted the Web server and an
Intel(R) Core(TM) i5 CPU 650 host having 4 cores as the
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Figure 4: Correctness validation - non CPU bottleneck with
AutoPerf-Capacity analysis mode and JMeter

database server. The DellDVD database was populated with
5000 users. The client was a 16 core AMD Opteron(TM)
Processor 6212 machine with 16GB RAM. The client and
servers were connected by a 1 Gbps switched network. In
the user sessions, each user navigated probabilistically be-
tween four DellDVD URLs, with a think time of 1 second.
We ran AutoPerf in capacity analysis mode for this applica-
tion, and compared it with running Tsung with DellDVD re-
quest probabilities that corresponded to AutoPerf’s CBMG
values, with the same think time, in a range of 50-750 users
in steps of 50. The duration of each load level was set to
180 seconds. We verified manually that this time duration
was giving steady-state results.

Figures 3 shows the comparison between the throughput
and response time graphs produced by AutoPerf and Tsung
respectively. Figure 3a also shows the Web server CPU uti-
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lization. We see that the CPU utilization (shown in the
units of average number of busy cores) reaches 2, which
shows that the Web server CPU is the bottleneck in this
application (the DB server CPU had very low utilization).

We can see that AutoPerf is able to largely match the
graphs that Tsung produced, thus basic correctness of Au-
toPerf measurements is validated. Note that all the param-
eters such as minimum and maximum load levels, and test
duration, were arbitrarily chosen and manually configured
for Tsung, whereas AutoPerf would have determined every-
thing automatically. We can see that AutoPerf is able to
correctly estimate the maximum load level and achieves its
goal of performing experiments until throughput saturates.
Note that this would have required the service demand con-
vergence algorithm to work properly. Its minimal interme-
diate load levels selection algorithm reproduces the shape of
the manual curve faithfully. At the low load end we can see
that AutoPerf searches for the minimum load level for some
time. Thus, this experiment validates AutoPerf’s satura-
tion number based maximum load level heuristic for systems
with a CPU bottleneck, and validates its minimal interme-
diate load levels selection algorithm. It also confirms that
in every load test run, AutoPerf is giving steady state re-
sults close to Tsung’s thus validating its warm-up detection
mechanism.

AutoPerf finished this capacity analysis run in 832 sec-
onds (14 mins) while Tsung finished in 45 minutes. Thus,
AutoPerf took much lesser time than Tsung and still gave
almost the same results.

3.1.2 Non CPU-intensive Application
In this experiment we used a simple php script on the Web

server, which was writing random characters onto the disk
to behave like a I/O bound application. The user session
consists of just this URL with a think time of one second.
The server side script uses an exclusive lock mechanism, so
only one user can write at a time. Thus, the writes are seri-
alized and represent the bottleneck and the CPU is not the
bottleneck. The Web server tier was hosted on an Intel(R)
Xeon(R) CPU E5-2650 16-core machine with 16 GB RAM,
with 4 CPU cores enabled and load generator client was
hosted on Intel(R) Core(TM) CPU i7-4790 8-core machine
with 8 GB RAM. The client and the servers were connected
by 1 Gbps switched network.

Figure 4 shows AutoPerf experiments with the power and
throughput heuristic-based state machine enabled and dis-
abled respectively. Figure 4a also shows the bottleneck (Web
server) CPU utilization in units of average number of busy
cores. We can see the the cores were not fully busy even
when throughput of the application flattened, thus the CPU
is indeed not the bottleneck in this application. Without the
state machine, AutoPerf carries out many experiments in the
overloaded region. With the state machine enabled, AutoP-
erf was able to detect the situation when the experiments
got “stuck” in the jagged area in the overloaded region of
the curve, and ran the capacity analysis at fewer load levels
to generate the curve in Figure 4.

3.2 Scalability Analysis
For these experiments the application used is a Web server

serving a simple blank HTML file. This was done so that we
had a server with very large capacity, that would exceed the
capacity of all the load generators, and therefore would re-
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Figure 5: Experiments for scalability with AutoPerf, Tsung
and JMeter with “Infinite server” and configured think time
4 sec, single URL of blank HTML file

veal their capacity. We call this server the “infinite server”.
These experiments are divided into three progressive parts:
i) First, where each load generator simply fires one static
URL at the server; ii) the second, where the load gener-
ators create dynamic URLs which have name-value pairs
where the values are read from a file and iii) dynamic URL
with name-value pairs read from a file with a probabilistic
URL generation where possible. AutoPerf does this using a
CBMG, and Tsung takes unconditional URL probabilities as
input. This allows us to characterize the load generator scal-
ability when it has to do varying degrees of work. We expect
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Figure 6: Experiments for scalability with AutoPerf, Tsung
and JMeter with “Infinite server” and configured think time
4 sec, Reading Name-Value pairs from a file

the static URL firing to be least client resource-intensive and
(ii) and (iii) to be more client resource intensive.

The client machine used was 4 core AMD Opteron(TM)
Processor 6212 (max Frequency 2.6 GHz). We had 10GB of
memory allocated to java heap size for the runs. The server
machine was 24 core Intel(R) Xeon(R) CPU E5-26200 (max
Frequency: 2 GHz). The power governor settings at both
the client side and the server side were set to performance.
The apache2 version 2.2.22 was deployed on the server. The
prefork module was enabled with MaxClient value set to
100000. We ran the experiments at various load levels from
1000 to almost 20000 users. Each test at a load level was
for one minute.

Figures 5, 6 and 7 show the results of the experiments
done with tools AutoPerf, JMeter and Tsung with config-
ured think time of 4 seconds and for the three respective
workload scenarios described earlier.

Figure 5a shows the throughput vs load level graphs for
each of these load generators for the static single URL
case. Note again that since the server is of “infinite” ca-
pacity, these graphs show us the load generator capacities.
For this particular case, AutoPerf achives the highest maxi-
mum throughput at user load level of 20,000 with a request
throughput of approximately 5000 requests/second. Tsung
also bottlenecks at 20,000 users with a maximum through-
put of about 3000 requests/second. Jmeter does most poorly
in this experiment, bottlenecking at 8000 users, with a max-
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Figure 7: Experiments for scalability with AutoPerf, Tsung
and JMeter with “Infinite server” and configured think time
4 sec, Name-values from file with probabilistic URL genera-
tion

imum throughput of just 1500 requests/second. Figure 5b
shows the load generator (“client”) CPU utilization and also
the “calculated” think time for the three load generators,
which we claim is the actual achieved think time by apply-
ing Little’s Law to this closed loop system. Since Jmeter’s
achieved think time values dominated this graph, Figure 5c
shows the think time at a zoomed in scale so that AuoP-
erf’s and Tsung’s achieved think time values can be observed
properly. As discussed in Section 2.1.3, we claim that the
bottlenecking of closed loop load generators can be detected
in terms of this achieved think time. We observe that around
the load level at which each load generator starts bottleneck-
ing and throughput starts flattening out, the achieved think
time also start inflating as compared to the configured think
time of 4 seconds. Jmeter displays a rather inconsistent
value of achieved think time for lower load levels also, how-
ever AutoPerf and Tsung show think time inflation around
the level that their througputs flatten. However, it is impor-
tant to note that client CPU utilization in all cases remains
below 70%, which by does not indicate exhaustion of local
CPU resources and would not have indicated client bottle-
necking. Thus, think time inflation is a much more reliable
indicator of client bottlenecking, or some other misbehavior
of the load generator tool.

Figure 6a shows the same comparison for the scenario of
reading name-value pairs from a file. In this case, Tsung
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Table 1: Request resource demand of web and DB tier after profiling of an application using AutoPerf

Transaction

Service N/W N/W Disk Disk

Demand Packets Packets Blocks Blocks

(ms) Read(KB) Written Read Written

Apache MySQL Apache MySQL Apache MySQL Apache MySQL Apache MySQL

Login 0.5875 0.4197 343930 161480 364076 124637 0 8 2236 631

SearchActor 1.5443 0.0922 202556 69400 233046 53424 4 0 4264 162

SearchCategory 2.4188 0.0568 176440 43245 182050 33375 0 0 292 139

SearchTitle 1.5952 0.0948 190662 63798 218086 49193 0 0 492 146

achieves the highest throughput, but AutoPerf is not too
far behind. Jmeter again displays the most unstable curve.
Figure 6b shows the achieved think time vs load level for
the three load generators, which again is able to track the
client bottlenecking fairly closely. We can see that the load
levels at which the clients bottlenecked were lower for all
the load generators than those for the static URL case. E.g.
AutoPerf could scale to 20,000 users with the static URL vs
about 14,000 users with dynamic URL generation.

Figure 7a shows the throughput graph in the case where
AutoPerf is using a CBMG, and Tsung is using direct equiv-
alent URL probabilities. Jmeter is not included in this com-
parison as it does not have probabilistic session generation
capability. In this scenario, AutoPerf achieves significantly
higher throughput than Tsung. The corresponding think
time graph in Figure 7b again shows inflation in think time
at high loads, around the same load levels that the through-
puts were flattening out, even when the client CPU was
not bottlenecking. Surprisingly enough, AutoPerf scales to
18,000 users with 4200 requests/second throughput in this
(more resource intensive) case as opposed to 14,000 users
with 2500 requests/second in the previous case. At this
point we do not have a good explanation for this anomaly.

We conclude from these experiments that AutoPerf scal-
ability is in a similar range or in some cases better than ex-
isting high-capacity load generators. Our experiments also
confirm our think time heuristic for client bottleneck detec-
tion in closed loop load tests. We believe this is a powerful
check that every load testing exercise should do to ensure
that the client is behaving as it has been configured to be-
have, and eliminate the possibility that the throughput ca-
pacity determined in a load test, is of the client rather than
the server.

3.3 AutoPerf Profiling Mode results
AutoPerf can be used to determine the per request re-

source demands at each tier, for each type of request in a
multi-tier system. Table 1 shows the profiling results for
four profiled request types in DellDVD at the Web tier and
the Database tier. We note that doing this task manually
for each request for each tier is extremely tedious and would
require huge amount of manpower resources.

AutoPerf is the only tool that we know of that can pro-
duce this result. These results expand the use of AutoPerf
greatly, from an efficient capacity analysis tool, to a tool
that can be used in a pipeline of measurement and model-
ing tools to predict the performance of an application using
models. For example, per request service demands are a
critical input required for parameterizing queuing models of
such systems [6].

4. BACKGROUND AND RELATED WORK
Performance tests can be carried out on multi-tier Web

applications using one of a very large number load testing
tools available either free or commercially [7]. Jiang and
Hassan [8] present a comprehensive survey and classifica-
tion of all aspects of load testing tools. In this section, we
discuss a few popular tools, and a few other tools that have
comparable goals to those of AutoPerf.

One of the most used load testing tool is Apache JMe-
ter [5]. JMeter is a GUI-based tool written in Java. The
JMeter test plan for a web application consist of a session
of HTTP requests defined with other workload parameters
such as number of users, running time, user ramp up time,
think time etc. JMeter fires the requests deterministically
in a sequential manner, completes a session and collects the
result. The reports collected by the “listener component”
of JMeter show standard metrics such as total number of
request generated, average response time, throughput etc.
The JMeter architecture depends on plugins which allow it
to be extended to offer many additional features. E.g. a plu-
gin for JMeter server agent is available, which can be used
to monitor the server and report server metrics such as CPU
usage, memory and disk statistics, etc.

Tsung is another feature-rich tool which provides great
flexibility in defining the test environment (client and server
configuration), user behaviour and load distribution. The
test plan for a Web application consist of sessions configured
with a probability value, where each session is composed
of transactions and each transaction consists of a group of
HTTP requests. Each virtual user chooses a session based
on the probability value and fires URLs accordingly. Tsung
runs for a predefined time and provides average response
time and highest server throughput achieved for all requests,
transactions as well as each session defined in an XML file
which is given as input. It also retrieves server activities i.e.
CPU activity, load average and memory usage by commu-
nicating to server agents or monitoring through Munin or
SNMP.

There are numerous of other load generator tools that can
be found on the Internet [7], however JMeter and Tsung are
among the most feature-rich. However, these tools are also
essentially built to be manually driven by a performance
tester, who by trial and error can figure out the correct
range in which to run the tests for, and the duration of
the test. When the server capacity is not known, this can
be a time and resource intensive process. The application in
this testbed could have very high capacity - say 10,000 users
and the analyst could spend a lot of time running tests in a
low range. On the other hand, the tester could run tests in
too high a range, and keep getting only saturation results.
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Finally the range could be correct, but the step size could
be unnecessarily small, or too large.

The duration of the test is another pitfall. Assuming that
steady-state results are desired, the test could be run for too
short a duration, resulting in non-representative results, or
it could be run for too long a duration, which will result in
too much time for the overall experiment. If the tester is
not a trained performance engineer, such errors could result
in misinterpretation of the application performance.

Some existing methodologies have been proposed that ad-
dress this problem. The CLIF benchmarking service [14]
automatically determines the saturation level and aims to
never run an experiment at a level higher than server ca-
pacity. CLIF uses response time at the single user load test
as an indicator of the service time at the server, and models
the server as an M/M/K queue, where the algorithm tries to
guess the number of servers K. It uses a specified “fineness
factor” to determine the number of load levels at which the
load tests should be run in the range between single user and
saturation level. CLIF can also “scale itself” when it detects
that its own CPU usage is exceeding a certain threshold,
and use new virtual machines to generate additional load.

A methodology which also addresses the problem of static
and manual setting of load testing parameters was proposed
by Shivam et al [13] in the context of NFS server bench-
marking. They propose various mechanisms such as binary
search for “searching” for the saturation load level. They
determine the duration and number of repetitions of load
tests using statistical techniques of confidence determina-
tion. The primary goal of their work though, is “mapping
response surfaces” - i.e. generating the performance surface
as a function of workload, server configuration and amount
of resources available.

BenchLab [4] is a load testing framework that addresses
the problem of making load tests much more “realistic”. It
uses real web browsers to emulate users with automated load
injection tool, uses traces to replay realistic workload and
uses cloud resources to place clients in geographically dis-
tributed locations. There is minimal interaction between
these clients.

Rain [2] is load generation toolkit that can generate“open”
load, closed load as well as a mix. It is also the only other
tool we know that accepts a probabilistic navigation graph
to describe a user session. It can also generate time-varying
load.

While the above tools and methodologies address some
of the problems in efficient running of load tests, they still
have some drawbacks. Tsung, JMeter, BenchLab, Rain and
a host of other load generator tools are clearly not made for
automated load testing runs. While CLIF does automate
saturation detection, it is not clear how CLIF’s response
time heuristic works in the case of multi-tier applications -
where response time is not equal to the bottleneck server’s
service time, and in the case when service demand changes
with load levels - which is very often the case with real-
life applications. While Shivam et al’s methodology [13]
addresses many issues raised here, their goal is different from
our goal of generating throughput and response time vs load
level curves for multi-tier Web applications.

A second very important need that is not met by any exist-
ing tool that we know of is that of collecting data that can be
used to parameterize performance models of an application.
While a load test reveals important characteristics of an ap-

plication, performance modeling is an important step after
performance testing, which requires very different quantita-
tive inputs. Queuing models are parameterized by service
demands of each different class of requests. The service de-
mand is the resource usage requirement of one request at
any server resource. Queuing models are used so that per-
formance can be predicted for different request mixes, and
different server platforms. Collection of service demands re-
quires very different kinds of test and measurement.

There are some methodologies proposed to address the
problem of measuring CPU service demand. Several make
use of request logs and utilization data from production sys-
tems to estimate the CPU service demand per request type,
using Utilization Law [3, 11, 16]. Some estimate the service
demand by measuring response times and throughputs [1].
However, to our knowledge no existing load testing tool pro-
vides this information, and none gives per-request resource
demands for resources other than the CPU.

5. SUMMARY AND CONCLUSIONS
In this paper, we presented an intelligent load generator

and resource usage profiling tool AutoPerf, which completely
takes the tedium of trial-and-error out of the process of load
testing of multi-tier Web applications. It additionally offers
a unique feature not offered by any other load testing tool -
that of discovering service demands of individual requests at
various server resources. This is immensely useful in creating
performance models of multi-tier applications.

AutoPerf does this by working symbiotically with the the-
ory of queuing systems - it uses some simple results such
as Utilization Law, Little’s Law, the Saturation Number
Heuristic, the “power of the queue” metric to inform its load
testing process so that it can be run automatically with very
little configuration, and is self-aware of its own bottleneck-
ing. On the other hand, it produces measurement data that
can be used to parameterize queuing models of the applica-
tion.

Out results showed that AutoPerf can run an efficient load
test that produces throughput and response time graphs
that are very close to those produced by a conservatively
configured load test - i.e. one with a fine step size and a
long test duration.

There are several directions we plan to expand AutoP-
erf in, in the future. Firstly, the self-bottleneck detection
can be trivially employed to have AutoPerf auto-scale to
use a bank of client load generator machines, if one ma-
chine is bottlenecking. This work is in progress. Further
currently, AutoPerf only reports server-side resource usage
profiles. We can build an additional capability of AutoPerf
carrying out diagnosis regarding performance bottlenecks
using these server-side measurements. We also plan to en-
hance AutoPerf so that it explores server-side configurations
that improve performance. Lastly, while a tool VirtPerf [12]
was built using AutoPerf, for performance benchmarking of
virtualized applications, it needs to be enhanced so that it
can provide additional parameters required to create perfor-
mance models of applications on virtual machines.
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