
Elastic Provisioning of Virtual Machines
for Container Deployment

Matteo Nardelli
University of Rome Tor Vergata

Rome, Italy
nardelli@ing.uniroma2.it

Christoph Hochreiner
Distributed Systems Group
TU Wien, Vienna, Austria

c.hochreiner@
infosys.tuwien.ac.at

Stefan Schulte
Distributed Systems Group
TU Wien, Vienna, Austria

s.schulte@infosys.tuwien.ac.at

ABSTRACT
Docker containers enable to package an application together
with all its dependencies and easily run it in any environ-
ment. Thanks to their ease of use and portability, containers
are gaining an increasing interest and promise to change the
way how Cloud platforms are designed and managed. For
their execution in the Cloud, we need to solve the container
deployment problem, which deals with the identification of
an elastic set of computing machines that can host and exe-
cute those containers, while considering the diversity of their
requirements.

In this paper, we provide a general formulation of the Elas-
tic provisioning of Virtual machines for Container Deploy-
ment (for short, EVCD) as an Integer Linear Programming
problem, which takes explicitly into account the heterogene-
ity of container requirements and virtual machine resources.
Besides optimizing multiple QoS metrics, EVCD can real-
locate containers at runtime, when a QoS improvement can
be achieved. Using the proposed formulation as benchmark,
we evaluate two well-known heuristics, i.e., greedy first-fit
and round-robin, that are usually adopted for solving the
container deployment problem.

Keywords
Container, Cloud computing, Resource allocation, QoS

1. INTRODUCTION
Software containers enable to package an application to-

gether with all of its dependencies and then run it smoothly
in any environment. Moreover, by exploiting operating sys-
tem level virtualization, multiple containers can co-exist and
run in isolation on the same machine, thus improving re-
source utilization. Differently from virtual machines that
exploit hardware virtualization, containers are lightweight,
because they only bundle the application dependencies while
reusing the underlying operating system. As such, contain-
ers introduce a small overhead during application execu-
tion [5, 6]. Software containers became popular after the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053602

launch of the Docker1 open source project in 2013, which
boosted their adoption. Indeed, Docker augments the bene-
fits of containers with an easy to use management API and
a packaging format, enabling rapid adoption among devel-
opers as well as users [13].

For the execution, a container needs to be deployed on a
hosting machine, which provides computing and memory re-
sources. While doing this, we still want to exploit the Cloud
computing principles, which promote the elastic usage of on-
demand resources. This problem is known as the container
deployment problem (or container allocation problem). As
discussed in [3, 15], despite the great interest in this tech-
nology, the container deployment problem represents a topic
only partially explored. Indeed, if the deployment of a sin-
gle container can be done easily, deploying lots of them, be-
longing to multiple applications with different requirements,
can be complicated and might lead to resource shortage or
resource under-utilization. In the literature only few alloca-
tion solutions consider containers features while determin-
ing their allocation (e.g., [4, 11, 16, 20]). Moreover, most of
them are heuristics, characterized by different assumptions
and optimization goals, which makes them difficult to ana-
lyze and compare. Aside from the work presented in [11],
there is no general formulation of the container deployment
problem in the Cloud.

In this paper, we propose Elastic provisioning of Virtual
machines for Containers Deployment (for short, EVCD), a
general formulation of the container deployment problem for
Cloud environments, which takes into account the hetero-
geneity of containers requirements and computing resources.
EVCD determines the container deployment on virtual ma-
chines, which can be acquired and released on-demand, while
optimizing Quality of Service (QoS) metrics. At runtime,
EVCD evaluates the container deployment and, if an im-
provement of the optimized QoS metrics can be achieved,
plans a reconfiguration. Moreover, EVCD provides a bench-
mark against which other container deployment heuristics
can be compared.

The remainder of this paper is organized as follows. In
Section 2 we review related work, in Section 3 we describe
the system model and the problem under investigation, and
in Section 4 we formulate EVCD as an Integer Linear Pro-
gramming (ILP) problem. Then, in Section 5, we validate
the proposed solution and, relying on EVCD as benchmark,
we compare two deployment heuristics in a simulated run-
time scenario. Finally, we conclude in Section 6.

1https://www.docker.com/

5

2. RELATED WORK
The advent of Docker containers [13] has created an in-

creasing interest among users and companies, because of
their ability to accelerate the development and simplify the
deployment of applications. Nowadays several companies
extensively rely on this technology both for internal usage
and for providing their services (e.g., [2, 7, 14, 17]). Al-
though containers can run on physical machines, their execu-
tion on virtual machines enables to exploit the elastic usage
of on-demand resources, promoted by the Cloud computing
principles. As surveyed by Peinl et al. [15], a huge ecosys-
tem of tools revolves around Docker containers, which help
to monitor, manage, orchestrate, and allocate containers, al-
beit often on statically defined clusters or on private Clouds.
To date, most Cloud service providers have extended their
offerings to provide containers as a service (CaaS), usu-
ally by automating the container deployment on the offered
IaaS. Examples are Amazon ECS2, Azure Container Ser-
vice3, Google Container Engine4, and IBM Bluemix5. As
discussed in [3, 15], despite the great interest in this tech-
nology, there are still many challenges to be solved, and in
this paper we focus on the container deployment problem.

In literature, only few works specifically deal with the al-
location problem for containers and, due to NP-hardness
of the problem, most of them proposes heuristics. In [1]
the authors propose a constraint programming model that,
differently from our approach, finds a feasible (but not op-
timal) deployment solution. The work most closely related
to ours has been presented by Hoenisch et al. [11]. Their
solution accounts for container replication as well as their
elastic allocation, while considering several QoS attributes.
We postpone to future work the extension of EVCD for con-
sidering the container replication problem.

The existing heuristics aim at optimizing a diversity of
utility functions, like fairness, load balancing, network traf-
fic, or energy consumption. The fairness of resource allo-
cation is considered in [8, 18]. In [8], Ghodsi et al. pro-
pose the Dominant Resource Fairness (DRF) policy, which
works in a system containing different resource types (i.e.,
CPU, memory) and assigns them to containers, pursuing
a Pareto-optimal configuration. DRF is nowadays the de-
fault allocation policy of Mesos [9]. Wang et al. [18] further
generalize the notion of DRF to work with multiple hetero-
geneous servers. Considering a topology of communicating
containers, Zhao et al. [20] propose a policy that minimizes
the traffic exchanged using the network, while balancing the
load among virtual machines. The minimization of energy
consumption is considered in [4, 16]; these works propose
a greedy placement scheme that deploys containers on the
most energy efficient machines first. All these works fo-
cus on system-oriented metrics, whereas we consider user-
oriented metrics, such as deployment time and cost. How-
ever, EVCD provides a general framework for solving the
deployment problem that can be easily extended to incor-
porate also these system-oriented metrics.

Proprietary solutions that support container allocation
(e.g., Amazon ECS, Borg [17], Google Container Engine) as

2https://aws.amazon.com/ecs/
3https://azure.microsoft.com/services/container-service/
4https://cloud.google.com/
5https://www.ibm.com/cloud-computing/bluemix/

well as open-source alternatives (e.g., Kubernetes6, Mesos [9],
Marathon7, Docker Swarm8, Openstack9) usually include
simple placement heuristics and enable the utilization of
custom policies. Among the most common heuristics, we
can find the round-robin policy, which tries to evenly use
resources, and the well-known heuristics that solve the bin
packing problem, namely greedy best-fit and first-fit. These
approaches usually do not consider the specific characteris-
tics of containers (e.g., the reusability of containers images)
and therefore can lead to a sub-optimal utilization of the
available resources. It worth mentioning the approach used
by Kubernetes: first, containers are grouped in user-defined
pods, and then pods are deployed on the best candidate node.
The latter is determined by applying a set of filters and pri-
ority functions that can be also defined by the user.

3. SYSTEM MODEL AND PROBLEM
STATEMENT

Devising an optimal container deployment strongly de-
pends on the assumptions made about the domain it will be
applied to. In this section, we provide a formal description
of the domain entities: containers and virtual machines.

3.1 Software Container Model
A software container wraps up a piece of software together

with everything it needs for the execution (i.e., runtime, li-
braries, code), and enables to easily run it on any machine,
whether bare metal or virtual machine. Container technol-
ogy exploits operating system level virtualization to realize
flexibility and portability of software [13]. Following the
Docker model, a container is an instance of a container im-
age (or simply image), which represents a container snap-
shot and contains all the data needed for its execution. To
improve reusability and efficiently use memory, an image is
structured as a series of layers (e.g., base Linux image, li-
braries, custom files), where each one can be downloaded or
updated independently from the others. When a software
container has to be instantiated on a host, the host needs
to download each layer from an external repository, before
starting the container.

We define the set of containers as S. A container s ∈ S
is characterized by the following QoS attributes: Cs, the
amount of required CPU shares on the hosting machine; Dsc

s ,
the startup time of s; Ms, the amount of memory (RAM)
required for its execution; and Is, the set of image layers
needed for its instantiation. Observe that, for Docker, the
CPU share represents the container relative weight with re-
spect to all other containers running on the same host while
assigning the CPU cycles. To simplify the assignment prob-
lem, we consider Cs as the number of CPU required by s.
Moreover, we assume Is ⊆ I, where I is the set of all con-
tainer image layers that can be instantiated. Each image
layer i ∈ I is characterized by the size li of data composing
the layer.

3.2 Virtual Machine Model
Computing resources accommodate and execute contain-

ers with respect to their capabilities. We consider these re-

6http://kubernetes.io/
7https://mesosphere.github.io/marathon/resources.html
8https://www.docker.com/products/docker-swarm
9http://www.openstack.org/

6

sources to be virtual machines belonging to private, public,
and hybrid Clouds. Furthermore, we assume that all the vir-
tual machines reside in Internet and can exchange data with
no (practical) bandwidth limitations. Following the princi-
ple of Cloud computing, a virtual machine can be acquired
and released as needed. In practice, a virtual machine can
be leased for a minimum period of time, known as Billing
Time Unit (BTU); the overall cost of a virtual machine de-
pends on the number of, albeit partially, BTUs consumed.
Moreover, although in theory unlimited, we assume that the
number of virtual machines which can be leased in a certain
time period is limited.

Let V be the set of all virtual machines, including the
active (leased) ones and those turned off but leasable. A
virtual machine v ∈ V has the following QoS attributes: Cv,
the amount of available computing resources, i.e., CPUs;
DRv, its download data rate; Mv, the available memory
capacity; Pv, its cost per BTU; and Iv, with Iv ⊆ I, the set
of image layers already available in v without the need of
downloading them from an external repository. Note that
the proposed model can easily include physical machines,
which represent, from a modeling point of view, a special
case of v, where the meaning of Pv is defined accordingly.

3.3 Container Deployment Problem
The container deployment problem requires to determine

a suitable mapping between the set of containers S and the
set of virtual machines V in a way that all constraints are
fulfilled. We investigate the initial deployment as well as
its adaptation at runtime, therefore we solve EVCD peri-
odically, every τ unit of time. Due to the generality of the
proposed model, we need also to consider that a container
cannot be usually placed on every machine in V , because
of security or management motivations (e.g., the container
requires a specific resource, such as a sensing device, or the
virtual machine belongs to a private Cloud). This observa-
tion allows us to consider for each container s ∈ S a subset
of candidate virtual machines V s ⊆ V where it can be de-
ployed.

We can conveniently model the container deployment with
binary variables xs,v, s ∈ S, v ∈ V s: xs,v = 1 if container
s is deployed on virtual machine v and xs,v = 0 otherwise.
A correct instantiation must deploy a container on one and
only one virtual machine; this condition can be guaranteed
requiring that

∑
v xs,v = 1, with v ∈ V s, s ∈ S. We also

consider the variables zv, v ∈ V , which denote whether the
virtual machine is active and hosts at least one container.
By definition, we have zv = ∨s∈S,v∈V xs,v. For short, in the
following we denote by x and z the deployment vector for
containers and the activation vector for virtual machines,
respectively, where x = 〈xs,v〉, ∀s ∈ S, ∀v ∈ V s and z =
〈zv〉, ∀v ∈ V .

Since we solve EVCD periodically, it is convenient to de-
fine a set of binary variables that keep track of the previous
deployment configuration, i.e., the one determined at time
t − τ . We define xτs,v, which indicate whether s ∈ S was
deployed on v ∈ V s in t− τ , and zτv , which indicate whether
v ∈ V was active in t − τ . Leveraging on the previous con-
figuration, we also define some auxiliary variables, namely
av, as,v, and δs,v. We use the binary variables av to indicate
whether the virtual machine v ∈ V , turned off in t− τ , has
to be activated in t. To indicate that a container has to be
deployed on a newly activated virtual machine v, i.e., with

av = 1, we use the binary variables as,v. The binary vari-
ables δs,v indicate whether a container s ∈ S has a different
allocation with respect to the configuration defined in t− τ :
δs,v = 1, if in t−τ the container s was either not allocated or
allocated on u ∈ V s, with u 6= v. Observe that xτs,v and δs,v
enable to model the runtime re-allocation of containers on
virtual machines and can be used to model migration proto-
cols that, e.g., relocate the container in-memory state [10].

4. ELASTIC PROVISIONING MODEL
In this section, exploiting tools provided by optimization

theory, we propose a model for the EVCD problem that
can be adjusted to satisfy different optimization functions.
Since the latter depend on non-functional attributes, we first
derive the expression for the different QoS metrics of interest
and then present the EVCD formulation.

4.1 QoS Metrics
The considered QoS metrics are the deployment time of

containers and the cost of virtual machines leased for their
execution.

Deployment Time.
We define the deployment time of containers D(·) as the

time needed to deploy every container in S. This term ac-
counts for the time needed to spawn new virtual machines,
retrieve container images, and finally start the containers.
Given a placement vector x (and resulting z), we have:

D(x, z) =
∑
s∈S

∑
v∈V

Ds,v(x, z) (1)

where Ds,v(x, z) denotes the time needed to deploy the con-
tainer s on the virtual machine v and it is defined as:

Ds,v(x, z) = Dsv
v as,v +

∑
i∈Is\Iv

li
DRv

xs,v +Dsc
s δs,v (2)

where Dsv
v is the time needed to start a new virtual machine,

considered only if a new virtual machine is needed,
∑
i

li
DRv

represents the time needed to download the container im-
age layers not yet on the virtual machine v, and Dsc

s is the
startup time of s, if s was not already running on v.

Cost.
We define the deployment cost C(·) as the monetary cost

needed to instantiate and execute all the containers. This
term considers that leasing a virtual machine v for a BTU
imposes a cost of Pv and that renewing a leasing when the
BTU ends exposes a new cost of Pv. Relying on the ac-
tivation vector of virtual machines z and on the auxiliary
variables av, v ∈ V , which indicate whether the virtual ma-
chine v, not previously active, has to be activated, we have:

C(z) = Cn(z) + Cr(z) (3)

where

Cn(z) =
∑
v∈V

Pvav (4)

Cr(z) =
∑

v∈V exp

Pvzv (5)

denote respectively the cost of the newly acquired virtual
machines and the cost of the virtual machines in V exp that

7

have to be renewed. The set V exp ⊆ V includes the vir-
tual machines whose leasing is going to expire between the
current time t and the next execution of EVCD in t+ τ .

4.2 EVCD Formulation
We formulate EVCD as an ILP model which is solved pe-

riodically, every τ unit of time. In each round of execution,
EVCD determines an optimal mapping between the set of
containers and the available resources, i.e., virtual machines.
While determining a suitable mapping, EVCD considers an
objective function that, depending on the utilization sce-
nario, could be aimed to optimize specific QoS attributes.
These different optimization goals could be possibly conflict-
ing, thus leading to a multi-objective optimization problem,
which can be transformed into a single objective problem
using the Simple Additive Weighting (SAW) technique [19].
According to SAW, we define the objective function F (x, z)
as a weighted sum of the normalized QoS metrics (i.e., de-
ployment time and cost) to be minimized, as follows:

F (x, z) = wd
D(x, z)−Dmin

Dmax −Dmin
+ wc

C(z)− Cmin

Cmax − Cmin
(6)

where wd, wc ≥ 0, with wd + wc = 1, weigh the different
QoS attributes, and Dmax (Dmin) and Cmax (Cmin) denote,
respectively, the maximum (minimum) value for the overall
expected deployment time and cost. Observe that after nor-
malization, each metric ranges in the interval [0, 1], where
the value 0 corresponds to the best possible case and 1 to
the worst case.

The EVCD problem can be formulated as follows:

min
x,z

F (x,z)

subject to:∑
v∈V

xs,v = 1 ∀s ∈ S (7)

∑
s∈S

Csxs,v ≤ Cv ∀v ∈ V (8)

∑
s∈S

Msxs,v ≤Mv ∀v ∈ V (9)

av ≥ zv − zτv ∀v ∈ V (10)

av ≤ zv ∀v ∈ V (11)

as,v ≥ av + xs,v − 1 ∀s ∈ S,∀v ∈ V s (12)

as,v ≤ av + xs,v ∀s ∈ S,∀v ∈ V s (13)

δs,v ≥ xs,v − xτs,v ∀s ∈ S,∀v ∈ V s (14)

δs,v ≤
(1− xτs,v) + xs,v

2
∀s ∈ S,∀v ∈ V s (15)

zv ≥
∑
s∈S xs,v

M
∀v ∈ V (16)

zv ≤
∑
s∈S

xs,v ∀v ∈ V (17)

av ∈ {0, 1} ∀v ∈ V (18)

as,v ∈ {0, 1} ∀s ∈ S,∀v ∈ V s (19)

δs,v ∈ {0, 1} ∀s ∈ S,∀v ∈ V s (20)

xs,v ∈ {0, 1} ∀s ∈ S,∀v ∈ V s (21)

zv ∈ {0, 1} ∀v ∈ V (22)

In the problem formulation, Equation (7) guarantees that
each container s ∈ S is placed on one and only one virtual
machine v ∈ V s. Constraints (8) and (9) limit the place-
ment of containers on a virtual machine v ∈ V according

Table 1: Parameters of the experimental setup

Container
Parameter Value Parameter Value

Cs 1 Ms 1 MB
Dsc
s U(8.5, 11.5) s |Is| U(2, 4)
li U(200, 800) MB L 30 mins

Virtual Machine
Parameter Value Parameter Value

Cv 4 Mv 16 MB
Dsv
v U(85, 115) s DRv 1 Gbps
Pv 1 Imaxv 10

BTU 60 mins

to its available resources. Equations (10) and (11) model
whether a virtual machine needs to be activated to host at
least a container. The auxiliary variables as,v are defined by
Equations (12) and (13), which indicate whether a container
has to be placed on a newly instantiated virtual machine.
Equations (14) and (15) model whether a container s has a
different allocation with respect to the configuration defined
in xτs,v. Finally, constraints (16)–(17) are the activation con-
straints for the variables zu, with M large constants.

5. EXPERIMENTAL RESULTS
To evaluate EVCD and other deployment heuristics, we

simulate their execution in a system that receives containers
and allocates them on virtual machines. We first present the
experimental setup in Section 5.1 and then, in Section 5.2,
we use EVCD as baseline against which two deployment
heuristics are compared.

5.1 Experimental Setup
The EVCD model allows to elastically acquire and release

virtual machines to host and execute software containers,
while optimizing different QoS attributes. We consider as
QoS metrics the deployment time of containers, defined in
Equations (2), and cost of leased virtual machines, defined
in (3). We solve the ILP problem using CPLEX c© (version
12.6.3) on a machine with 4 CPUs and 16 GB RAM.

In the experiments, we simulate the execution of EVCD
every τ = 15 units of time (i.e., minutes) and we assume
that EVCD manages at time t the requests for allocation
by containers, received between t− τ and t. Each container
requires the same amount of resources (i.e., CPU, memory)
and has a lifespan of L = 30 minutes. A container depends
on a set of images, whose cardinality is uniformly chosen
between 2 and 4; this set includes 70% of existing images (if
any) and 30% of new images. Each image has a size li uni-
formly defined in [200, 800] MB. To have a fair comparison
with the heuristics, introduced later, we consider homoge-
neous virtual machines, i.e., every virtual machine v ∈ V is
characterized by the same QoS attributes (i.e., CPU, mem-
ory, cost). Similarly to the most popular commercial solu-
tions, we define a BTU of 60 minutes. We define the startup
time Dsv

v of a virtual machine according to the results pre-
sented in [12]. Finally, we assume that a virtual machine
can cache only a limited number of image layers, thus each
virtual machine preserves only the Imaxv most recently used
ones. Table 1 summarizes the parameters used during the
experiments. As regards the objective function of EVCD, we

8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

Simulated Time (min)

Figure 1: Number of containers during the experiment

are interested in a contextual minimization of the QoS met-
rics, therefore we define wd = wc = 1, Dmax = Cmax = 1,
and Dmin = Cmin = 0. During the experiment, the number
of containers that EVCD has to deploy fluctuates between
0 and 20 during the timespan of a (simulated) day, and this
pattern is repeated for the following two days. Figure 1
shows the number of active containers during the whole ex-
periment. Note that, since a container has a lifespan greater
than the timespan between two consecutive executions of
EVCD, i.e., L ≥ τ , the number of active container can be
greater than 20.

To validate the proposed solution and use it as a bench-
mark tool, we have developed two approaches inspired by
the well-known meta-heuristics: first-fit and round-robin.
The first heuristic, greedy first-fit, can elastically acquire and
release virtual machines. As soon as a container asks for
resources, this strategy allocates it on the first active vir-
tual machine that has enough available resources; if no suit-
able virtual machine can be found, a new one is leased from
the Cloud resource provider. Observe that, if the resource
provider proposes machines with different QoS attributes,
differently from EVCD, this heuristic cannot easily detect
the most suitable one for deploying the managed containers.
The second heuristic, round-robin, works on a fixed pool of
virtual machines and assigns containers to each of them in
equal portions and in circular order. We define a pool of 10
virtual machines; this number, which results from prelim-
inary experiments, guarantees enough resource availability
for handling the incoming load.

5.2 Comparison Between Allocation Strategies
We evaluate how different strategies can accommodate a

varying incoming load of containers that require comput-
ing resources. Using EVCD as benchmark, we evaluate the
deployment strategies pursued by the greedy first-fit and
round-robin heuristics. Figure 2 presents how the alloca-
tion strategies acquire and release virtual machines to satisfy
the incoming load. The round-robin heuristic cannot per-
form an elastic provisioning of virtual machines and uses all
the ones available in the statically defined pool. We can ob-
serve that the number of active virtual machines decreases
only when the number of containers that have to be exe-
cuted is lower than 10 (see Figure 1). This happens because
the round-robin heuristic evenly places container on every
virtual machine within the pool of resource. Conversely,
EVCD and greedy first-fit use a new virtual machine only
when the active ones have not enough resources to host a
new container. As such, these approaches can dynamically

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
u
m

b
e
r

o
f
a
c
ti
v
e
 V

M
s

Simulated Time (min)

EVCD
Greedy first-fit

Round-robin

Figure 2: Active virtual machines

acquire and release virtual machines, following the incoming
load fluctuations. EVCD and greedy first-fit have a similar
behavior, albeit the former seems to be slightly more conser-
vative in releasing virtual machines. Indeed, EVCD tries to
consolidate less the containers and prefers to use virtual ma-
chines which already include the needed container images.
The performance of these allocation strategies, expressed in
terms of QoS metrics, are summarized in Figure 3 by leverag-
ing on a boxplot, which represents their distribution through
the minimum value, the 5th percentile, 50th percentile, 95th
percentile, and the maximum value; the average value is also
represented using a full dot. The elastic utilization of vir-
tual machines by EVCD and greedy first-fit leads to a re-
duction of the execution costs (see Figure 3a); on average
these strategies reduce respectively the cost of about 40%
and 45% with respect to round-robin. Figures 3b and 3c
show the deployment time per container. We can observe
that only a very limited number of containers experience
high deployment times, i.e., between 118 s and 140 s, due
to the startup time of new virtual machines. The 95th per-
centile of the deployment time for all the allocation strate-
gies is always below 25 s, therefore Figure 3c focuses only
on a limited range of the deployment time. EVCD deter-
mines the allocation of resources which produces the fastest
deployment time for software containers, whereas the first-
fit heuristic behaves similarly to the round-robin one. This
happens because EVCD allocates containers minimizing the
time needed to retrieve their images from an external repos-
itory, if not locally available, as defined in Equation (2). On
the contrary, the other heuristics neglect this information.
On average, the deployment times per container obtained by
greedy first-fit and round-robin are, respectively, 16% and
17% higher than the optimal one by EVCD.

EVCD elastically acquires and releases virtual machines
for determining the optimal deployment of containers, which
jointly minimizes the deployment time and cost. In the pre-
sented experiment, EVCD has shown that the round-robin
heuristic produces the highest deployment time and, work-
ing on a static pool of resources, is the most expensive so-
lution for running containers. Greedy first-fit considerably
reduces costs, which are on average 11% lower than the op-
timal value, but, by neglecting the features of containers,
it produces on average a deployment time 40% higher than
the optimal one. Since these heuristics are not aware of
the features of containers and virtual machines, they cannot
determine an allocation that optimizes their QoS attributes.

9

 0

 5

 10

 15

 20

EVCD Greedy First-fit Round-robin

C
o
s
t

Allocation strategy

(a) Cost of leased virtual machines

 0

 20

 40

 60

 80

 100

 120

 140

 160

EVCD Greedy First-fit Round-robin

D
e
p
lo

y
m

e
n
t
ti
m

e
 (

s
)

Allocation strategy

(b) Deployment time per container

 5

 10

 15

 20

 25

 30

EVCD Greedy First-fit Round-robin

D
e
p
lo

y
m

e
n
t
ti
m

e
 (

s
)

Allocation strategy

(c) Detail on the deployment time per
container: timespan between 5 and
30 seconds

Figure 3: Comparison of EVCD against baseline heuristics: impact on QoS metrics

6. CONCLUSION
In this paper we have presented a formulation of the elas-

tic provisioning of virtual machines for container deploy-
ment. EVCD is a general and flexible formulation that can
be conveniently configured to optimize different QoS met-
rics, and we have considered the deployment time and cost
for executing containers in the Cloud. Besides computing
the container allocation, EVCD can be used as a bench-
mark framework against which to compare other allocation
strategies. Therefore, we have evaluated and highlighted the
drawbacks of two well-known heuristics that are commonly
used for defining the container deployment.

As future work, we plan to extend the proposed formula-
tion of EVCD to model other QoS attributes (e.g., availabil-
ity, network traffic, privacy), network communication among
containers, and their runtime replication. Moreover, we plan
to develop efficient heuristics to deal with large instances of
the container deployment problem.

7. REFERENCES
[1] M. Abdelbaky, J. Diaz-Montes, M. Parashar, et al.

Docker containers across multiple clouds and data
centers. In Proc. of IEEE/ACM UCC 2015, pages
368–371, 2015.

[2] B. Burns, B. Grant, D. Oppenheimer, et al. Borg,
omega, and kubernetes. Commun. ACM, 59(5):50–57,
2016.

[3] E. Casalicchio. Autonomic orchestration of containers:
Problem definition and research challenges. In Proc. of
InfQ ’16 (in conj. with VALUETOOLS ’16), 2016.

[4] Z. Dong, W. Zhuang, and R. Rojas-Cessa.
Energy-aware scheduling schemes for cloud data
centers on google trace data. In Proc. of IEEE
OnlineGreenComm 2014, pages 1–6, 2014.

[5] R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs
containerization to support paas. In Proc. of IEEE
IC2E 2014, pages 610–614, 2014.

[6] W. Felter, A. Ferreira, R. Rajamony, et al. An
updated performance comparison of virtual machines
and linux containers. In Proc. of IEEE ISPASS 2015,
pages 171–172, 2015.

[7] W. Gerlach, W. Tang, K. Keegan, et al. Skyport:
Container-based execution environment management
for multi-cloud scientific workflows. In Proc. of IEEE
DataCloud ’14, pages 25–32. IEEE, 2014.

[8] A. Ghodsi, M. Zaharia, B. Hindman, et al. Dominant
resource fairness: Fair allocation of multiple resource
types. In NSDI, volume 11, pages 24–24, 2011.

[9] B. Hindman, A. Konwinski, M. Zaharia, et al. Mesos:
A platform for fine-grained resource sharing in the
data center. In NSDI, volume 11, pages 22–22, 2011.

[10] P. Hoenisch, C. Hochreiner, D. Schuller, et al.
Cost-efficient scheduling of elastic processes in hybrid
clouds. In Proc. of IEEE CLOUD 2015, pages 17–24,
2015.

[11] P. Hoenisch, I. Weber, S. Schulte, et al. Four-fold
auto-scaling on a contemporary deployment platform
using docker containers. In Proc. of ICSOC 2015,
pages 316–323, 2015.

[12] M. Mao and M. Humphrey. A performance study on
the vm startup time in the cloud. In Proc. of IEEE
CLOUD 2012, pages 423–430, 2012.

[13] D. Merkel. Docker: Lightweight linux containers for
consistent development and deployment. Linux J.,
2014(239), 2014.

[14] D.-T. Nguyen, C. H. Yong, X.-Q. Pham, et al. An
index scheme for similarity search on cloud computing
using mapreduce over docker container. In Proc. of
ACM IMCOM ’16, pages 60:1–60:6. ACM, 2016.

[15] R. Peinl, F. Holzschuher, and F. Pfitzer. Docker
cluster management for the cloud - survey results and
own solution. Journal of Grid Computing,
14(2):265–282, 2016.

[16] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, et al.
A framework and algorithm for energy efficient
container consolidation in cloud data centers. In Proc.
of IEEE DSDIS 2015, pages 368–375, 2015.

[17] A. Verma, L. Pedrosa, M. Korupolu, et al. Large-scale
cluster management at google with borg. In Proc. of
EuroSys ’15, pages 18:1–18:17. ACM, 2015.

[18] W. Wang, B. Li, and B. Liang. Dominant resource
fairness in cloud computing systems with
heterogeneous servers. In Proc. of IEEE INFOCOM
2014, pages 583–591, 2014.

[19] K. P. Yoon and C.-L. Hwang. Multiple Attribute
Decision Making: an Introduction. Sage Pubns, 1995.

[20] Z. Zhao, N. Mandagere, G. Alatorre, et al. Toward
locality-aware scheduling for containerized cloud
services. In Proc. of IEEE Big Data 2015, pages
263–270, 2015.

10

