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ABSTRACT 
Power inefficiency has become a major concern for large scale 
computing providers. In this paper, we model turning servers on 
and off to keep a balance between capacity and energy saving. 
Several heuristic-based switching policies are introduced with a 
view to balance the cost between power saving and performance. 
Models are specified using a Markovian process algrebra, which 
allows explicit representation of system behaviour and facilitates 
numerical analysis using the supporting tools. 
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1. INTRODUCTION 
The cost of energy is one of the many challenges facing large-scale 
computing. According to [15], data centre owners now expect to 
spend more capital on energy than their IT infrastructure, which 
currently contributes more to the total cost of ownership (TOC). 
The Environmental Protection Agency (EPA) has issued a report to 
the U.S. Congress about the energy efficiency of servers and data 
centres. The report highlighted several important points related to 
the energy consumption of data centres. According to the report, 
data centre electricity demands grew 100% between 2000 and 
2006. Data centres in the U.S. consumed 61 billion kWh in 2006, 
representing 1.5\% of total electrical consumption in the country 
[3]. Gartner estimate the ICT industry was responsible for 2% of 
global CO2 emissions in 2007 [16] With western european data 
centre power consumption estimated at 56 TWh/year in 2007 and 
projected to double by 2020 [2], the need to improve energy 
efficiency of IT operations is imperative. 

One of the more challenging problems in managing energy 
consumption in distributed systems is in handling variability of 
workload [9]. There are a number of measures which can be applied 
to manage the effect of variable supply and demand. For example, 
there are a variety of load balancing techniques [6] and traffic 
shaping measures [7] which can be utilised to manage demand so 
that resources do not become excessively over-utilised when 
demand is high. An alternative approach is to dynamically manage 
the supply of service capability by making more servers available 

during periods of high demand. [20,21] considered the problem of 
finding the optimal share of servers to different services under 
variable load in order to minimise a performance-based cost 
function. 

This paper is based on the work of Slegers et al [19] and Nguyen et 
al [15]. It is focused on the notion that servers can be powered off 
and on according to demand in order to avoid the non-trivial energy 
requirements of idle servers. With perfect knowledge of arriving 
workload an optimal dynamic allocation of servers can be obtained 
which significantly reduces the overall energy demand of the 
system with no impact on performance, i.e. servers could be made 
available only when they are going to be used. Of course, we do not 
generally have a perfect knowledge of future workload and so an 
optimal dynamic solution is not practical. Instead we must 
investigate the trade-off between energy consumption and 
performance (e.g. response time) to determine the best practical 
method of reducing energy costs whilst not adversely affecting the 
quality of service. Two principle approaches to minimising energy 
consumption are apparent. In the first instance an optimal fixed 
provision of servers can be computed based on estimated workload. 
Depending on the variability in demand, this approach might lead 
to servers being idle for extended periods or to some tasks 
experiencing long waiting times during peak demand. The second 
approach is to compute a strategy to turn servers on and off based 
on the current (or past) state of the system. This approach 
minimises idle time by turning off servers, but potentially delays 
tasks which arrive in a burst as it takes time to turn servers back on. 
In addition, powering servers off and on may lead to faults which 
not only reduce the total available number of servers, but may also 
further delay an arriving task. 

The remainder of this paper is organised as follows. In the next 
section we explain the context of this work in relation to other work 
on modelling server policies. In Section 3 we introduce the 
Markovian process algebra PEPA, which we will use to specify our 
models. In Section 4 we describe the system model and introduce 
three models of heuristic strategies for controlling the number of 
servers powered on and off. This is followed in Section 5 by some 
results of our experiments. Finally we present some conclusions 
and directions of further work.  

2. RELATED WORK 
Slegers et al [19] introduced a model to examine the cost of holding 
the job in the queue and the energy consumption cost by evaluating 
different heuristics of powering servers on or off. Six heuristics 
were introduced including Idle, static, Threshold, Semi-static, 
High/Low arrival period and Average Flow Heuristic. Heuristics 
control powering on or off servers according to job demand with 
different criteria. However, the model in [19] does not consider the 
server setup time (i.e. the time needed by a server to fully powered 
on or down). Moreover, the benefit of powering down servers 
considered only the direct impact on the power consumption by 
servers and ignored the cascade effect [4] (i.e. indirect energy 
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saving in other IT component). Furthermore, it does not consider 
different locations of servers and assumes all servers are in one data 
centre location. Likewise, it assumes that all servers are 
homogeneous, which means that they are identical in their 
components and energy consumption, which is not always the case 
in practice.  

Mitrani [12] proposed a policy to reduce power consumption in 
data centre by powering down a block of servers when the service 
can meet the job demand without that block of servers. The model 
assumed the data centre consist of N servers where n is permanent 
and always on and ready to serve the job while N-n reserved servers 
can be dynamically powered on or off according to the demand. 
The availability of the reserved servers is controlled by two 
thresholds, U and D, where U refers to up and D refers to down. 
Reserved servers powered on as a block if the job demand increased 
from U to U+1 and powered off in the same fashion if job demand 
dropped from D+1 to D. Reserved servers consume energy while 
powering on or off but cannot serve the job until they fully powered 
on. The author assumes that a job cannot be lost when powering off 
reserve servers, as the job will be transferred to another server. 

Mitrani [13] extended the previous model [12] by introducing 
multiple reserve blocks that can be turned on and off dynamically 
in response to different loading conditions. The aim was to 
investigate whether this approach reduces energy cost more than 
the single reserve-block approach. The result showed that the 
advantages of using multiple reserve blocks instead of a single 
reserve block are minimal. Although the small amount of saving in 
large-scale systems can be valuable, a single reserve-block policy 
is sufficient in contrast to a complicated process of finding the 
optimal energy saving policy. 

Van Do [24] proposed a simple energy-aware policy that controls 
the energy consumption of physical servers and moves to a low-
power consumption level (e.g. sleep state) when no virtual 
machines are allocated to the physical server. In addition, when 
virtual servers are assigned to a physical server, they start operating 
at a high-power consumption level. The model consists of three 
different dynamic mechanisms to control the allocation request of 
virtual servers. The first mechanism allocates the request to the 
physical machine that has the largest number of virtual machines, 
but it is not entirely loaded. In contrast, the second mechanism 
maps the virtual machine request to the least loaded physical server. 
The last scheme prioritises physical servers and numbers them from 
lowest to highest priority. Then, when the job request arrives, it 
automatically chooses the fully loaded physical server that meets 
the prioritising scheme to place the request and activate the virtual 
machine. 

In our previous work [1], we presented a PEPA model that 
considers a variant of the high/low policy introduced in [15,19]. 
The maximum number of jobs is bounded at $N$. Arrivals into the 
system occur at either a high or at a low rate. Jobs leave the system 
according to the service process, which is determined by the 
number of active servers. M servers are static and remain 
permanently available to serve jobs. The remaining servers turn on 
and off in response to the high and low periods of arrivals. Thus, 
when a high period ends, these dynamic servers will become 
unavailable for service, but when a low period ends, they will turn 
back on. It is assumed that there is a delay in turning servers on and 
off. Therefore, when a high period begins, there will be a delay until 
the dynamic servers are available to serve jobs. If this delay is large 
and the high-arrival rate greatly exceeds the service capacity of the 
static servers, then there may be a significant increase in the number 
of jobs in the system during this time. During the turning on and 

turning off periods, servers will continue to consume power while 
not providing a service. It is further assumed that servers may fail 
when switching on and off. Following failures, servers undergo 
repair, and it is assumed that the servers will consume energy 
during repair as if they are working normally. The problem 
associated with this model is to find the optimal number of static 
and dynamic servers needed to minimise the energy usage for a 
given set of parameters (arrival rates, service rate, switching rates, 
failure probability and repair rate). The experiment analyses the 
effect of the policy on energy consumption and performance cost. 
Different combinations of dynamic and static servers are compared 
against different scenarios, including change job arrival rate, job 
arrival duration and the time that is needed by servers to power on 
fully and serve jobs. The experiment gives an interesting outcome 
because every scenario is unique; therefore, no specific server 
combination provides low-energy use and high performance in all 
scenarios. 

Finally, there are also other existing researches [5,11,14,17,18] that 
have considered energy efficiency and dynamic server allocation in 
the relative context as previous mentioned work in this paper.  

3. PEPA 
A formal presentation of PEPA is given in [8] in this section a brief 
informal summary is presented. PEPA, being a Markovian Process 
Algebra, only supports actions that occur with rates that are 
negative exponentially distributed. Specifications written in PEPA 
represent Markov processes and can be mapped to a continuous 
time Markov chain (CTMC). Systems are specified in PEPA in 
terms of activities and components. An activity (α,r) is described 
by the type of the activity, α and the rate of the associated negative 
exponential distribution, r. This rate may be any positive real 
number, or given as unspecified using the symbol T. The syntax for 
describing components is given as: 

AQPLPQPPrP
L

||/||).,(::    

The component (α,r).P performs the activity of type α at rate r and 
then behaves like P. 

The component P+Q behaves either like P or like Q, the resultant 
behaviour being given by the first activity to complete. 

The component P/L behaves exactly like P except that the activities 
in the set L are concealed, their type is not visible and instead 
appears as the unknown type τ. 

Concurrent components can be synchronised, such that activities in 
the cooperation set L involve the participation of both components: 

QP
L

  

In PEPA the shared activity occurs at the slowest of the rates of the 
participants and if a rate is unspecified in a component, the 
component is passive with respect to that activities of that type.   

Multiple unsynchronised instances of the same component can be 
expressed as P[N]. In this form it is not defined which instance of 
P will perform an action. Hence P[2] is not the same as P|P, where 
we would distinguish between the derivatives P|P' and P'|P. 

A
def

 P gives the constant A the behaviour of the component P.   

In the following sections only models which have a steady state 
solution are considered, necessary conditions for which are given 
in [8]. 

PEPA can generally be used to specify models in a concise manner 
using cooperating components. However, as with any formalism, 
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there are limitations to the efficiency of specification when it comes 
to certain model types. In [22,23] a detailed approach to modelling 
queues using PEPA was presented. In [22] a queue component is 
specified by explicitly representing the number of items in the 
queue and the transitions that lead to the change in queue length, as 
follows.  
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This means that for a queue with maximum length N, it is necessary 
to define N+1 expressions. Clearly if N is large, this approach is not 
ideal. More recently PEPA has been enhanced with a syntactic 
construct which makes it easier to specify multiple instances of a 
component as introduced above. This leads to an alternative 
specification of a queue as follows. 
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Using this form of specification for a queue leads to a much more 
concise expression for large queue lengths, although some care is 
needed to avoid unintended calculations of the apparent rate if 
using passive actions. Unfortunately it is not generally possible to 
use this approach if it is necessary to know the number of items in 
a queue in order to control the behaviour of another component, for 
example a threshold queue length, or if there are actions which add 
or remove many items simultaneously (e.g. batch arrivals or queue 
flushing). 

4. THE MODEL 
Consider a system containing M homogeneous servers which can 
be in any one of four operational states: powered up, powered 
down, powering up or powering down. The powered up servers 
could be working or staying idle, while there were only one mode 
each for the other states. In the powered down mode the server is 
assumed not to be consuming power, although it is would be trivial 
to amend this to consuming power at a low rate. Jobs arrive into a 
bounded queue as long as the queue is not full. When the queue is 
full jobs are assumed to be lost. Each job in the queue is served by 
a single server in FIFO order. The challenge for such a system is to 
formulate a server management policy which reduces energy 
consumption but does not overly impact on response time or job 
loss. In this paper we will focus on policies which react to the 
number of jobs in the system to turn servers on or off. More 
specifically we define threshold values for the number of jobs in 
the queue where exceeding a threshold causes a server to be 
powered on and going below a threshold causes a server to be 
powered down. In general we may define different thresholds for 
powering up and down and possibly multiple thresholds of each 
type to power up or down different numbers of servers. However, 

finding optimal values for multiple thresholds is a non-trivial 
problem and can lead to behaviours which are hard to understand, 
even in a fairly simple system.  

4.1 Static allocation policy 
The first case to consider is where servers never turn off or on; 
instead a fixed number of servers are permanently available. This 
case serves as a baseline to assess the potential benefit of policies 
which allow servers to be dynamically managed. It also serves as a 
simple introduction to the kind of PEPA model we employ. 
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The queue component (starting with all places empty) has N 
possible places. Arrivals alternate between being on and off, 
switching according to the actions periodOn and periodOff. When 
the arrivals are on, they occur at rate λ. The M servers are fixed and 
offer service at all times; the rate at which the serve action occurs 
being min(j,M), where j is the number of jobs in the queue (0 ≤j ≤ 
N). 

4.2 Semi-static allocation policy 
A modification to the static policy is to have some servers which 
are always available and some which power off when the arrivals 
turn off. 
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The queue and arrival components are specified as in the previous 
case. The servers are divided between M-m static servers, which are 
specified as in the static allocation policy, and m dynamic servers 
which can power on and off (in the above case m=2). It is assumed 
that changing between power modes takes time, hence there are 
intermediate states ServerPowerOn and ServerPowerOff. When a 
server is on it may serve jobs, but at the end of the on period of 
arrivals, all dynamic servers start to power down. Similarly when 
the arrivals off period ends, all the dynamic servers begin to power 
up. Note that the dynamic servers synchronise over the periodOn 
and periodOff actions to ensure that all servers initiate the change 
of mode at the same time. However they each complete the mode 
transition independently. This has two implications. Firstly it 
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means that the arrival mode changes can only happen when all 
dynamic servers are on or off. Given that the periods of the arrival 
modes are generally much longer than the switching times of 
servers, this is a small consideration. The second implication is that 
there will be a small time after the arrivals have turned on before 
all the dynamic servers are available, which may lead to a 
temporary overload. 

4.3 Threshold policy 
In the previous policy the dynamic servers responded to changes in 
the behaviour of arrivals. This might be feasible when there are well 
understood arrival modes which are readily detected. A simpler 
mechanism is to employ a threshold on the number of jobs in the 
queue to determine when to turn servers on or off. In order to 
specify such a policy in PEPA, we need to keep track of the number 
of jobs in the queue, which means we cannot use the same queue 
specification as above. 
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This queue component has a threshold value at j; if there j jobs or 
fewer in the queue then any dynamic servers will power off. Note 
that to preserve the correct service rate over multiple servers the 
rate specified at the queue is iµ, so that the actual rate will be the 
minimum of this value and µ times the number of available servers. 
When the number of jobs in the queue exceeds j, the name of the 
arrival action changes to arriveT. This acts as a trigger action for 
the dynamic servers to turn on. First we need to modify the arrival 
process as follows. 
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As arrive and arriveT cannot occur concurrently in the queue, this 
does not change the mathematical properties of the arrival process, 
just the name of the current arrival action. Any static servers are 
specified as previously. Dynamic servers are specified in a very 
similar way as previously, with the exception that it is the turnoff 
action which initiates powering off and the arriveT action which 
initiates powering on. Unlike the previous case, we do not 
synchronise the dynamic servers, so each arriveT action will turn 
on one server only. Similarly servers turn off one by one. This 
independence makes some sense as the servers are no longer 
responding to long term changes in arrival behaviour, but rather the 
arrivals of single jobs. Intuitively it would not make much sense to 
turn on m more servers just because there is one more jobs to serve. 
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4.4 Cost function 
We now need some metric or metrics by which to compare these 
different policies. Intuitively the static policy will have the largest 
power consumption but the best performance, but the other two 
policies are less clear. We define a simple cost function which is 
the sum of an energy cost plus a performance cost for each policy. 
The energy cost is defined as a constant, C1, times the number of 
servers which are not off. This assumes that all servers consume the 
same power whether they are active, idle or powering on or off. The 
performance cost is defined as a constant, C2, times the average 
queue length. This function is a reasonable discriminator of system 
performance as long as the probability of the queue being full is 
small.  

5. Numerical results 
First we consider the overall cost of the policies under different 
arrival rates. 

 
Figure 1. Cost of static policy varied with arrival rate, λ. 

 
Figure 2. Cost of semi-static policy varied with arrival rate, λ. 
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Figure 3. Cost of threshold policy varied with arrival rate, λ. 

In these experiments there were a maximum of 5 servers, each with 
a service rate of 10. The maximum queue length was 20 and the 
number of static servers in the threshold policy, m, was always 1. 
The rates of powering up and down were also 10 and the periods of 
arrivals being on or off were equal, with rate 0.5. The costs used 
were C1=1 and C2=0.25. In Figure 1 we see that the energy cost 
dominates and hence it is preferable to have fewer available servers. 
However, when the arrival rate is high the system will overload 
during arrival on periods when there are too few servers. In this 
case the performance cost does not distinguish between the 
different cases and so the overall cost is determined by the least 
number of servers only. If the maximum queue length was greater, 
then this might lead to a greater distinction as load increases. In 
Figure 2 we observe a similar picture, where the least number of 
static servers is considered to be the best configuration. In this 
policy all the other servers are available when the arrivals are on, 
so the overload situation is not as severe, although the dominance 
of the energy cost and the relatively short queue length means that 
the overall cost is no better than the static case. In Figure 3 we 
compare three different threshold values. The smallest threshold 
(j=4) gives a slightly better overall cost, although when the arrival 
rate is highest most of the servers are on most of the time when the 
arrivals are on, so there is little difference with the semi-static case. 
The best configuration of each policy is shown in Figure 4, 
compared against the naïve policy of all servers being on. 

 
Figure 4. Cost of all policies varied with arrival rate, λ. 

It is clear from the above results that the performance costs did not 
have much impact on the choice of optimal configuration. In Figure 
5 we present the same policies and configurations as Figure 4, but 
consider different values for the weight of the performance cost. 
The arrival rate here is 40.  

 
Figure 5. Cost of all policies against performance weight C2. 

Clearly increasing the performance cost has a dramatic effect on 
the static policy with only one server. This is because in this 
configuration the queue is full for most of the time when the arrivals 
are on and so is penalized when the performance weight is larger. 
As we have seen above, there is little to choose between the 
threshold and semi-static policies when the performance weight is 
small, but it is slightly surprising that the threshold policy performs 
worse as C2 becomes larger. The explanation here is that when the 
queue length drops below the threshold, most of the servers switch 
off, which means that the queue length immediately grows again, 
causing them to switch back on. As this switching wastes time (and 
energy) that could be used to serve jobs, the result is a poorer 
performance than the semi-static policy where all the dynamic 
servers switch only at the start and end of the arrival on period. A 
better performance of the threshold policy might be achieved by 
choosing a larger value of m.  

Finally, in Figure 6, we consider the effect of changing the length 
of the arrival on and off periods. The experimental set up is the 
same as Figure 5, except that the rate of the on/off periods is 
increased on a log scale from 0.1 to 100 (thus decreasing the on/off 
period duration). The threshold j=8 and there are two dynamic 
servers and three static servers in the semi-static case. As with 
Figures 1-4, the performance weight C2=0.25. 

 
Figure 5. Cost of all policies against arrival on period rate. 

When the period is long (rate is 0.1) the static policy performs 
predictably poorly, as for most of the off period, there are numerous 
idle servers. The threshold policy is shown to give the most stable 
cost across the range of rates, which is not surprising given that it 
is the most flexible of the policies investigated. The best 
performance is given by the semi-static policy, which manages to 
balance the stability of the static policy with some of the flexibility 
of the threshold policy. However, it is worth noting that if the 
arrival rate was higher, and the performance weight was larger, then 

47



the semi-static policy might struggle by powering off servers at the 
end of the arrival on period when the queue is still large. 

6. Conclusions and Further work 

In this paper we have shown how PEPA can be used to model 
policies for controlling the power mode of parallel servers. These 
models are conceptually simple, but determining which policy 
gives the least cost and why, is not always intuitive. The 
experiments described here are quite limited by the necessity of 
brevity. It would be clearly beneficial to consider larger maximum 
queue sizes and greater numbers of servers. The policies 
themselves are also quite limited. The threshold policy in particular 
is only defined with one threshold to turn on and off servers, which 
can result in an oscillating behaviour as the queue size grows and 
shrinks around this threshold value. Having different thresholds for 
turning on or off, or even multiple thresholds for different classes 
of dynamic servers, could add more stability to the system and 
improve performance.  

It is worth noting that Slegers et al [21] proposed six policies and 
we have only considered three in this paper. Furthermore Nguyen 
et al [15] considered the case where servers may breakdown when 
powering up or down. Modelling these additional cases, as well as 
others from the literature, in PEPA would enable more comparisons 
to be made. While these models are interesting and provide some 
insight with regard to general principles, they are crude abstractions 
of real system behaviour. Therefore investigating models which are 
more realistic and using real data where possible, is clearly 
desirable. 
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