
A Continuous Software Quality Monitoring Approach for
Small and Medium Enterprises

Andrea Janes
Free University of Bozen-Bolzano

Piazza Domenicani, 3
Bozen-Bolzano

39100 Italy
andrea.janes@unibz.it

Valentina Lenarduzzi
Free University of Bozen-Bolzano

Piazza Domenicani, 3
Bozen-Bolzano

39100 Italy
valentina.lenarduzzi@unibz.it

Alexandru Cristian Stan
Free University of Bozen-Bolzano

Piazza Domenicani, 3
Bozen-Bolzano

39100 Italy
astan@unibz.it

ABSTRACT

Context: SMEs cannot always afford the effort required for

software quality assurance, and therefore there is the need of easy

and affordable practices to prevent issues in the software they

develop.

Object: In this paper, we propose an approach to allow SMEs to

access SQA practices, using an SQA approach based on a

continuous issue and error monitoring and a recommendation

system that will suggest quality practices, recommending a set of

quality actions based on the issues that previously created errors, so

as to help SMEs to maintain quality above a minimum threshold.

Method: First, we aim at identifying a set of SQA practices

applicable in SMEs, based on the main constraints of SMEs and a

set of tools and practices to fulfill a complete DevOps pipeline.

Second, we aim at defining a recommendation system to provide

software quality feedback to micro-teams, suggesting which

action(s) they should take to maintain a certain quality level and

allowing them to remove the most severe issues with the lowest

possible effort. Our approach will be validated by a set of local

SMEs. Moreover, the tools developed will be published with an

Open Source license.

Keywords

Continuous Quality Assurance; Software Monitoring; Software

Maintenance; Code Smells; Anti-patterns

1. INTRODUCTION
Software quality assurance (SQA) is still a complex task that

requires a lot of effort and expertise. The reasons are manifold, e.g.,

the fact that quality-related information is difficult to collect [11]

[8], or that investment into SQA is often still put aside in favor of

other activities, e.g., the addition of new functionalities [12].

Moreover, developers commonly do not trust existing one-size fits

all quality models [13] [14], because of their complex interpretation

that often requires dedicated SQA personnel [6]. This is why

automated solutions that do not distract developers in their work

and provide useful feedback to create a more effective workplace

are needed.

One aspect that influences software quality are code smells

and anti-patterns, i.e., particular structures in code that can cause

negative effects on software maintenance and should be refactored

[9]. They are a cause of low maintenance of systems and several

works highlighted that reducing code smells can reduce the risk of

1 SonarQube – http://www.sonarqube.org

injecting bugs in the source code. A solution to reduce the number

of code smells is to apply a continuous SQA monitoring approach.

In recent years, SonarQube1, an Open Source Continuous

SQA platform for the continuous analysis of the technical quality

of source code, has gained more and more popularity, and today it

is the de facto standard SQA tool adopted in industry. SonarQube

analyzes source code with respect to different quality aspects and

presents the results in the form of a web page or a log file.

SonarQube and its competitors provide a set of raw measures

without interpretation. Interpretation is delegated to the developers,

who must define models to interpret measurements for each project,

continuously monitor the software quality, and provide ad-hoc

actions to the developers for quality improvements.

To reduce the burden for developers and to understand which

quality aspect and which code smell is effectively impacting

software maintenance, in this paper we propose a continuous SQA

monitoring approach, that combines continuous learning

techniques based on SMEs common quality issues and a

recommendation system to suggest developers which code smell

should be removed in order to reduce the probability of injecting

bugs in their code.

From a bird’s-eye view, our approach foresees the following

steps (see Fig. 1):

(1) While the end-user uses the developed system, a continuous

monitoring system observes the state of the system and

collects all faults that arise.

(2) When a fault is detected, the monitoring system collects

information available on runtime about the state of the

monitored system (e.g., the stack trace or a screen shot of the

current view) and adds an issue to the issue tracker of the

development team.

(3) When the developers solve the issue, they commit the changes

into the versioning system.

(4) The continuous SQA system analyzes the changed source

code, identifies changes in the collected metrics (e.g., the

presence of a specific code pattern) and relates these changes

to the description of the commit of the changes.

(5) A recommender system uses topic detection to identify key

terms in the commit and issues descriptions and builds a

model that relates the author of the commit, the current

location in the source code, the key terms of the change, and

the change in the collected software quality metrics collected

by SonarQube.

(6) As soon as a new version is committed to the repository, a

continuous inspection component uses SonarQube to get the

current quality metrics for the newly committed version.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICPE’17 Companion, April 22–26, 2017, L'Aquila, Italy.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4899-7/17/04…$15.00.

DOI: http://dx.doi.org/10.1145/3053600.3053618

97

mailto:Permissions@acm.org

Figure 1: Data flow through the envisioned continuous monitoring system.

(7) During the development, the IDE plugin of the continuous

SQA system will recommend to developers editing a

particular piece of code, which quality action should be taken

to reduce the probability of issues that typically arise in the

system, based on historical data collected during the

monitoring and the maintenance phase.

What differentiates our approach from existing IDE plug-ins

for software quality is the recommendation system at the developer

and development-team level that will provide customized

recommendations, based on the most relevant SQA practices

dynamically defined for each team. Moreover, the implementation

based on an IDE Plug-in, will allow developers to reduce the

complexity of the installation, since they will not require to install

additional software on their local machine, but only to install the

plug-in directly from the IDE and to connect the plug-in to their

SonarQube instance simply providing the server url and the

developer’ credentials.

2. RELATED WORK AND BACKGROUND
Software quality assurance (SQA) includes methods and

techniques to assure that a software has a certain (desired) quality.

Various SQA approaches have been developed in industrial

contexts but, as highlighted by several studies [1], [15], [5], [4],

many are not applicable to SMEs and especially to micro

enterprises since they require dedicated SQA teams or large

developer effort overhead for the SQA activities prescribed by the

SQA team. Therefore, SMEs and in particular micro-enterprises2

need automated ways (i.e., requiring few resources) to understand

when the quality of their product is decreasing and to get

continuous practical suggestions on how to maintain quality above

a minimum threshold.

Existing measurement tools, such as SonarQube, support

analyzing the produced source code; however, such tools often

provide large amounts of data from different sources but do not

provide a personalized view on the data, depending on the needs of

the developer solving a specific task [3]. This is a problem that a

recommender system can alleviate: recommender systems are

programs that help a user to choose items (e.g., products, songs,

movies) from a large offer [16]. Often the goal is to help the user to

choose interesting items. In our case, the recommender system aims

to point out the most relevant metrics to the developer for the

specific piece of code that he or she is currently editing.

2 Depending on the country, the definition for small, medium, and

microenterprises vary. For example, within the European Union

microenterprises have less than 10 employees, small enterprises

 The goal of the here envisioned system is to change the

developers’ behavior and convince them to adopt more beneficial

quality management activities, therefore, we need to design and

develop persuasive solutions. This means that the recommender is

not aimed at maximizing prediction accuracy (what the user will

do), which is the standard performance evaluation metric in

recommender systems, but at optimizing recommendation

adoption. This problem will be mainly addressed by the design of

persuasive interfaces and especially explanations [20][17]. Similar

approaches, have been already developed [13] and [14] however,

they have never been widely adopted, probably because they

needed a tailored definition of the quality models, not easily

manageable from SMEs.

When introducing the envisioned system to a team, the

following aspects need to be considered [21]:

 Focus on essential problems: avoid measuring just for the

sake of measurement but focus on problems that are relevant

for the practitioner;

 Domain semantics should be understood correctly for data

preparation: researchers and practitioners need to collaborate

in data interpretation, data selection, and data filtering.

Researchers need to understand:

– the basic definitions of domain-specific terminologies

and concepts to conduct data interpretation;

– the connections between the data and the problem to be

solved to conduct data selection; and

– the defects and limitations of existing data to avoid

incorrect inference to conduct data filtering.

 A usable system should be built early to enable a feedback

loop between researchers and practitioners.

 Evaluation criteria should be tied to real tasks in practice:

software analytics projects should be (at least partly)

evaluated using the real tasks that they are targeted to help

with.

3. ROADMAP
Overall, the research objectives and outcomes of this work are:

 Identification of a set of SQA practices applicable in SMEs,

based on the main constraints of SMEs, such as personnel,

budget, investments, time frame, etc. In this task, we aim at

defining a set of ranked quality criteria and possible actions

needed to implement them.

less than 50, and medium enterprises less than 250. There are also

restrictions on the turnover and the balance sheet total.

98

 Identification of the code smells that influence more the

software maintainability based on the literature. This step is

needed for the cold start of the recommendation system and

will be carried out by means of a systematic literature review

 Identification of a set of tools and practices to fulfill a

complete DevOps pipeline.

 Definition of a recommendation system to provide SQA

feedback to micro-teams, suggesting which action(s) they

should take to maintain a certain quality level and allowing

them to remove the most severe issues with the lowest

possible effort.

 Implementation of an IDE-plug-in to recommend the

appropriate SQA action to the developers.

4. PROJECT IMPLMENTATION
To provide developers’ feedback in a seamless way, without

requiring developer’s effort overhead, we will implement this

approach in SonarQube. The extension of SonarQube will allow us

to seamlessly adopt our approach in companies already using

SonarQube and to learn how to apply SonarQube based on best

practices reported by the aforementioned companies. To reduce the

invasiveness of the approach, we will implement an extension of

SonarLint as IDE plug-in. SonarLint is an OSS SonarQube plug-in

available for Eclipse, IntelliJ and VisualStudio and allows

developers to highlight issues in code. The result of our approach

will be implemented in this plug-in so as to allow developers to see

potentially risky code smells highlighted as issues without

requiring them to access to other platforms or to perform any steps

who would require extra effort.

The approach will be developed based on the following steps:

 Continuous Issue Monitoring System. This component is

responsible of monitoring the system and, in case of errors or

exceptions create an issue in the issue tracking system (eg.

Jira3). In case of duplicated issues, the system will report that

the same issue occurred again, so as to support developers in

the identification of the most frequent issues.

 Continuous Inspection tool. This component is responsible

of analyzing the quality and the related static and dynamic

measures [18] that changed after the resolution of an issue.

Moreover, it will automatically forward the information on

the changed measures, the commit message, the issue

description and the complete stack-trace to the Recommender

System component. This component will be developed as an

extension of SonarQube.

 Recommender System

– Topic Detection analysis. This component will receive

all the information forwarded by the Continuous

Inspection tool, and classify the topics reported in the

commit and issue description, together with the stack-

trace. This classification will help developers to

understand if a specific measure can impact the quality or

increase the probability of issues in specific part of the

systems they develop.

– Recommender system training. This component adopts

the approach defined in [7]. It will learn how to associate

existing changes of metrics to issues, based on the

classification provided by the topic detection component

and on the metrics changed. The most suitable machine

learning technique will be identified during the project.

Based on the availability of data from each company we

will define if the training of the machine learning

algorithm will be based on data coming from one single

company or on several similar companies.

 IDE-Plugin. Based on the recommendations provided by the

recommendation system, we will implement a plug-in for

SonarLint4), the IDE plug-in for SonarQube. Implementing an

extension of this plug-in will allow developers who already use

SonarQube to seamless adopt our approach, without need of

introducing and learning how to use new tools.

5. CURRENT STATUS
Currently we analyzed the existing literature on software

maintenance for SMEs and the impact of Code Smells on software

maintenance, identifying a set of relevant papers reporting

maintenance issues in case of code smells (e.g., [19] and [2]). The

first version of the DevOps tools pipeline has been identified. We

are validating a set of tools in a local ME. The initial toolset is

composed by:

 GitLab for source code versioning;

 Jenkins for continuos testing and integration. Jenkins is also

responsible of launching the SonarQube execution on every

commit. We decided to initially adopt Jenkins instead of the

GitLab continuos integration feature so as to decouple our

implementation from GitLab and allow users to adopt any

other versioning system supported by Jenkins;

 Jira issue tracker to keep track of issues;

 SonarQube for continuos SQA;

 SonarLint as IDE plug-in.

We already developed the component to allow SonarQube to

correctly analyze the most common code smells, by means of Ptidej

[10]. Our decision to integrate Ptidej into SonarQube was mainly

driven by two reasons: on the one hand simply because, as declared

in the previous section, SonarQube is not able to detect these design

flaws in the source code and on the other one because we found out

in the research literature that Ptidej was, in most of the cases,

selected as the detection strategy among the encountered studies

treating code smells, their detection and their impact on software

maintainability. Figure 2 shows an example of metrics extracted

from SonarQube. Please note that in the current implementation

only the raw metric-numbers are presented. As already reported, a

dashboard and the IDE-plug-in will be used in the final

implementation. Each time our SonarQube instance started a

system’s analysis, in addition to the standard static code measures,

also the code smells were detected and stored in the SonarQube

database as any other native metrics. We validated the SonarQube

components by analyzing 22 Open Source projects form the

Apache Software- Foundation, analyzing more than 5000 source

code commits with millions of lines of code. The raw results of the

analysis are available. We currently developed a SonarQube plug-

in to extract the issues in Jira and tested it among the existing issues

for the analyzed projects. At this stage, the issues were the manually

submitted ones, from users and developers. Once the continuous

monitoring system will be implemented, we will be able to extract

the related issues with the same approach. We are currently

implementing a dashboard to provide the developers with the

results of the code smells related metrics. At this stage, we have not

yet implemented the recommendation component and neither the

IDE plug-in.

6. ACKNOWLEDGMENTS
This work has been partially supported by the project SQuaSME

“recommendation techniques for Software QUAlity improvement

in Small Medium Enterprise” funded by the Free University of

Bozen-Bolzano.

99

Figure 2: The current SonarQube plug-in

7. REFERENCES
[1] Almomani M.A.T., Basri S., Mahamad S., and Bajeh A.O.. 2014.

Software Process Improvement Initiatives in Small and Medium
Firms: A Systematic Review. In 2014 3rd International Conference

on Advanced Computer Science Applications and Technologies.
IEEE Computer Society, Washington, DC, USA.

[2] Bazrafshan S. and Koschke R. 2013. An Empirical Study of Clone

Removals. In IEEE International Conference on Software

Maintenance.

[3] Raymond P. L. Buse and Zimmermann T.. 2012. Information Needs
for Software Development Analytics. In 34th International

Conference on Software Engineering. IEEE Press, Piscataway, NJ,

USA.Tavel, P. 2007. Modeling and Simulation Design. AK Peters

Ltd., Natick, MA.

[4] Caballero E. and Calvo-Manzano J.A. 2012. A Practical Approach to
Project Management in a Very Small Company.

[5] Valtierra C., Munoz M., and Mejia J. 2013. Characterization of

Software Processes Improvement Needs in SMEs. In 2013

International Conference on Mechatronics, Electronics and
Automotive Engineering. IEEE Computer Society, Washington, DC,

USA.

[6] Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., and Tosi, D. An
Investigation of the Users’ Perception of OSS Quality. 6th

International Conference on Open Source Systems, OSS 2010, Notre

Dame, IN, USA, May 30 – June 2, 2010.

[7] Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., and Tosi, D.
2010. The QualiSPo Approach to OSS Product Quality Evaluation.

In 3rd International Workshop on Emerging Trends in

Free/Libre/Open Source Software Research and Development.

[8] Diaz-Ley M., Garcia F., and Piaini M.. 2008. Implementing a

software measurement program in small and medium enterprises: a
suitable framework. IET Software 2, 5 (October 2008).

[9] Fowler M., and Beck K. 1999. Refactoring: Improving the Design of

Existing Code. Addison-Wesley.

[10] Gueheneuc, Y. G. 2005. Ptidej: Promoting Patterns with Patterns. In
1st ECOOP workshop on Building a System using Paterns. Springer-

Verlag.

[11] Hampp T.. 2012. A Cost-bene t Model for Software ality Assurance

Activities. In 8th International Conference on Predictive Models in
Software Engineering. ACM.

[12] Poul-Henning K. 2014. Quality Software Costs Money-heartbleed

Was Free Communication ACM 57, 8 (Aug. 2014).

[13] Lavazza, L., Morasca, S., Taibi, D., and Tosi, D. 2010. Predicting
OSS Trustworthiness on the Basis of Elementary Code Assessment.

In 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, New York, NY,

USA, Article 36.

[14] Lavazza, L., Morasca, S., Taibi, D., and Tosi, D. 2012. An Empirical
Investigation of Perceived Reliability of Open Source Java

Programs. In 27th Annual ACM Symposium on Applied Computing.

[15] Mishra A. and MishraD. 2013. Software Project Management

Tools: A Brief Comparative View. SIGSOFT So w. Eng. Notes 38, 3
(May 2013).

[16] Ricci F., Rokach L., and Shapira B. 2015. Recommender Systems:

Introduction and Challenges. In Recommender Systems Handbook.
Springer.

[17] Tintarev N. and Mastho J. 2015. Explaining Recommendations:

Design and Evaluation. Springer US, Boston, MA.

[18] Lavazza, L., Morasca, S., Taibi, D., and Tosi, D. 2012. On the
Definition of Dynamic Software Measures. In ACM-IEEE

International Symposium on Empirical Software Engineering and
Measurement. ACM, New York, NY, USA.

[19] Yamashita A. and Moonen L. 2013. Exploring the Impact of Inter-

smell Relations on Software Maintainability: An Empirical Study. In

2013 International Conference on Software Engineering. IEEE Press,
Piscataway, NJ, USA.

[20] Yoo K.H., Gretzel U., and Zanker M. 2012. Persuasive

Recommender Systems: Conceptual Background and Implications.
Springer New York.

[21] Zhang D. 2012. Software Analytics in Practice: Approaches and

Experiences. In 9th IEEE Working Conference on Mining Software
Repositories. IEEE Press, Piscataway, NJ, USA.

100

