
Modelling Energy Efficient Server
Management Policies in PEPA

Ali Alssaiari
School of Computing Science,

Newcastle University, UK

Ray Adderley Jm Gining
Faculty of Computer and
Mathematical Sciences,

Universiti Teknologi MARA, Malaysia

Nigel Thomas
School of Computing Science,

Newcastle University, UK
Nigel.Thomas@ncl.ac.uk

ABSTRACT
Power inefficiency has become a major concern for large scale
computing providers. In this paper, we model turning servers on
and off to keep a balance between capacity and energy saving.
Several heuristic-based switching policies are introduced with a
view to balance the cost between power saving and performance.
Models are specified using a Markovian process algrebra, which
allows explicit representation of system behaviour and facilitates
numerical analysis using the supporting tools.

CCS Concepts
• Computing methodologies➝Model development and analysis.
• Mathematics of computing➝Markov processes

Keywords
Energy; Performance modelling; PEPA.

1. INTRODUCTION
The cost of energy is one of the many challenges facing large-scale
computing. According to [15], data centre owners now expect to
spend more capital on energy than their IT infrastructure, which
currently contributes more to the total cost of ownership (TOC).
The Environmental Protection Agency (EPA) has issued a report to
the U.S. Congress about the energy efficiency of servers and data
centres. The report highlighted several important points related to
the energy consumption of data centres. According to the report,
data centre electricity demands grew 100% between 2000 and
2006. Data centres in the U.S. consumed 61 billion kWh in 2006,
representing 1.5\% of total electrical consumption in the country
[3]. Gartner estimate the ICT industry was responsible for 2% of
global CO2 emissions in 2007 [16] With western european data
centre power consumption estimated at 56 TWh/year in 2007 and
projected to double by 2020 [2], the need to improve energy
efficiency of IT operations is imperative.

One of the more challenging problems in managing energy
consumption in distributed systems is in handling variability of
workload [9]. There are a number of measures which can be applied
to manage the effect of variable supply and demand. For example,
there are a variety of load balancing techniques [6] and traffic
shaping measures [7] which can be utilised to manage demand so
that resources do not become excessively over-utilised when
demand is high. An alternative approach is to dynamically manage
the supply of service capability by making more servers available

during periods of high demand. [20,21] considered the problem of
finding the optimal share of servers to different services under
variable load in order to minimise a performance-based cost
function.

This paper is based on the work of Slegers et al [19] and Nguyen et
al [15]. It is focused on the notion that servers can be powered off
and on according to demand in order to avoid the non-trivial energy
requirements of idle servers. With perfect knowledge of arriving
workload an optimal dynamic allocation of servers can be obtained
which significantly reduces the overall energy demand of the
system with no impact on performance, i.e. servers could be made
available only when they are going to be used. Of course, we do not
generally have a perfect knowledge of future workload and so an
optimal dynamic solution is not practical. Instead we must
investigate the trade-off between energy consumption and
performance (e.g. response time) to determine the best practical
method of reducing energy costs whilst not adversely affecting the
quality of service. Two principle approaches to minimising energy
consumption are apparent. In the first instance an optimal fixed
provision of servers can be computed based on estimated workload.
Depending on the variability in demand, this approach might lead
to servers being idle for extended periods or to some tasks
experiencing long waiting times during peak demand. The second
approach is to compute a strategy to turn servers on and off based
on the current (or past) state of the system. This approach
minimises idle time by turning off servers, but potentially delays
tasks which arrive in a burst as it takes time to turn servers back on.
In addition, powering servers off and on may lead to faults which
not only reduce the total available number of servers, but may also
further delay an arriving task.

The remainder of this paper is organised as follows. In the next
section we explain the context of this work in relation to other work
on modelling server policies. In Section 3 we introduce the
Markovian process algebra PEPA, which we will use to specify our
models. In Section 4 we describe the system model and introduce
three models of heuristic strategies for controlling the number of
servers powered on and off. This is followed in Section 5 by some
results of our experiments. Finally we present some conclusions
and directions of further work.

2. RELATED WORK
Slegers et al [19] introduced a model to examine the cost of holding
the job in the queue and the energy consumption cost by evaluating
different heuristics of powering servers on or off. Six heuristics
were introduced including Idle, static, Threshold, Semi-static,
High/Low arrival period and Average Flow Heuristic. Heuristics
control powering on or off servers according to job demand with
different criteria. However, the model in [19] does not consider the
server setup time (i.e. the time needed by a server to fully powered
on or down). Moreover, the benefit of powering down servers
considered only the direct impact on the power consumption by
servers and ignored the cascade effect [4] (i.e. indirect energy

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICPE '17 Companion, April 22-26, 2017, L'Aquila, Italy
© 2017 ACM. ISBN 978-1-4503-4899-7/17/04…$15.00
DOI: http://dx.doi.org/10.1145/3053600.3053609

43

saving in other IT component). Furthermore, it does not consider
different locations of servers and assumes all servers are in one data
centre location. Likewise, it assumes that all servers are
homogeneous, which means that they are identical in their
components and energy consumption, which is not always the case
in practice.

Mitrani [12] proposed a policy to reduce power consumption in
data centre by powering down a block of servers when the service
can meet the job demand without that block of servers. The model
assumed the data centre consist of N servers where n is permanent
and always on and ready to serve the job while N-n reserved servers
can be dynamically powered on or off according to the demand.
The availability of the reserved servers is controlled by two
thresholds, U and D, where U refers to up and D refers to down.
Reserved servers powered on as a block if the job demand increased
from U to U+1 and powered off in the same fashion if job demand
dropped from D+1 to D. Reserved servers consume energy while
powering on or off but cannot serve the job until they fully powered
on. The author assumes that a job cannot be lost when powering off
reserve servers, as the job will be transferred to another server.

Mitrani [13] extended the previous model [12] by introducing
multiple reserve blocks that can be turned on and off dynamically
in response to different loading conditions. The aim was to
investigate whether this approach reduces energy cost more than
the single reserve-block approach. The result showed that the
advantages of using multiple reserve blocks instead of a single
reserve block are minimal. Although the small amount of saving in
large-scale systems can be valuable, a single reserve-block policy
is sufficient in contrast to a complicated process of finding the
optimal energy saving policy.

Van Do [24] proposed a simple energy-aware policy that controls
the energy consumption of physical servers and moves to a low-
power consumption level (e.g. sleep state) when no virtual
machines are allocated to the physical server. In addition, when
virtual servers are assigned to a physical server, they start operating
at a high-power consumption level. The model consists of three
different dynamic mechanisms to control the allocation request of
virtual servers. The first mechanism allocates the request to the
physical machine that has the largest number of virtual machines,
but it is not entirely loaded. In contrast, the second mechanism
maps the virtual machine request to the least loaded physical server.
The last scheme prioritises physical servers and numbers them from
lowest to highest priority. Then, when the job request arrives, it
automatically chooses the fully loaded physical server that meets
the prioritising scheme to place the request and activate the virtual
machine.

In our previous work [1], we presented a PEPA model that
considers a variant of the high/low policy introduced in [15,19].
The maximum number of jobs is bounded at N. Arrivals into the
system occur at either a high or at a low rate. Jobs leave the system
according to the service process, which is determined by the
number of active servers. M servers are static and remain
permanently available to serve jobs. The remaining servers turn on
and off in response to the high and low periods of arrivals. Thus,
when a high period ends, these dynamic servers will become
unavailable for service, but when a low period ends, they will turn
back on. It is assumed that there is a delay in turning servers on and
off. Therefore, when a high period begins, there will be a delay until
the dynamic servers are available to serve jobs. If this delay is large
and the high-arrival rate greatly exceeds the service capacity of the
static servers, then there may be a significant increase in the number
of jobs in the system during this time. During the turning on and

turning off periods, servers will continue to consume power while
not providing a service. It is further assumed that servers may fail
when switching on and off. Following failures, servers undergo
repair, and it is assumed that the servers will consume energy
during repair as if they are working normally. The problem
associated with this model is to find the optimal number of static
and dynamic servers needed to minimise the energy usage for a
given set of parameters (arrival rates, service rate, switching rates,
failure probability and repair rate). The experiment analyses the
effect of the policy on energy consumption and performance cost.
Different combinations of dynamic and static servers are compared
against different scenarios, including change job arrival rate, job
arrival duration and the time that is needed by servers to power on
fully and serve jobs. The experiment gives an interesting outcome
because every scenario is unique; therefore, no specific server
combination provides low-energy use and high performance in all
scenarios.

Finally, there are also other existing researches [5,11,14,17,18] that
have considered energy efficiency and dynamic server allocation in
the relative context as previous mentioned work in this paper.

3. PEPA
A formal presentation of PEPA is given in [8] in this section a brief
informal summary is presented. PEPA, being a Markovian Process
Algebra, only supports actions that occur with rates that are
negative exponentially distributed. Specifications written in PEPA
represent Markov processes and can be mapped to a continuous
time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α,r) is described
by the type of the activity, α and the rate of the associated negative
exponential distribution, r. This rate may be any positive real
number, or given as unspecified using the symbol T. The syntax for
describing components is given as:

AQPLPQPPrP
L

||/||).,(::

The component (α,r).P performs the activity of type α at rate r and
then behaves like P.

The component P+Q behaves either like P or like Q, the resultant
behaviour being given by the first activity to complete.

The component P/L behaves exactly like P except that the activities
in the set L are concealed, their type is not visible and instead
appears as the unknown type τ.

Concurrent components can be synchronised, such that activities in
the cooperation set L involve the participation of both components:

QP
L

In PEPA the shared activity occurs at the slowest of the rates of the
participants and if a rate is unspecified in a component, the
component is passive with respect to that activities of that type.

Multiple unsynchronised instances of the same component can be
expressed as P[N]. In this form it is not defined which instance of
P will perform an action. Hence P[2] is not the same as P|P, where
we would distinguish between the derivatives P|P' and P'|P.

A
def

 P gives the constant A the behaviour of the component P.

In the following sections only models which have a steady state
solution are considered, necessary conditions for which are given
in [8].

PEPA can generally be used to specify models in a concise manner
using cooperating components. However, as with any formalism,

44

there are limitations to the efficiency of specification when it comes
to certain model types. In [22,23] a detailed approach to modelling
queues using PEPA was presented. In [22] a queue component is
specified by explicitly representing the number of items in the
queue and the transitions that lead to the change in queue length, as
follows.

ServiceQArrival

ServicesserveService

ArrivalaarriveArrival

QserveQ

QserveQarriveQ

QarriveQ

servearrive

NN

def

def

def

def

def

}{

0

}{

1

021

10

).,(

).,(

).,(

...

).,().,(

).,(

 T

T T

T

This means that for a queue with maximum length N, it is necessary
to define N+1 expressions. Clearly if N is large, this approach is not
ideal. More recently PEPA has been enhanced with a syntactic
construct which makes it easier to specify multiple instances of a
component as introduced above. This leads to an alternative
specification of a queue as follows.

ServiceNQArrival

QsserveQ

QaarriveQ

serve

empty

arrive

emptyfull

fullempty

def

def

}{}{

][

).,(

).,(

Using this form of specification for a queue leads to a much more
concise expression for large queue lengths, although some care is
needed to avoid unintended calculations of the apparent rate if
using passive actions. Unfortunately it is not generally possible to
use this approach if it is necessary to know the number of items in
a queue in order to control the behaviour of another component, for
example a threshold queue length, or if there are actions which add
or remove many items simultaneously (e.g. batch arrivals or queue
flushing).

4. THE MODEL
Consider a system containing M homogeneous servers which can
be in any one of four operational states: powered up, powered
down, powering up or powering down. The powered up servers
could be working or staying idle, while there were only one mode
each for the other states. In the powered down mode the server is
assumed not to be consuming power, although it is would be trivial
to amend this to consuming power at a low rate. Jobs arrive into a
bounded queue as long as the queue is not full. When the queue is
full jobs are assumed to be lost. Each job in the queue is served by
a single server in FIFO order. The challenge for such a system is to
formulate a server management policy which reduces energy
consumption but does not overly impact on response time or job
loss. In this paper we will focus on policies which react to the
number of jobs in the system to turn servers on or off. More
specifically we define threshold values for the number of jobs in
the queue where exceeding a threshold causes a server to be
powered on and going below a threshold causes a server to be
powered down. In general we may define different thresholds for
powering up and down and possibly multiple thresholds of each
type to power up or down different numbers of servers. However,

finding optimal values for multiple thresholds is a non-trivial
problem and can lead to behaviours which are hard to understand,
even in a fairly simple system.

4.1 Static allocation policy
The first case to consider is where servers never turn off or on;
instead a fixed number of servers are permanently available. This
case serves as a baseline to assess the potential benefit of policies
which allow servers to be dynamically managed. It also serves as a
simple introduction to the kind of PEPA model we employ.

][][

).,(

).,(

).,().,(

).,(

).,(

}{}{

MServerNQArrival

ServerserveServer

ArrivalperiodOnArrival

ArrivalperiodOffArrivalarriveArrival

QserveQ

QarriveQ

serve

empty

arrive
on

onoff

offonon

emptyfull

fullempty

def

def

def

def

def

The queue component (starting with all places empty) has N
possible places. Arrivals alternate between being on and off,
switching according to the actions periodOn and periodOff. When
the arrivals are on, they occur at rate λ. The M servers are fixed and
offer service at all times; the rate at which the serve action occurs
being min(j,M), where j is the number of jobs in the queue (0 ≤j ≤
N).

4.2 Semi-static allocation policy
A modification to the static policy is to have some servers which
are always available and some which power off when the arrivals
turn off.

][])[)((

)(

).,(

).,(

).,(

).,().,(

).,(

}
,{{}

}
,{

}
,{

NQmMServerServersArrival

ServerServerServers

ServerpowerOnrOnServerPowe

rOnServerPoweperiodOnServer

ServerpowerOffrOffServerPowe

rOffServerPoweperiodOffServerserveServer

ServerserveServer

empty

serve
arrive

static

periodOff
periodOn

on

on

periodOff
periodOn

on

on

off

off

onon

staticstatic

def

def

def

def

def

def

The queue and arrival components are specified as in the previous
case. The servers are divided between M-m static servers, which are
specified as in the static allocation policy, and m dynamic servers
which can power on and off (in the above case m=2). It is assumed
that changing between power modes takes time, hence there are
intermediate states ServerPowerOn and ServerPowerOff. When a
server is on it may serve jobs, but at the end of the on period of
arrivals, all dynamic servers start to power down. Similarly when
the arrivals off period ends, all the dynamic servers begin to power
up. Note that the dynamic servers synchronise over the periodOn
and periodOff actions to ensure that all servers initiate the change
of mode at the same time. However they each complete the mode
transition independently. This has two implications. Firstly it

45

means that the arrival mode changes can only happen when all
dynamic servers are on or off. Given that the periods of the arrival
modes are generally much longer than the switching times of
servers, this is a small consideration. The second implication is that
there will be a small time after the arrivals have turned on before
all the dynamic servers are available, which may lead to a
temporary overload.

4.3 Threshold policy
In the previous policy the dynamic servers responded to changes in
the behaviour of arrivals. This might be feasible when there are well
understood arrival modes which are readily detected. A simpler
mechanism is to employ a threshold on the number of jobs in the
queue to determine when to turn servers on or off. In order to
specify such a policy in PEPA, we need to keep track of the number
of jobs in the queue, which means we cannot use the same queue
specification as above.

1

21

11

010

).,(

...

).)1(,().,(

).,().,().,(

...

).,().,(

NN

jjj

jjjj

QNserveQ

QjserveQarriveTQ

QturnoffQjserveQarriveQ

QturnOffQarriveQ

def

def

def

def

This queue component has a threshold value at j; if there j jobs or
fewer in the queue then any dynamic servers will power off. Note
that to preserve the correct service rate over multiple servers the
rate specified at the queue is iµ, so that the actual rate will be the
minimum of this value and µ times the number of available servers.
When the number of jobs in the queue exceeds j, the name of the
arrival action changes to arriveT. This acts as a trigger action for
the dynamic servers to turn on. First we need to modify the arrival
process as follows.

.

onoff

on

offonon

ArrivalperiodOnArrival

ArrivalarriveT

ArrivalperiodOffArrivalarriveArrival

def

def

).,(

).,(

).,().,(

As arrive and arriveT cannot occur concurrently in the queue, this
does not change the mathematical properties of the arrival process,
just the name of the current arrival action. Any static servers are
specified as previously. Dynamic servers are specified in a very
similar way as previously, with the exception that it is the turnoff
action which initiates powering off and the arriveT action which
initiates powering on. Unlike the previous case, we do not
synchronise the dynamic servers, so each arriveT action will turn
on one server only. Similarly servers turn off one by one. This
independence makes some sense as the servers are no longer
responding to long term changes in arrival behaviour, but rather the
arrivals of single jobs. Intuitively it would not make much sense to
turn on m more servers just because there is one more jobs to serve.

])[][()(

).,().,(

).,(

).,().,(

).,(

).,().,(

{}
0 mServermMServerQueueArrival

rOnServerPowearriveTServerpowerOnrOnServerPowe

rOnServerPowearriveTServer

ServerarriveTServerpowerOffrOffServerPowe

ServerarriveT

rOffServerPoweturnOffServerserveServer

onstatic
LK

on

on

off

onoff

on

onon

def

def

def

def

4.4 Cost function
We now need some metric or metrics by which to compare these
different policies. Intuitively the static policy will have the largest
power consumption but the best performance, but the other two
policies are less clear. We define a simple cost function which is
the sum of an energy cost plus a performance cost for each policy.
The energy cost is defined as a constant, C1, times the number of
servers which are not off. This assumes that all servers consume the
same power whether they are active, idle or powering on or off. The
performance cost is defined as a constant, C2, times the average
queue length. This function is a reasonable discriminator of system
performance as long as the probability of the queue being full is
small.

5. Numerical results
First we consider the overall cost of the policies under different
arrival rates.

Figure 1. Cost of static policy varied with arrival rate, λ.

Figure 2. Cost of semi-static policy varied with arrival rate, λ.

46

Figure 3. Cost of threshold policy varied with arrival rate, λ.

In these experiments there were a maximum of 5 servers, each with
a service rate of 10. The maximum queue length was 20 and the
number of static servers in the threshold policy, m, was always 1.
The rates of powering up and down were also 10 and the periods of
arrivals being on or off were equal, with rate 0.5. The costs used
were C1=1 and C2=0.25. In Figure 1 we see that the energy cost
dominates and hence it is preferable to have fewer available servers.
However, when the arrival rate is high the system will overload
during arrival on periods when there are too few servers. In this
case the performance cost does not distinguish between the
different cases and so the overall cost is determined by the least
number of servers only. If the maximum queue length was greater,
then this might lead to a greater distinction as load increases. In
Figure 2 we observe a similar picture, where the least number of
static servers is considered to be the best configuration. In this
policy all the other servers are available when the arrivals are on,
so the overload situation is not as severe, although the dominance
of the energy cost and the relatively short queue length means that
the overall cost is no better than the static case. In Figure 3 we
compare three different threshold values. The smallest threshold
(j=4) gives a slightly better overall cost, although when the arrival
rate is highest most of the servers are on most of the time when the
arrivals are on, so there is little difference with the semi-static case.
The best configuration of each policy is shown in Figure 4,
compared against the naïve policy of all servers being on.

Figure 4. Cost of all policies varied with arrival rate, λ.

It is clear from the above results that the performance costs did not
have much impact on the choice of optimal configuration. In Figure
5 we present the same policies and configurations as Figure 4, but
consider different values for the weight of the performance cost.
The arrival rate here is 40.

Figure 5. Cost of all policies against performance weight C2.

Clearly increasing the performance cost has a dramatic effect on
the static policy with only one server. This is because in this
configuration the queue is full for most of the time when the arrivals
are on and so is penalized when the performance weight is larger.
As we have seen above, there is little to choose between the
threshold and semi-static policies when the performance weight is
small, but it is slightly surprising that the threshold policy performs
worse as C2 becomes larger. The explanation here is that when the
queue length drops below the threshold, most of the servers switch
off, which means that the queue length immediately grows again,
causing them to switch back on. As this switching wastes time (and
energy) that could be used to serve jobs, the result is a poorer
performance than the semi-static policy where all the dynamic
servers switch only at the start and end of the arrival on period. A
better performance of the threshold policy might be achieved by
choosing a larger value of m.

Finally, in Figure 6, we consider the effect of changing the length
of the arrival on and off periods. The experimental set up is the
same as Figure 5, except that the rate of the on/off periods is
increased on a log scale from 0.1 to 100 (thus decreasing the on/off
period duration). The threshold j=8 and there are two dynamic
servers and three static servers in the semi-static case. As with
Figures 1-4, the performance weight C2=0.25.

Figure 5. Cost of all policies against arrival on period rate.

When the period is long (rate is 0.1) the static policy performs
predictably poorly, as for most of the off period, there are numerous
idle servers. The threshold policy is shown to give the most stable
cost across the range of rates, which is not surprising given that it
is the most flexible of the policies investigated. The best
performance is given by the semi-static policy, which manages to
balance the stability of the static policy with some of the flexibility
of the threshold policy. However, it is worth noting that if the
arrival rate was higher, and the performance weight was larger, then

47

the semi-static policy might struggle by powering off servers at the
end of the arrival on period when the queue is still large.

6. Conclusions and Further work

In this paper we have shown how PEPA can be used to model
policies for controlling the power mode of parallel servers. These
models are conceptually simple, but determining which policy
gives the least cost and why, is not always intuitive. The
experiments described here are quite limited by the necessity of
brevity. It would be clearly beneficial to consider larger maximum
queue sizes and greater numbers of servers. The policies
themselves are also quite limited. The threshold policy in particular
is only defined with one threshold to turn on and off servers, which
can result in an oscillating behaviour as the queue size grows and
shrinks around this threshold value. Having different thresholds for
turning on or off, or even multiple thresholds for different classes
of dynamic servers, could add more stability to the system and
improve performance.

It is worth noting that Slegers et al [21] proposed six policies and
we have only considered three in this paper. Furthermore Nguyen
et al [15] considered the case where servers may breakdown when
powering up or down. Modelling these additional cases, as well as
others from the literature, in PEPA would enable more comparisons
to be made. While these models are interesting and provide some
insight with regard to general principles, they are crude abstractions
of real system behaviour. Therefore investigating models which are
more realistic and using real data where possible, is clearly
desirable.

7. REFERENCES
[1] Alssaiari, A., and N. Thomas, Performance modelling of

dynamic server allocation for energy efficiency using PEPA,
32nd UK Performance Engineering Workshop, University of
Bradford, 2016.

[2] Bertoldi, P. and B. Anatasiu., Electricity Consumption and
Efficiency Trends in European Union Status Report, 2009.

[3] Brown, R., Report to congress on server and data center
energy efficiency: Public law 109-431, Lawrence Berkeley
National Laboratory, 2008.

[4] Emerson Network Power, Energy logic: Reducing data
center energy consumption by creating savings that cascade
across systems, a white paper from the experts in business-
critical continuity, RCI HI RCI, 20:40-60, 2013.

[5] Gandhi, A., M. Harchol-Balter and I. Adan, Server farms
with setup costs, Performance Evaluation, 67(11), 1123-
1138, 2010.

[6] Gilly, K., C. Juiz, N. Thomas and R. Puigjaner, Scalable QoS
content-aware load balancing algorithm for a Web Switch
based on classical policies, 22nd IEEE International
Conference on Advanced Information Networking and
Applications', IEEE, 2008.

[7] Gilly, K., C. Juiz, N. Thomas and R. Puigjaner, Adaptive
Admission Control Algorithm in a QoS-aware Web System,
Journal of Information Sciences, 199, 58-77, 2012.

[8] Hillston, J., A Compositional Approach to Performance
Modelling, Cambridge University Press, 1996.

[9] Jarvis, A., N. Thomas and A. van Moorsel, Open issues in
grid performability, International Journal of Simulation, 5(5):
3-12, 2004.

[10] Kleinrock, L., Queueing systems, Volume I: Theory, 1975.

[11] Maccio, V.J. and D.G. Down, On optimal policies for
energy-aware servers, 21st International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 31-39, 2013.

[12] Mitrani, I., Service center trade-offs between customer
impatience and power consumption, Performance
Evaluation, 68(11): 1222-1231, 2011.

[13] Mitrani, I., Trading power consumption against performance
by reserving blocks of servers, 9th European Workshop on
Performance Engineering, LNCS 7587, Springer, 2012.

[14] Mitrani, I., Managing performance and power consumption
in a server farm, Annals of Operations Research, 202(1):
121-134, 2013.

[15] Nguyen, T.H., M. Forshaw, and N. Thomas, Operating
policies for energy efficient dynamic server allocation.
Electronic Notes in Theoretical Computer Science, 318, 159-
177, 2015.

[16] Pettey, C., Gartner estimates ICT industry accounts for 2
percent of global CO2 emissions, 2007.
http://www.gartner.com/newsroom/id/503867

[17] Phung-Duc, T., Controllable setup queue for energy-aware
server, 31st UK Performance Engineering Workshop,
University of Leeds, 2015.

[18] Phung-Duc, T., Impatient customers in power-saving data
centers, in: International Conference on Analytical and
Stochastic Modeling Techniques and Applications, LNCS
8499, Springer, 2014.

[19] Slegers, J., N. Thomas and I. Mitrani, Static and dynamic
server allocation in systems with on/off sources, Annals of
Operations Research, 170(1), 251-263, 2009.

[20] Slegers, J., N. Thomas and I. Mitrani, Evaluating the optimal
server allocation policy for clusters with on/off sources,
Performance Evaluation, 66(8), 453-467, 2009.

[21] Slegers, J., N. Thomas and I. Mitrani, Dynamic server
allocation for power and performance, in: Performance
Evaluation: Metrics, Models and Benchmarks, LNCS 5119,
Springer, 2008.

[22] Thomas, N. and J. Hillston, Using Markovian process
algebra to specify interactions in queueing systems, 14th UK
Performance Engineering Workshop, University of
Edinburgh, 1998.

[23] Thomas, N. and S. Gilmore, Applying quasi-separability to
Markovian process algebra, 6th International Workshop on
Process Algebra and Performance Modelling, Nice, 1998.

[24] Van Do, T., Comparison of allocation schemes for virtual
machines in energy-aware server farms, The Computer
Journal, 54(11): 1790-1797, 2011.

48

