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ABSTRACT
In the era of IoT, large volumes of event data from different
sources are collected in the form of streams. As these logs
need to be online processed to extract further knowledge
about the underlying business process, it is becoming more
and more important to give support to run-time monitoring.
In particular, increasing attention has been turned to con-
formance checking as a way to identify when a sequence of
events deviates from the expected behavior. Albeit rather
straightforward on a small log file, conformance verification
techniques may show poor performance when dealing with
big data, making increasingly attractive the possibility to
improve scalability through distributed computation. In this
paper, we adopt a previously implemented framework for
compliance verification (which provides a high-level logic-
based notation for the monitoring specification) and we show
how it can be efficiently distributed on a set of computing
nodes to support scalable run-time monitoring when dealing
with large volumes of event logs.
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1. INTRODUCTION
Digital event data is the new crucial raw material for busi-

ness. Over the last decade, the management of process ex-
ecution quality has gained increasing interest, giving birth
to a novel research area called Business Process Manage-
ment (BPM) and, in particular, to a set of log analysis tech-
niques commonly addressed with the name of process min-
ing. As stated in the Process Mining manifesto [27], this
field spans process discovery, conformance checking, predic-
tive analytics, process optimization and many other tech-
niques that start from the observation of a collection of oc-
curred events (e.g., logged events) to extract further critical
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knowledge about the evolution of the business process. In
particular, conformance checking (i.e., detecting when a se-
quence of events deviates from the expected behavior) is a
crucial activity for business because it can reveal the need
for a better control of the process (in case of unwanted de-
viations) or a refinement/update of the model (to include
desirable circumstances not yet foreseen).

In the era of Internet of Things (IoT) and big data, log
events are collected from different sources for online stream
processing. Indeed, each log event may appear irrelevant
when considered by itself but can provide a larger compre-
hension of the system evolution when combined with other
events in the stream. This makes the development of tools
that support run-time monitoring of big data more and more
important.

Business processes typically involve dynamic and complex
interconnected environments demanding a highly expressive
notation to represent the behavioral model. For this reason,
over the last years, several approaches for process model
definition have been proposed. Some of these involve pro-
cedural techniques (providing a detailed and complete de-
scription of any possible behaviour of the overall system at
design time)[26, 28, 29, 2], while some others are declara-
tive approaches (focusing on the elicitation of the set of de-
sired behavioural properties that the overall system should
exhibit during its execution, expressed by rules, logical as-
sertions or constraints) [24, 32]. Additionally, some hybrid
solutions have been proposed [3] that combine procedural
and declarative notations in order to take advantage of both
the approaches. The highly expressive power of these no-
tations, increases the complexity of the overall conformance
checking system and exacerbate the need for high perfor-
mance tools.

We can therefore identify two crucial and contrasting fea-
tures that a conformance checking system for business pro-
cess must provide: (i) high expressiveness of the notation,
to provide a rich representation of the behavioral model;
(ii) high performance and scalability, in order to support
run-time monitoring of event streams from the business en-
vironment.

Aiming to provide (i), in this work, we adopt the SCIFF
framework [4], a logic-based proof procedure that has been
previously applied to the monitoring of various systems and
environments [12, 11]. Focusing on this tool brings us two
main advantages. First, thanks to its highly expressive nota-
tion, SCIFF is able to operate with both procedural as well
as declarative formalisms to express the behavioural model.
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Second, being initially developed for the purpose of run-time
checking the compliance of agents to interaction protocols,
SCIFF is particularly suitable for the basis of a monitoring
system that analyse log data as they are collected.

As regards feature (ii), “analysis techniques dealing with
big data need to resort to distributed computing” [30]. In-
deed, the only way to handle computationally intensive ap-
plications over large volumes of data (while providing an an-
swer within acceptable time) is to distribute the analysing
software over a network of computing nodes (e.g., trough
the adoption of multicore systems, grid computing or virtu-
alization in cloud environment). According to Van der Aalst
[30], there are two different ways to distribute a conformance
checking task over a network of nodes: vertical distribution
and horizontal distribution.

In this work, we aim to leverage these distribution tech-
niques to parallelize SCIFF execution over a collection of
computing nodes, thus providing a first sketch of confor-
mance checking system that shows both expressiveness and
scalability features.

The remain of this paper is structured as follows. Sec-
tion 2 details the architecture of the proposed monitoring
system. Sections 3 and 4 provide further insight of the im-
plemented vertical and horizontal partitioning respectively.
Related work and conclusions follows.

2. THE MONITORING ARCHITECTURE
In order to provide high expressiveness to business process

definition, we employ the SCIFF language. Indeed, it has
been shown that various expressive declarative [24, 12] as
well as procedural [18, 11] approaches to business model
definition can be translated into the SCIFF formalization
(i.e., into a collection of declarative constraints that must
be satisfied by every event log in the input). In general, we
focus on constraint-based languages and we assume (as in
the work of Ly et al. [21]) that it is possible to define the
model in terms of a collection of rules and constraints (which
must be fulfilled by the correspondent event log data). In
particular, we employ the SCIFF language to specify these
constraints.

The desirable scalability feature is realized through the
adoption of a distributed architecture and the application
of vertical/horizontal parallelization methods. In the fol-
lowing, we show that SCIFF is particularly suitable for the
decomposition of the model requested by these paralleliza-
tion approaches.

Fig. 1 illustrates the basic components of our monitoring
architecture. The event streams and the behavioural model
are distributed over the network of nodes according to the
prescriptions of V/H Partitioner. This component relays
on a MapReduce [13] distributed platform that coordinates
the nodes and distributes the data according to the vertical
or horizontal partitioning algorithm. MapReduce is a well
know and widespread programming model for distributed
computation, that constitutes the basis of several engines
for big data and stream processing. Finally, Fig. 1 shows
that the SCIFF framework is executed on each node for
conformance checking purpose.

2.1 The SCIFF Monitoring Framework
The SCIFF constraint abductive logic programming frame-

work [4] is an extension of Fung and Kowalski’s IFF proof-
procedure for abductive logic programming [16]. In addition

Figure 1: General architecture of the monitoring framework.

to the general notion of abducible, the SCIFF framework
also provides the concepts of happened event, expectation,
and compliance of an observed sequence of events with a set
of expectations. These notions make the SCIFF particularly
suitable for dealing with conformance checking of event logs.

In SCIFF formalization, the events are represented as H
atoms, whereas expectations are modeled by E atoms. The
following form

H(Ev, T ) (1)

is a ground atom signifying that an event Ev Happens (i.e.,
occurs) at time T . Differently, E(Ev, T ) denotes that an
event unifying with Ev is Expected to occur at some time
in the range indicated by T .

A SCIFF program is composed of a knowledge base KB,
a set of integrity constraints IC and a goal. KB contains
a collection of backward rules in the form: head ← body,
while IC is made of forward implications like: body →
head. The integrity constraints are considered as reactive
rules i.e., when the body of an implication becomes true
(because of the occurrence of the involved events), then the
rule fires and the expectations in the head are generated
with an abductive process. Consider the example H(a, T )→
EN(b, T ′). This defines a constraint between events a and
b: if a happens at time T , then b should not occur at any
time T ′. Informally, SCIFF supports a notion of compliance
in terms of expectations and happened events: a sequence
of happened events is compliant with a model if for every
expected event (E) there is indeed a corresponding happened
event (H). Expectations are generated as the consequence
of the triggering of the integrity constraints, that in turn are
activated by the happened events. To further clarify the
basic concepts of SCIFF, we provide two simple examples of
workflow and their translation into SCIFF constraints. The
model illustrated in Fig. 2 states that “if an activity a is
detected, b should follow” and “if an activity b is detected, c
should follow”. This can be translated into the statements:

H(a, Ta)→E(b, Tb) ∧ Tb > Ta

H(b, Tb)→E(c, Tc) ∧ Tc > Tb

(2)

A slightly more complex example is shown in Fig. 3 through
the formalism by Kumar et al. [18]. Activity A1 addresses
the admission of a patient at a hospital, while A2 refers to
the detailed collection of information about the patient case.
The model suggests that activity A2 follows A1 (“Anamnesis
and exams are conducted after the patient admission”), both
should last between 5 and 10 time units and it should not

Figure 2: A simple example of workflow model in BPMN
language.
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Figure 3: An example of workflow in the formalism of [18].

pass more than 30 time units between the beginning of A1
and the end of A2. As in this case each activity is actually
composed of an event start and and event end, the workflow
translated into SCIFF constraints results as follows:

H(a1 end, Ta1 end)→E(a2 start, Ta2 start)∧
∧ Ta2 start > Ta1 end

H(a1 start, Ta1 start)→E(a1 end, Ta1 end)∧
∧ Ta1 end ≥ Ta1 start + 5 ∧
∧ Ta1 end ≤ Ta1 start + 10

H(a2 start, Ta2 start)→E(a2 end, Ta2 end)∧
∧ Ta2 end ≥ Ta2 start + 5 ∧
∧ Ta2 end ≤ Ta2 start + 10

H(a1 start, Ta1 start)→E(a2 end, Ta2 end)∧
∧ Ta2 end ≤ Ta1 start + 30

(3)

A complete explanation of SCIFF can be found in [4].

2.2 Horizontal and Vertical Distributed Mon-
itoring

In BPM, the concept of trace is used to identify a set
of events reporting the behaviour (i.e., sequence of carried
out activities) of one or more business actors (e.g., users,
employees, factory machines, etc.). Given a small log file
recording the significant traces happened during a business
process, conformance analysis is straightforward. However,
in real business cases, the behavioural model may be com-
posed of hundreds of different activities and the log stream
may contain millions traces. In this cases, process mining
tasks executed on a sigle computing node may be slow in
producing meaningful results; while decomposing the con-
formance checking challenge into smaller problems (that can
be distributed on a network of computers), can significantly
improve the performance.

As suggested by Van der Aalst [30], there are two basic
ways to distribute a conformance checking task:

• Vertical partitioning. All nodes receive the complete
model and a subset of the whole log. The subset is
composed of a collection of complete traces (i.e. each
node gets all the events referring to each trace in its
subset). In the end the results can to be collected
together.

• Horizontal partitioning. The traces are partitioned
such that, some events of each trace are processed by a
node, whereas another part of the same trace is anal-
ysed by another node. In this way, each node needs to
check all the traces but just focusing on the constraints
imposed by a portion of the whole model. In the end
the results needs to be merged together.

3. VERTICAL DISTRIBUTION
The vertical partitioning suggests to cut the input event

log by distributing the traces over the network of computers

(i.e., all the events of a trace must be sent to the same
node for further processing). Moreover, the business process
model that each trace should follow must be distributed to
all the computing nodes. Fig. 4 specifies the architecture
of our distributed monitoring framework in case of vertical
partitioning. We assume that each event in the stream is
expressed in the form:

H(trid, a, tsa) (4)

where, trid is the unique identifier of the trace, a is the
identifier of the activity and tsa is the timestamp of the
event. In other words, the occurrence of a record in the
form (4) in the event log means that at time tsa the system
has observed the execution of an activity a of trace trid.

As detailed in Fig. 4, the input stream of events in the
form (4) is sent to a “Vertical Partitioner & Dispatcher”
component that cuts the stream by trace identifier. It sends
all the events referring to a trace (or a set of traces) to the
same node in the network of computers.

The conformance of each trace to the business model is
checked through the SCIFF framework running on each node.
To do so, the SCIFF program takes as input the portion of
event stream to check and the whole model. To this end, the
business process model (procedural or declarative) formal-
ization must be translated into a collection of integrity con-
straints expressed through SCIFF language. For example,
the model in Fig. 4 is translated into the two constraints of
Equation 2. We refer these constraints with cstr1 and cstr2
in the following.

In the vertical partitioning all the integrity constraints in
the model must be sent to all the computing nodes execut-
ing a SCIFF. The output of the overall system is split into
files distributed over the network, but can be also collected
together in any order at a later time.

The implementation of a monitoring system with vertical
partitioning as presented in Fig. 4 on a MapReduce archi-
tecture is rather straightforward:

1. the input event stream is processed by a map func-
tion that extract the important information from each
logged record and emits a collection of (key, value)
pairs in the form (traceid, (activityid, timestamp));

2. the intermediate pairs are sent to the reducers that call
the SCIFF program (one compliance checking proce-
dure for each trace).

4. HORIZONTAL DISTRIBUTION
The horizontal distribution imposes to partition the logs

by activity and set of constraints. In fact, the model is
divided into parts that can be concurrently checked by dif-
ferent machines (we will call these parts “sub-models” in the
following). Thus, each computing node receives just the
fraction of each trace that contains the activities in its por-
tion of the model. The mechanism of this distribution is
clarified in Fig. 5. Although sometimes counterintuitive
(especially when dealing with other business model formal-
izations), this operation is rather straightforward once the
model is represented into the SCIFF formalization. In this
language indeed, the expected behaviour of the system is ex-
pressed through a set of constraints between the activities.
In order to mark a trace t as compliant, all this constraints
must be verified by the events in t.
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Figure 4: Example of conformance checking executed on a distributed architecture with vertical partitioning.

As shown in Fig. 5, the model partitioning can be realized
by simply giving a constraint (or a set of constraints consti-
tuting the sub-model) to each computing node. The input
event stream is partitioned in the same way: each computing
node receives all the events referring to the activities that
are present in its sub-model. Note that, this scenario entails
the shipping of some events to more than one node, when
the correspondent activity is present in more than one con-
straint. This is typically the case of activities on the border
of the sub-model (e.g., activity B in Fig. 5: all the events
referring to B are sent to both the nodes).

The results emitted by each SCIFF report the compli-
ance of each trace to just a portion of the initial model,
thus requiring a final “AND” operation to merge the results.
Indeed, a trace can be considered compliant only if it is
compliant to all the identified sub-models.

The implementation on a MapReduce architecture of a
monitoring system with horizontal partitioning as presented
in Fig. 5 is not so simple as the vertical distribution is. The
following steps can be identified:

1. the input event stream is processed by a flatMap func-
tion that extract the important information from each
logged record and adds to that the list of sub-models
in which the event is present. This function is also
responsible to replicate the events that occur in dif-
ferent sub-models. For example, looking at Fig. 5,
the record h(tr2, event(b), 10) generates two records:
(sub model1, h(tr2, event(b), 10)) and (sub model2,
h(tr2, event(b), 10)) because the activity B is present
in both the sub-models;

2. the emitted records goes to the map function that ex-
tracts the sub-model identifier and the trace identifier
from each record. The combination of these two infor-
mation creates the keys of the emitted pairs. So, the
resulting (key, value) pair is in the form

((sub modelid, traceid), (activityid, timestamp)) (5)

For example the previous records become: ((sub model1,
tr2), (event(b), 10)) and ((sub model2, tr2), (event(b),
10));

3. the pairs are sent to the reducers that call the SCIFF
program. Therefore, the resulting system launches one
SCIFF compliance checking procedure for each couple
(sub modelid, traceid).

5. RELATED WORK
In this work, we propose a distributed monitoring sys-

tem for business process conformance checking. The logged
events coming from various sources are partitioned over a
network of computing nodes in two main ways as suggested
in [30]. The architecture leverages a previously implemented
proof-procedure called SCIFF [4] and a well known program-
ming model for distributed computation, called MapReduce
[13]. Considering the definition proposed by Leucker and
Schallhart [19], the work at hand focuses on runtime verifi-
cation because it only deals with the detection of violations
or satisfactions of correctness properties.

As pointed out in [31], MapReduce looks particularly suit-
able for the implementation of distributed process mining
algorithms. Indeed, some well known process mining algo-
rithms have been already translated into MapReduce imple-
mentations [33, 15, 14, 17, 25]. While all these works deal
with process and event correlation discovery, our contribu-
tion only focuses on event logs in order to run-time identify
deviations from a predefined behavioural model. Neverthe-
less, the importance of compliance monitoring in business
is ascertained and further underlined by the plenty of aca-
demic and industrial research in this field [21]. Furthermore,
differently form [33, 15, 14, 17, 25], we do not focus on a
particular algorithm, but we make an effort toward a gen-
eral way to execute a conformance checking framework on
a MapReduce distributed architecture. In terms of imple-
mentation, a simple conformance checking task can be easily
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Figure 5: Example of conformance checking executed on a distributed architecture with horizontal partitioning.

translated into a Map function [31], but the conversion of
more complex checks in terms of map and reduce functions
may result challenging.

Another relevant contribution in the field of conformance
checking over MapReduce has been brought by the work of
Basin et al. [8]. The authors propose two log partition-
ing techniques, one based on trace identifier (similar to our
MapReduce implementation of vertical distribution) and one
based on time slices and volume of data. The works of Barre
et al. [7] and Bianculli et al. [9] focus on MapReduce dis-
tribution of a conformance checking task expressed through
temporal logic. Differently from our solution, they leverage
an iterative MapReduce algorithm. In [10], the authors pro-
vide a centralized solution for the monitoring of distributed
MapReduce application based on a simple set of behavioural
declarative properties. Contrarily, the aim of this work is to
exploit a distributed MapReduce architecture for the moni-
toring of business process compliance. An open issue in the
field of business process over MapReduce is the problem of
load balancing. Indeed, as suggested by different surveys
[6, 31], the overall performance of MapReduce depends on
data balancing and, ultimately, on the cardinality distribu-
tion of the extracted keys. Launching a reduce task for each
traceid and for each couple (sub modelid, traceid) (in verti-
cal and horizontal partitioning respectively), we aim to make
the distribution of the keys (and load) smoother among the
computing nodes.

A further dimension that should be considered is about
the adopted formalism for defining when a trace is compli-
ant, together with the reasoning tool. A number of different
approaches are available in literature [22, 20, 5]. In particu-
lar, approaches [22] based on Linear Temporal Logic (LTL)
have been investigated within the compliance setting of fi-
nite traces. Relations between the SCIFF framework and
LTL for compliance have been examined in depth in [23].
Complex Event Processing (CEP) frameworks (able to re-
fine and combine low-level events into more complex, higher-

level events [5]) can support compliance monitoring in all
those systems dealing with real-time analysis of large-scale
streams of events. A comparative study of the formalisms
that can be applied to compliance monitoring is out of the
scope of this work.

6. CONCLUSION AND FUTURE WORK
In this contribution, we present a first attempt to enhance

the performance of a business process compliance monitor-
ing tool through the adoption of a distributed architecture.
In particular, we focus on the execution of SCIFF proof
procedure over a MapReduce environment. We tested the
proposed architecture on a network of 5 virtual computing
nodes (each with 2 VCPU and 4 GB of dedicated RAM)
organized as a Apache Spark [1] MapReduce cluster .The
preliminary results of compliance verification over 25 GB
of synthetically generated event logs show the expected in-
crease in performance when compared to the execution of
SCIFF framework on a single node architecture. The artifi-
cial traces have been generated leveraging the SCIFF itself
abduction capabilities.

For the future, we plan to study the scalability of our solu-
tion when increasing the volumes of log data stream and the
dimension of the virtual cluster. Thus to clarify the short-
coming that can derive from MapReduce shuffle phases in
both vertical and horizontal partitioning scenarios. Similar
tests will be carried out over real life business process data,
aiming to compare the resulting performance measurements
with those of other works in this field [8, 7, 9].
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