
Efficient Analysis at Edge

Tatiana Mangels
Siemens AG

Corporate Technology
Otto-Hahn-Ring 6
Munich, Germany

tatiana.mangels@
siemens.com

Alin Murarasu
Siemens AG

Corporate Technology
Otto-Hahn-Ring 6
Munich, Germany

alin.murarasu@siemens.com

Forest Oden
Siemens AG

Corporate Technology
Otto-Hahn-Ring 6
Munich, Germany

forest.oden@siemens.com

Alexey Fishkin
Siemens AG

Corporate Technology
Otto-Hahn-Ring 6
Munich, Germany

alexey.fishkin@siemens.com

Daniel Becker
Siemens AG

Corporate Technology
Otto-Hahn-Ring 6
Munich, Germany
becker.daniel@
siemens.com

ABSTRACT
Digitalization changes traditional business models by us-
ing digital technologies to improve existing offerings and to
create new offerings. Current technological trends such as
artificial intelligence, autonomous systems, and predictive
maintenance are ideal candidate technologies to enable dig-
italization use cases. Often, these technologies rely on the
availability of large amounts of data and the capability to
process these data efficiently. In contrast to consumer mar-
kets, industrial products must fulfill higher non-functional
requirements such as fast response times, 24/7 availabil-
ity and stability, real-time processing, safety, or security
requirements. As a consequence, processing capabilities –
ranging from multicore and manycores to even high end par-
allel clusters – have to be exploited to achieve necessary per-
formance and stability needs. In this paper, we introduce a
Distributed Multicore Monitoring Framework (MoMo) which
is a reference monitoring solution developed at Siemens Cor-
porate Technology. It can be used to easily build efficient
and stable diagnostic solutions which can help to understand
the correctness, availability, reliability, and performance of
large-scale distributed systems based on live data. Due to its
small footprint MoMo can be used to analyze data directly
at the data source which, for instance, can significantly re-
duce the network load. While MoMo’s efficiency comes from
the usage of multicore processors (CPUs) for running anal-
ysis in parallel, its usability is guaranteed by its capability
to easily integrate with other monitoring frameworks and its
usage of SPL - a domain-specific language which allows user
to easily define diagnostic algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053619

Keywords
Monitoring, data analysis, parallel computing

1. INTRODUCTION
Due to digitalization trend, the number of software inten-

sive systems increases each year. Often such systems consist
of different components, each of which is a software intensive
system itself. It is difficult to understand and verify such sys-
tems’ behavior. In this context, many problems only occur
for the first time when all system components are running
and interacting with each other [8]. It is impractical or even
impossible to defend against all possible issues using only
static analysis (before deployment).

To cope with such challenges in diagnostic advice scenar-
ios, monitoring is used, i.e. the continuous collection and
analysis of data in order to get a up-to-date view on the
state of the system. The main and most important require-
ment to monitoring solutions is to provide correct analysis
results in a timely manner. Delayed or wrong results can
increase system downtime or even lead to system failures,
which otherwise could be avoided.

As digitalization leads to a growing amount of industrial
data being collected from lots of sensors placed e.g. inside
factories, software systems must either scale vertically or
horizontally. In case of vertical scaling, which refers to mak-
ing one node more powerful, i.e. larger network bandwidth,
more memory, more storage capacity, and more processing
power must be provided. This causes significant costs and
even when possible, it is often not enough to cope with the
high data load. Furthermore, various restrictions make this
approach impractical. E.g. prior experience with off-shore
platforms shows that in those cases network bandwidth often
cannot be scaled up. Horizontal scaling in contrast means
distribution of the data analysis over the system. It can be
done in a data center or close to the source.

Indeed, software systems can always be vertically scaled
by adding more processing power at the long term data stor-
age and more bandwidth on the paths to it. However, many
customers may still want to deploy and execute the monitor-

85

ing rules as close to the data sources (i.e., ”field” equipment)
as possible. This comes with several advantages:

• Faster response: Working on local streams of sensor
data not only enables ”near” real-time scenarios but
also accounts for low latencies required for prescriptive
analytics, e.g. actuator control.

• Better utilization: Often, it is quite difficult or inef-
ficient to send and store all device data to geographi-
cally distributed data centers (e.g., in cases when there
is a very restricted bandwidth between the platform
and the on-shore monitoring center). So, the analysis
of ”field” equipment using ”local” computers provide a
better utilization of available computational resources.

• Security and privacy: There is a possibility for a
lot of security leaks when data from ”field” devices is
transported via internet and then stored on external
servers. So, keeping data either on the ”field” device
or at least as close as possible to ones without leaving
the local network makes security and privacy easier to
achieve.

In this paper, we present an efficient and stable embedded
monitoring component (i.e., Distributed Multi-core Moni-
toring Framework (MoMo)). Please note that we exclude
explicitly any security, time synchronization, and software
lifecycle discussion in this paper. MoMo is a monitoring so-
lution developed at Siemens Corporate Technology (CT). It
is used to easily build efficient diagnostic solutions, which
can understand the correctness, availability, reliability, and
performance of large-scale distributed systems based on live
data. A central goal of MoMo is to support the building
of diagnostic solutions in which no relevant event is missed
because of an overloaded diagnostic system. MoMo fol-
lows a push-data model in which data is sent from external
data sources to the MoMo based diagnostic solution. Thus,
MoMo can be easily used to connect to publish-subscribe
based protocols in which the diagnostic solution is a sub-
scriber.

MoMo’s efficiency comes from the usage of multicore pro-
cessors (CPUs) for running analysis in parallel. To provide
the highest performance, the computation in MoMo is done
entirely in-memory, i.e. using only the RAM and the CPU
cache instead of a disk-based database. This is advantageous
compared to other approaches, such as saving data on disk
prior to analysis, which would result in a lot of overhead
caused by reading and writing to disk [9][7].

Parallel programming is an error-prone process due to
challenges such as waiting times, deadlocks, and race condi-
tions. Nevertheless, MoMo is still able to offer high usabil-
ity, by hiding parallelism from the analysis developer. The
approach taken by MoMo to abstract parallelization away
from the user relies on data-flow programming concepts. In
this approach, the developer only needs to be concerned with
creating a graph of operations, which represents fine-grained
analyses. MoMo extracts data and function parallelism from
such a graph, which for the end user translates to a fast ex-
ecution on her multicore hardware.

Due to its small memory footprint and limited processing
overheads, MoMo can be executed on embedded devices and
hence can be used to analyze data directly at the data source
for horizontal scaling. To provide even better usability, we
integrated a Signal Processing Language (SPL) into MoMo.

Figure 1: The MoMo library.

SPL is a domain specific language developed at Siemens CT,
which allows to define data analysis based on complex event
processing in a straightforward manner.

This paper is organized as follows. Section 2 presents
an overview of the MoMo architecture. In Section 3 we
discuss how analysis can be composed in MoMo. In Section 4
we explore application of MoMo on embedded devices. We
discuss lessons learned in Section 5, related work in Section 6
and present a summary in Section 7.

2. ARCHITECTURE

2.1 Objectives of MoMo
MoMo’s main design objective is to allow users to easily

and efficiently diagnose problems related to the availability,
reliability, and performance of large-scale distributed sys-
tems in which many software components communicate over
a network. However, MoMo cannot accomplish this by itself;
in fact, MoMo is a library that is used as a foundation for
a complete diagnostic framework. We can see the minimal
set of components required by a framework in Figure 1:

• The MoMo adapter is responsible for collecting data
from a specific source.

• The MoMo library executes the analysis in parallel.

• The MoMo analyzer library incorporates the diagnos-
tic logic.

• The MoMo application is used to configure and trig-
ger the data collection and analysis; it uses the MoMo
library and MoMo analyzer library.

• The MoMo client receives analysis results.

With regard to functionality, MoMo (library) fulfills the
following key roles:

1. MoMo collects live data according to a push-model in
which the analyzed system sends data without being
asked for it.

2. MoMo processes the collected data in parallel by exe-
cuting a user configured analyzer graph on multicore
processors.

86

3. MoMo distributes analysis results to all the registered
client applications, which in turn can use the results
in many different ways, e.g. for visualization or notifi-
cation.

MoMo also contains a set of general-purpose analysis meth-
ods, which provide functionality for time series forecast-
ing and calculating statistical parameters. On top of these
methods, users can create their own specific analyzer classes,
which indicate what exactly is broken or predict failures,
thus considerably reducing the costs for fixing problems.

MoMo’s focus is placed on the following non-functional
requirements:

• Efficiency, meaning that data collection and analysis
in MoMo are fast operations.

• Scalability, meaning that multicore processors are har-
nessed in order to increase the throughput in terms of
number of analyses per second.

• Flexibility, meaning that many types of systems can
be analyzed using MoMo at the cost of defining the
necessary analyzers and adapters.

• Lightweight, meaning that the overhead caused by MoMo
on the analyzed system is minimal because of the use
of UDP for data collection.

2.2 Data flow in MoMo
An essential concept in MoMo is that MoMo manages

the life cycle of analyzer instances. An analyzer is a class
that is able (1) to process data collected by MoMo and (2)
to return results represented as MoMo messages. MoMo is
able to handle many such analyzer instances concurrently.
Besides that, analyzer instances can also be wired to each
other such that results are passed from one analyzer instance
to the next. The key point here is that analyses performed
using such objects are executed in parallel whenever MoMo
sees that they are independent.

Besides analyzers, MoMo also incorporates:

• A delay container, which is used to sort messages based
on their time stamps before they are forwarded to anal-
ysis. This is important because communication be-
tween MoMo and the data sources is based on UDP,
i.e. messages may be received in the wrong order.

• A message dispatcher, whose responsibility is to add
messages to the queues of the interested analyzer in-
stances.

• A scheduler, whose responsibility is to create tasks for
parallel execution given a set of analyzer instances with
their respective messages of interest. A task can be
roughly defined as a pair (analyzer instance, message
to analyze).

• A worker thread pool, which is used to avoid oversub-
scribing the available cores with too many threads.

• Information on a set of clients interested in analyzer
results. In MoMo, a client is a remote process iden-
tified by IP address and UDP port to which analysis
results are sent, e.g. for visualization or logging. Out-
put adapters, which allow us to communicate to a large
variety of systems, can be built as MoMo clients. They

realize the translation from the language of MoMo to
the specific language of the system that we analyze.

Figure 2 shows the data flow diagram of MoMo in which
messages travel from different points in a distributed system
to MoMo, inside MoMo, and finally, outside MoMo. Within
MoMo, messages are placed in the delay container where
they wait for a configured amount of time and subsequently,
they are sorted according to their time stamps. From there,
analyzer instances are asked if they are interested in the mes-
sage coming out of the delay container – if yes, the message
is pushed (as reference) to the queue of interested analyzer
instance.

Messages assigned to an analyzer instance are analyzed
serially (first in, first out) whereas messages assigned to dif-
ferent analyzers can be analyzed in parallel. Involving an
analyzer instance in two parallel tasks can result in race
conditions. This explains why serial execution is necessary
when processing the same message queue. Analyzing a mes-
sage is realized by creating a task and submitting it to the
thread pool for execution. During analysis, new messages
can be created, which, as depicted in the figure, can travel
outside MoMo or inside MoMo to other analyzer instances.

MoMo can be deployed in any system which publishes
data and offers means to read/subscribe to this data. How-
ever, since MoMo cannot understand the messages of an
arbitrary distributed system, an adapter implementation is
needed. Figure 2 shows input and (if needed) output adapters
which translate the messages of the analyzed system to MoMo
format and vice versa. In case the system messages contain
numerical sensor data, analysis defined by means of SPL
(Subsection 3.4) can be directly applied to the translated
messages. However, there is also a possibility to define cus-
tom analyzers for custom data.

3. ANALYSIS DEFINITION
In this section, we will consider how an analyzer instance’s

messages can be used for inter-analyzer communication to
”wire” the analyzers.

3.1 Independent Analyzer Instances
MoMo is a Qt/C++ framework. To define an analyzer, an

abstract class MomoAnalyzer must be extended. In particu-
lar, the concrete implementations for pure virtual functions
IsInterestedIn() and Analyze() must be provided. The
function IsInterestedIn() is a kind of a filter, it defines,
which data must be analyzed by this analyzer. The function
Analyze() defines the actual analysis.

MoMo’s performance is greatly influenced by the number
of analyzer instances that are managed by the Momo class
instance, i.e. the more, the better, as this means that there
is more concurrent work to do and more parallelism can be
exploited. When analyzer instances do not communicate to
each other, we refer to them as independent analyzer in-
stances. In such cases, to make sure that CPU cores are
fully utilized during analysis using MoMo, we need to make
sure that the number of independent analyzer instances is at
least as big as the number of cores. We recommend that the
number of analyzer instances is in fact several times bigger
than the number of cores, e.g. 10s or even 100s of analyzer
instances. Having multiple independent analyzer instances
of the same class results in data parallelism [3], i.e. the
parallel execution of one algorithm on different data.

87

A
D

A
P

T
E

R

MONITOR1

DELAY

msg

msg

msg

msg

mMsg

mMsg

U
D
P

mMsg mMsg mMsg
IS NEEDED

yes

n
o

TRASH ANALYZER

ANALYZER

ANALYZER

ANALYZER

mMsg

mMsg

mMsg

mMsg

mMsg

MONITORk

msg

A
D

A
P

T
E

RmMsg

mMsg

CLIENT1

CLIENTk

msg

msg

Figure 2: Data flow in MoMo.

Figure 3: A noise-time-consistency pipeline.

3.2 Pipelines
MoMo goes beyond the case of independent analyzer in-

stances. To define more complex hierarchical analysis, an-
alyzer instances can send data to each other by means of
MoMo messages. By setting the recursive flag, the message
with the data from analyzer is fed back into the MoMo data
flow. A first use case is the one of a pipeline of analyzer
instances like the one shown in Figure 3.

The first stage of the pipeline checks whether there is noise
in the sequence of incoming values. We encapsulate the
logic for noise detection in a NoiseAnalyzer class, which is
derived from MomoAnalyzer.

The second stage of the pipeline checks whether alerts
returned by the first stage are time-consistent, i.e. there are
multiple noise alerts generated within a time window of a
certain size. The reason to introduce the second stage is to
reduce the number of false positives generated by the first
stage alone. Simply put, if a noise alert comes in isolation, it
is ignored (it is probably a false positive); if many time-near
values violate the check, the alarm is said to be consistent
across time, thus real. In the latter case, the alarm is sent
to the registered MoMo clients.

In order to realize such a pipeline with MoMo a user must
(1) create an instance of an analyzer class which detects
noise and analyzes only external messages and (2) create
an instance of an analyzer which checks time consistency
and analyzes only messages from the noise analyzer. The
possible parallel execution will be exploited by MoMo auto-
matically.

3.3 Graphs
Even though pipelines are powerful, they are not enough

to cover important analysis use cases. Complex analyses
often require that they are expressed as graphs composed
of more basic analyses. Let us consider a use case which

Figure 4: A noise-space-consistency graph.

objective is to discover a broken sensor in order to replace
it. The analysis setup for it is depicted in Figure 4.

The graph has three noise nodes. Each is responsible for
detecting the noise in the data originating from a sensor –
publisher in the graph. The sensors here are redundant,
which helps to decouple the failure of a sensor from the fail-
ure of the machine where it is placed. In other words, even
if a sensor is broken, the other redundant sensors’ data can
be used to detect a problem affecting the machine.

The output of each noise node is gathered into a space
consistency node, which checks if an alert is returned in a
consistent manner by all the noise nodes. If the outputs of
the noise nodes differ, we detect a sensor divergence, which
is an indicator for a broken sensor.

In order to realize such a graph with MoMo a user must
(1) create three instances of an analyzer class which detects
noise and analyzes only external messages and (2) create
an instance of an analyzer which checks space consistency
and analyzes only messages from the noise analyzers. The
possible parallel execution will be exploited by MoMo auto-
matically.

3.4 SPL Integration
The MoMo framework is flexible and allows users to imple-

ment and deploy analyzers written in Qt/C++. However, to
do this, a user needs expertise in programming. To increase
usability of the framework we integrated with MoMo the
Signal Processing Language (SPL). SPL is a domain-specific
language, developed at Siemens CT, which allows users to
easily define diagnosis algorithms. The listing below shows a

88

simplified grammar that needs to be followed when defining
SPL algorithms:

signal("pattern text") =

$PrName1: truth(Expressions over events/signals)

: temporal constraints over start/end of $PrName1

and

$PrName2: truth(Expressions over events/signals)

: temporal constraints over start/end of

$PrName1 and $PrName2

and

...

In particular, SPL allows to define statements over events
or signals in order to infer patterns. Let us consider the
statement above: As an input we get data from e.g. signals.
We can define a logical expression over this data. As soon as
this logical expression is evaluated to true, we say that the
process $PrName1 starts. As soon as this logical expression
is evaluated to false, we say that the process $PrName1 ends.
Furthermore, we can also define temporal constraints over
start and end of this process. Similarly, we can define process
$PrName2 with the difference that now we are allowed to
define temporal constraints over start and end of $PrName1

and $PrName2. To clarify this, let us consider the following
example:

signal("Turbine Start-up") =

$t1: truth(#"S" < 200):duration(>=1m)

and

$t2: truth(#"S">9500):$t2:start>=$t1:end:

duration(>=5m);

In this example, we want to detect a start-up of a turbine
based on its rotor speed, here represented by signal S. The
SPL statement says that if the rotor speed remains under
200 for longer than one minute and after this, remains over
9500 for longer than five minutes, the turbine start-up is
detected.

This formula is parsed and translated into a graph of
MoMo analyzers, which can then be directly applied to mon-
itor and analyze the data.

4. APPLICATION ON EMBEDDED
DEVICES

Due to its small footprint MoMo’s based solutions can
be executed on embedded devices and hence can be used
to analyze data directly at source and scale the monitoring
system horizontally. In fact, we have shown that it is pos-
sible to run a MoMo solution on Raspberry Pi 3. The size
of the exemplary solution we used in our study with seven
analyzer instances is under 6MB. Simulated sensor data was
sent to MoMo running on Raspberry Pi 3 over LAN.

The solution included three Anomaly Analyzers, three
Time Consistency Analyzers and one Spatial Consistency
Analyzer (the graph of this solution is depicted in Figure 5).
The Anomaly Analyzers take input from the sensors and use
past and future data (this is achieved by collecting a small
buffer of data from the sensor before performing the analy-
sis) to determine if the data is anomalous. If it is, an alert
is sent to the next set of analyzers, the Time Consistency
Analyzers.

The Time Consistency Analyzers look into the past over
a user defined time window and determine if the number

Figure 5: Anomaly graph.

Figure 6: Visualization of analysis results.

of anomaly alerts is more than a user defined threshold.
If the threshold was exceeded, another alert is sent to the
Spatial Consistency Analyzer. The Spatial Consistency An-
alyzer gets alerts from all Time Consistency Analyzer in-
stances and observes how many analyzers out of the total
had a Time Consistent alert in a user defined time win-
dow. The Spatial Consistency Analyzer will, again, trigger
an alert if the count is above a user-defined threshold. At
this point, the analysis is done and all data is sent to the
MoMo Anomaly Client which is also running on the Rasp-
berry Pi. The MoMo Anomaly Client gets the results from
the MoMo Analyzers and sends them to a Windows PC,
where the data is displayed using Grafana (Figure 6).

5. LESSONS LEARNED
Typical scenarios for application of the MoMo framework

are diagnosis of turbines, railway field elements, transform-
ers, devices on oil platforms such as valves vanes. Usually,
sensor data (temperature, on/off state, voltages, currents,
etc.) is pushed via e.g. a publish-subscribe protocol from
these devices and MoMo performs listener based diagnosis,
which means it is not intrusive with regard to the analyzed
systems. For use cases where MoMo was applied, minimal
impact on the monitored system was of great importance,
especially when dealing with safety-critical or safety-related
systems.

In current typical monitoring scenarios, data sampling is
approximately 1 sample/s. When dealing with high-frequency
data (100, 1000 samples/s), a sampling rate of 1 sample/s
means loss of almost 100% of the data, which makes mean-
ingful analysis of this data infeasible. Increasing the sam-
pling rate to send the data to a server for analysis will ex-
plode the network traffic and even negatively impact the
functioning of the monitored system. One possible solution
in this case is to perform analysis of the data at source while
keeping the sampling rate high. Being portable on embed-
ded devices, MoMo supports well this scenario.

No matter the context, providing analysis as fast as possi-

89

ble is a frequently occurring requirement. Delaying the anal-
ysis results can result in failures, even broken devices, which
translates to high maintenance costs. Thus, performance of
data analysis is of high importance. MoMo addresses this
requirement through parallelization of analysis execution.
Typical diagnosis scenarios expose massive data parallelism
which is effectively exploited by MoMo. However, it is im-
portant to ensure that there are enough analyzer instances.
An insufficient number of analyzer instances leads to insuf-
ficient concurrency, which in turn translates to idle CPU
cores, resulting in poor performance. Furthermore, the an-
alyzer instances must not be too fine grained. Having too
fine grained analysis methods means that the overhead of
scheduling will dominate the total execution time, resulting
in poor performance. In our studies, we achieved parallel
efficiency of ∼82% when calculating on two threads on a
dual-core machine and of ∼63% when calculating on three
threads with activated hyper-threading. Nevertheless, the
parallel efficiency which can be achieved highly depends on
the executed scenario.

6. RELATED WORK
There is a significant number of monitoring solutions avail-

able on the market [1], [5], [2], [4], [6]. Most of these are com-
plete solutions covering a wide range of functionalities in-
cluding data collection based on pull / push / agent, thresh-
old based analysis, storage using SQL or NoSQL, visualiza-
tion using Web UIs, and alerting. Monitoring solutions, e.g.
Nagios[1], Icinga[5], Zabbix[2] are typically based on plug-
ins, which allow to extend the functionality, e.g. the set of
metrics that can be measured.

Compared to the monitoring solutions from above, MoMo
is more focused as it mainly provides the means to easily
express chained analyses and run everything efficiently on
multicore processors. Therefore, MoMo should not be re-
garded as a replacement for Nagios or its peers but rather
as a complementary framework used whenever high perfor-
mance is required, especially in scenarios dealing with high
frequency data. In this context, MoMo can be used as a
preprocessor for e.g. Nagios in such a way that data gen-
erated at high rates is analyzed at source (or close to it),
thus avoiding situations in which Nagios is overloaded by
too many incoming messages.

Moreover, the usage of plugins as it is normally done today
in monitoring solutions comes with drawbacks: (i) Plugins
used for data analysis are interpreted scripts, i.e. their ex-
ecution is slow and (ii) plugins are also stateless, resulting
in the necessity that states are saved and restored for every
message to analyze, which makes analysis slow. In contrast,
MoMo analyzer instances are stateful (no need to persist
state), which translates to higher performance.

Parallelization within typical monitoring solutions is achi-
eved by creating a new process whenever a check needs to
be executed, which leads to performance loss because of the
overhead associated with process management vs. the actual
computation, e.g. threshold check. In this regard, MoMo
uses the thread pool pattern, which means that no time is
wasted with starting and stopping processes and even with
context switches.

With regard to plugin inter-communication, it is not ex-
plicitly covered in most monitoring solutions, which limits
the possibilities for analysis composition. In MoMo, defining

graphs of analyzers, which communicate with each other, is
one of the main features.

Summarizing, MoMo can provide efficient preprocessing
at source, which is not possible with the above mentioned
solutions. On the other side, MoMo has less functionality
(e.g. visualization, alerting mechanism, persistency) which
is realized in those solutions. As stated before, we envision
that these solutions are used together: MoMo to address the
horizontal scaling and Nagios, Zabbix and others to visual-
ize, alert etc.

7. SUMMARY
The digitalization trend confronts monitoring solutions

with new challenges. In order to avoid failures and reduce
costs, a growing amount of industrial data must be analyzed
in time. The approach of horizontal scaling not only reduces
network load and saves storage capacity, but also enables
analysis of data which is not possible with vertical scaling
due to physical limitations, e.g. in case of off-shore plat-
forms. Due to its small footprint MoMo’s based monitoring
solutions can be executed on embedded devices and hence
can be used to analyze data directly at source and scale the
monitoring system horizontally. Furthermore, MoMo pro-
vides the means for hierarchical analysis; complex analyzer
communication patterns can be easily created. Regarding
efficiency MoMo is designed to execute analysis fast in order
to increase throughput and to be able to cope with growing
amount of data.

8. REFERENCES
[1] N. Enterprises. Nagios - The Industry Standard In IT

Infrastructure Monitoring, January 2017.
https://www.nagios.org/.

[2] Z. LLC. Zabbix :: The Enterprise-Class Open Source
Network Monitoring Solution, January 2017.
www.zabbix.com.

[3] T. G. Mattson, B. A. Sanders, and B. Massingill.
Patterns for parallel programming. Addison-Wesley,
Boston, 2005.

[4] T. G. Project. Ganglia Monitoring System, January
2017. http://ganglia.info/.

[5] T. I. Project. Icinga - Open Source Monitoring,
January 2017. https://www.icinga.com/.

[6] T. M. O. Project. Munin, November 2016.
http://munin-monitoring.org/.

[7] N. Savage. The power of memory. Commun. ACM,
57(9):15–17, Sept. 2014.

[8] M. Vierhauser, R. Rabiser, P. Grünbacher,
K. Seyerlehner, S. Wallner, and H. Zeisel. Reminds: A
flexible runtime monitoring framework for systems of
systems. Journal of Systems and Software, 2015.

[9] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and
M. Zhang. In-Memory big data management and
processing: A survey. Knowledge and Data Engineering,
IEEE Transactions on, 27(7):1920–1948, July 2015.

90

