
Reproducible Load Tests for Android Systems
with Trace-based Benchmarks

Alexander Lochmann
alexander.lochmann@tu-

dortmund.de

Fabian Bruckner
fabian.bruckner@tu-

dortmund.de

Olaf Spinczyk
olaf.spinczyk@tu-

dortmund.de
Technische Universität Dortmund

Department of Computer Science 12
44227 Dortmund

ABSTRACT
The development of system software and hardware com-
ponents for Android devices is strongly influenced by the
necessity to save energy. However, there is no methodology
that provides developers with reproducible and comparable
benchmarks for testing the device under a representative
load. Such a benchmark would have to stimulate all relevant
parts of the system and must neither depend on the current
state of external servers in the Internet nor on any interactive
user.

This paper describes the first steps towards such a bench-
mark. The approach is based on recorded workload traces of
prominent Android applications. From these traces we can
“mix a cocktail” that yields a representative workload profile.
By replaying the recorded and mixed loads with a workload
generator combined with an external environment for dealing
with communication workloads we obtain benchmarks that
fulfill the requirements.

Keywords
Android, Benchmark Generator, Benchmark, Load Testing,
Application Tracing

1. INTRODUCTION
Many researchers worldwide develop ideas to improve An-

droid systems. Their motivation is to reduce a mobile de-
vice’s overall power consumption, because that influences its
usability in daily life the most.

As an example, Athivarapu et al. [1] report energy sav-
ings of 20--40 % by optimizing the use of mobile networks.
However, their evaluation on real hardware is very limited
and difficult to reproduce. Ideally such improvements would
be evaluated using off-the-shelf benchmarks, but standard
Android benchmarks such as AnTuTu1 and benchmarks from

1http://www.antutu.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053615

the Linux desktop and server world, e.g., sysbench2, can-
not be applied, since they were designed to measure the
maximum performance of a particular subsystem and not a
representative load. Providing such an Android benchmark
is a research problem on its own, because (1) there is no
such thing as the representative workload and (2) Android
offers such a rich set of resources that would all have to
be covered, for example the Location Manager, the Power
Manager, the Application Service, etc. Furthermore, since
an Android device rarely runs at maximum speed and uses
various kinds of resources, a new benchmark would have to
use the whole Android software stack in a more moderate
way. Some researchers already came across this issue, but
for now, they have only come up with individual solutions.
For example, they use a trace-based replay where they only
replay the resource they need [7].

This paper presents the first steps towards a general ap-
proach for benchmarking Android systems to fill this gap.
The best way to stimulate the Android software stack in a
natural way would actually be to use real applications such
as popular “apps” from the Google Play Store. However, this
may lead to significant installation efforts, bad reproducibil-
ity due to version updates, and the need for user input, which
would render the benchmark non-deterministic. Therefore,
our approach is to record every resource that is allocated by
an application, and replay the trace later on. We explicitly
do not cover user input. That would induce a sophisticated
replay logic, since a user’s behavior might change due to
modifications in the Android system. Moreover, an input
has to be mapped to the subsequent resource allocations.
Mapping of user input to events in the Android system has
already been explored by Zhang et al. [9].

The advantages of this approach over the current state-of-
the-art are as follows: First of all, it separates concerns as
shown in Figure 1. The component developer only focuses
on improving a system component. Based on a profile that
describes the “apps” that the component developer regards
as “representative”, the benchmark developer provides a
customized benchmark. Generating a benchmark means
to mix pre-recorded app traces. Thus, this approach does
not provide a single benchmark, it provides a benchmark
generator. Second, the “benchmark” is an application that
replays resource-usage patterns and not the exact behavior of
the traced applications. It thus runs on any Android-powered
smartphone without further modifications or installations.

2https://github.com/akopytov/sysbench

73

Figure 1: Benchmark generation and application workflow

To sum up, the contributions of this paper are as follows:

• We present a general approach for recording the re-
source usage of any Android application,

• and show a way of replaying the recorded trace on any
unmodified Android device.

2. RELATED WORK
Benchmarks have been an active area of research for many

years, and many implementations are available. The various
approaches can be categorized into micro-benchmarks, trace-
based evaluation, or a mix of real applications with trace-
based input.

Micro-benchmarks aim at assessing subsystems or special
function units, for instance, file systems or GPUs. Besides the
famous SPEC CPU benchmark suite3, a few Android-specific
benchmarks have emerged such as AnTuTu, CF-Bench4, or
GFX-Bench5. As the names suggest, they only evaluate parts
of a system. Furthermore, they emphasize performance and
not representativeness.

Trace-based simulation or replay [7, 6] is another popular
approach. The latter resembles ours. Yet, without any trace
being available to the community, no one can reproduce the
results, or compare results across different works. Trace-
based simulation, in contrast, is deterministic, but provides
only an estimation on how much one has improved the system.
It heavily depends on the precision of the model.

Other work uses a mix of real applications with trace-based
input [5]. A set of publicly available input data is used to
stimulate the applications. However, the approach is not
robust against updates of the applications, because updates
would often require the input data to be changed as well.

Besides the aforementioned approach, there is a commer-
cial application-based benchmark called BAPCoSYSmark
2004 [2]. It provides various profiles with representative
applications. Those programs are remote controlled, and
have to be pre-installed, or are shipped with the benchmark.
Besides the difficulties of remote controlling real-world appli-
cations, the main drawback of this approach is the cost and
effort for installing the required application suite.

3https://www.spec.org/cpu2006/
4http://bench.chainfire.eu/
5https://gfxbench.com/result.jsp

Figure 2: Trace recording and playback: Abstraction of
application behavior by event handling sequences

Finally, there has been work conducted on recording re-
source allocations. Yoon et al. [8] developed AppScope. They
modified Android including the Linux kernel to do precise
recording of nearly every resource, especially the radio usage.
They further use that information to estimate the energy
consumption of Android applications. It is related to our
way of recording resources, but they do not use their traces
to generate benchmarks. In order to reproduce results with
AppScope the traced applications would have to be re-run
manually.

3. APPROACH
As shown in the previous section, we strictly focus on an

app’s resource allocations, which we record as a series of
actions ordered by an absolute timestamp. Such a series, for
example, consists of CPU bursts, sending network data, or
sleep phases, as depicted in Figure 2. The recorded entities
can be generalized to actions and pauses, as shown in the
lower part of the figure.

The set of relevant resources on Android is larger than
on other Linux systems. Besides common actions such as
CPU usage, file I/O, and network traffic, Android provides
an application with access to the power management, the
GPU, and special peripherals, for instance, GPS, NFC, or
Bluetooth. All of them need to be recorded. The power man-
agement is of interest, because an application may prevent a
device from going to suspend using wake locks6. GPS, for
example, is a very energy-intensive service. In addition to
that, the display state is needed as well, since it has a huge
impact on the overall power consumption [3]. Moreover, an
application’s lifecycle state (for example resumed, suspended,
or started), is also required for an accurate replay.

Compared to the recording of actions, the replay is even
more challenging: A simple way of replaying a trace would be
to “cut” the trace into fixed time intervals and allocate every
resource at the beginning of each slot. However, this would
not replay the resource usage accurately due to the bursts
at the beginning of each slot. A better way is to respect
the recorded timestamps and replay actions at the particular
points in time. However, this does not allow the benchmark
to adapt to improvements in the Android system or faster
hardware. Hence, we only respect the delta between two
adjacent actions. A better system may therefore process the
trace, i.e. benchmark, faster and a user’s response time is still
replayed correctly. Nevertheless, our approach, for now, has
a drawback: It does not respect external events, for example,
a user explicitly starts the observed application, or a network
message arrives. Those events have to be replayed at their
respective timestamps, and the benchmark is forbidden to
fast-forward them. Otherwise, this would artificially increase

6Wake locks are an Android-specific mechanism to prevent
the OS from suspending: https://developer.android.com/
training/scheduling/wakelock.html

74

the load. External events mark the beginning of a new event
handling sequence, as shown in Figure 2. This means that
application behavior is modeled as a set of event handling
sequences, which are triggered at fixed times from the start.
The actions and pauses that follow an event are replayed with
relative time offsets. The main challenge is to distinguish
input actions from external events. A simple heuristic could
be to mark every incoming packet as an event while the app
is not in foreground, and there has not been an outgoing
packet for N seconds. The latter condition ensures, to a
certain degree, that the incoming packet is not a response to
a previously sent one. Periodic actions are not covered by
heuristic, since there is no unique identifier. The verification
of that heuristic and further research on detecting those
events is subject to future work.

In order to implement the trace replay application, there
also arise some technical challenges: First, all accessed files
have to be extracted from the trace, grouped by file system,
and recreated as dummy file operations in a dedicated subdi-
rectory on the respective file system. A grouping is essential,
because an Android application may access different file sys-
tems such as an app’s private data folder or the SD card.
Second, we have to take care of the network communication.
A remote host is needed for benchmark execution to perform
dummy network traffic. Although an Android device may
establish many connections to many different servers, our
approach simplifies this by always connecting to the same
host. However, this simplification has a drawback: Two
connections to different servers on the same port are not
possible during the replay. An analysis on how often this
happens in real apps is regarded as future work.

4. PROTOTYPE
Based on the approach described in Section 3, we have

implemented an early prototype. The recording part has
been developed for CyanogenMod 12.17, which corresponds
to Android 5.1. Since information from inside several Android
services is needed, we have modified the Android framework.
As a result, root access is necessary to flash the modified
version of CyanogenMod.

The system basically records all of the aforementioned
information. The prototype does not yet record GPU activity,
because more work needs to be done to instrument the
respective subsystem, and we gave other resources a higher
priority. For the same reasons, we do not cover some devices,
such as Bluetooth and NFC.

The recording itself works as follows: A background thread
periodically stores information about an app’s CPU usage.
In addition to that, Android services have been instrumented
to gather the information, namely the Power Manager and
the Location Manager. To record file and network I/O opera-
tions, we use a SystemTap script, which uses an application’s
package name as a filter. SystemTap allows the user to instru-
ment arbitrary Linux kernel functions [4]. For our purpose,
we have instrumented all I/O-related systemcalls. Thus, the
script automatically logs every I/O performed by the traced
app. Since special services, such as the Mediaplayer or the
Download Manager, run in process context of the app of
interest, their I/O operations are logged as well without
further instrumentation.

7Former CyanogenMod is now known as Lineage OS: http:
//lineageos.org

Duration Actions
6.5 min View different cities, and browse arbitrary streets
2 min Inactivity: Closed app, and display turned off

6.5 min View different cities, and browse arbitrary streets
Table 1: List of actions performed during a 15 minutes record
of Google Maps

0 200 400 600 800 1000

0

5

10

15

20

25

time (secs)

re
ce

iv
ed

 d
at

a
(M

B)

recording
replay

(a) Received network data

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

time (secs)

se
nt

 d
at

a
(M

B)

recording
replay

(b) Sent network data
Figure 3: Comparison of the recorded and replayed network
traffic performed by Google Maps

A first attempt towards a replay application is part of
our prototype as well. For now, the replay follows a non-
adaptive approach. Thus, all actions and pauses are replayed
at their respective timestamps. The replay application is
implemented as an ordinary Android application. No special
permissions are required. This makes it easy for anyone to
use it on any device. Before replaying a trace, a certain
degree of preprocessing is necessary. The first part is an
off-line processing. Since we have multiple sources, multiple
output files need to be merged. Moreover, due to SystemTap
some events might not be in the correct order. Hence, this
step merges and sorts the events into a single file. The rest of
the preprocessing is done online right before the replay: The
app extracts and creates the accessed files and the upcoming
network connections as mentioned above. At the beginning
of the replay and at fixed intervals, the replay app informs
the remote host about the next packets. It tells the host
when to send a packet with a particular size to the app. The
remaining tasks of the replay application are straightforward:
access files on the different file systems, send and receive
network data, and use the various Android services, e.g.,
request location updates via GPS or acquire a wake lock.

5. EVALUATION
Since our approach aims at realistic benchmarks for An-

droid systems, it is essential to check whether the trace-based
replay behaves similar to the original application. Thus, we
recorded Google Maps for 15 minutes, and performed the
actions shown in table 1.

Afterwards, we replayed the trace, and recorded our own
replay application. Using both traces, we compare the record-
ing with the replay.

The inbound and outbound network traffic is shown in
Figure 3a and Figure 3b, respectively. The time in seconds
since start of the recording is shown on the x-axis, and the
amount of data read and written is shown on the y-axis.
In both figures both curves are aligned, indicating that the
approach closely imitates the recorded app’s behavior. The

75

0 200 400 600 800 1000

0

5

10

15

20

25

30

time (secs)

re
ad

 d
at

a
(M

B)

recording
replay

(a) Read file data

0 200 400 600 800 1000

0

20

40

60

80

100

120

140

time (secs)
w

rit
te

n
da

ta
 (M

B)

recording
replay

(b) Written file data
Figure 4: Comparison of the recorded and replayed file I/O
performed by Google Maps

period of inactivity is also visible at around 400 seconds.
However, the replayed trace in Figure 3a shows that our
benchmark received too much data, and received that data
too early. The latter can be seen by the dashed curve ending
too early. Both errors show where the prototype replay app
needs improvements: Currently, the app scans the trace for
incoming traffic and tells the remote host when to send how
much data. For an unknown reason, the application requests
the incoming traffic too early and too often. That produces
the observed behavior.

The difference between the amount of recorded and re-
played sent data is rather a conceptual problem. Since the
app needs to tell the remote host the timestamps and the
amount of data, there are additional outgoing packets, which
contribute to the amount of sent data compared to the origi-
nal trace.

Figure 4 shows the data transferred during file operations.
The axis are labeled in the same manner as in Figure 3. The
amount of data read by the replay app is shown in Figure
4a. Both curves basically have the same shape. Due to the
necessity to read the trace itself, more data has been read
during the replay. The comparison of the written data, shown
in Figure 4b, teaches us a another lesson about preprocessing.
The replayed trace is significantly different from the recorded
one. As a result of our preprocessing, some systemcalls are
filtered-out. If those systemcalls contribute to the written
data, that information will be lost. Therefore, if the trace
contains accesses to many small files, the impact of that
filtering is negligible. Otherwise, if only a few large files are
accessed, as can be seen in Figure 4b, the impact is large.

To summarize, our prototype shows that the approach
looks promising. However, a lot of work needs to be done
towards a suitable replay application. From our point of view,
the above-mentioned problems are all technical in nature.

6. FUTURE WORK
Although our approach as well as the prototype look

promising, some work needs to be done. First of all, an
adaptive version of the replay application is necessary. As
already mentioned in Section 3, the replay must allow a
better Android system or faster hardware to speed up the
benchmark execution. As a part of the adaptive replay, the
described heuristic to detect external events needs to be
implemented and verified.

Second, a case study is required to get representative traces

that can provide the community with our benchmark. In a
next step, a mix of those traces can be provided. Hence, the
benchmark really corresponds to the behavior of a real user.

Finally, a method to analyze several traces of a particular
application needs to be developed. Using such a method
would allow us to generate more general application profiles.
Those can be fed into the replay app.

7. ACKNOWLEDGMENTS
This work has been supported by Deutsche Forschungsge-

meinschaft (DFG) within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained
Data Analysis”, project A1.

8. CONCLUSION
In this paper, we presented a general approach to generate

application-based benchmarks for Android systems. The
approach yields comparable, trace-based load tests that can
be executed on any Android hardware. We sketched how a
proper replay has to be designed, and which challenges arise
from that, for example how to determine external events in
a stream of actions.

9. REFERENCES
[1] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda,

R. Ramjee, D. Arora, V. N. Padmanabhan, and
G. Varghese. RadioJockey: Mining program execution to
optimize cellular radio usage. In Proceedings of the 18th
Annual International Conference on Mobile Computing
and Networking, 2012.

[2] BAPCo. Sysmark 2014 - white paper, Apr. 2014.

[3] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In Proceedings of the
2010 USENIX Conference, 2010.

[4] F. C. Egiler, V. Prasad, W. Cohen, H. Nguyen,
M. Hunter, Keniston, and B. Chen. Architecture of
systemtap: a linux trace/probe tool, 2005.

[5] Y. Huang, Z. Zha, M. Chen, and L. Zhang. Moby: A
mobile benchmark suite for architectural simulators. In
2014 IEEE International Symposium on Performance
Analysis of Systems and Software, 2014.

[6] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H.
Krieger, and M. J. Neely. Energy-delay tradeoffs in
smartphone applications. In Proceedings of the 8th
International Conference on Mobile Systems,
Applications, and Services, 2010.

[7] E. J. Vergara, J. Sanjuan, and S. Nadjm-Tehrani. Kernel
level energy-efficient 3G background traffic shaper for
Android smartphones. In Wireless Communications and
Mobile Computing Conference, 2013 9th International,
July 2013.

[8] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha.
AppScope: Application energy metering framework for
android smartphone using kernel activity monitoring. In
Presented as part of the 2012 USENIX Annual Technical
Conference, 2012.

[9] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and
P. Dinda. Panappticon: Event-based tracing to measure
mobile application and platform performance. In 2013
International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 2013.

76

