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ABSTRACT
As evolving complex systems have become the central part
of almost every human activity, their reliability is the key
property for their successful application, especially with the
emerging Internet of Services concept. There are many quan-
titative mathematical models, the so called reliability growth
models, aiming to predict and estimate reliability of software
systems based on the failure count time series. This paper
suggests a novel and still unexplored qualitative approach to
understand failure time series studying its topological fea-
tures and their influence on failure distributions, thus affect-
ing mission critical system properties, among which is relia-
bility. To illustrate the new ideas, we analyse here the time
series failure data of evolving software systems across the
system versions for two open source software systems and
one mission critical industrial software system, and discuss
their topological relations and behaviour. We conclude that
topological analysis might be useful for characterising soft-
ware system behaviour early enough and for early character-
ization of system reliability that may contribute to software
reliability modeling.

CCS Concepts
•Software and its engineering→ Software reliability;
•Networks → Network reliability;
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1. INTRODUCTION
Evolving complex software systems (EVOSOFT) have be-

come a central part of a rapidly growing range of applica-
tions, products and services supporting daily human activ-
ities from all economic sectors. These systems have been
evolving gradually during the sequence of system releases.

As these systems are often distributed, heterogeneous, de-
centralised and inter-dependent, and operating in dynamic
and unpredictable environments, availability and reliability
become key properties for its operation and future evolu-
tion. There are numerous models to model software relia-
bility [14, 13, 16]. In the traditional EVOSOFT engineering
the problem of early verification planning requires accurate
predictions early enough. Tools and models used to simulate
and predict reliability growth during verification process are
extensively used in industrial practice to predict effort and
time needed to bring the system to required reliability state
[12]. Unfortunately, these models are not applicable in early
stages of the verification process and usually it is a problem
to identify the right model for accurate model and prediction
[20, 1].

Modern development trends have changed this traditional
system evolution principle by introducing new system de-
velopment ecoenvironments, such as for example Internet
of Services (IoS), where end user services are provided by
chaining evolving services within these ecoenvironments to
accommodate user needs. Reliability of such ecoenviron-
ments remains the key issue and may influence the user sat-
isfaction and the choice of service providers. Hence, the need
for early determination of key reliability properties is getting
even more important in the emerging service oriented con-
text.

In this paper we approach the software reliability from an
entirely novel perspective. All reliability models in the exist-
ing literature [14, 13, 16] consider the reliability by studying
the quantitative properties of the failure time series. Their
goal is to predict and estimate the quantitative behaviour
of these time series. Our approach based on the topological
data analysis is different.

Topological data analysis is a recent data science approach
that looks into the insights on the data provided by its shape.
It enables powerful tools to analyse time series data, within
a wide variety of applications from gene expression data [19]
to spreading of diseases [3]. In this paper we apply persis-
tent homology, one of the topological data analysis methods,
to study EVOSOFT reliability behaviour. Topological data
analysis have been successfully used to model behaviour of
wide variety of complex systems. Persistent homology pro-
vides mathematical algorithms that apply tools of computa-
tional topology to datasets where topology is derived from
the connectivity information in dataset. Topological fea-
tures are identified at different structure resolutions and the
most persistent ones along the resolution space are said to be
representative features of underlying space. We investigate
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existence of these features in system reliability datasets and
their relation to other system reliability properties as mod-
eled by existing software reliability models.

The novel and still unexplored area of research addressed
in this paper is to understand how topological features of
failure time series data are related to system reliability. We
study the failure count time series topologically, that is, we
study its shape and qualitative properties regardless of the
actual absolute values. In this way, we may find some hidden
topological similarities between reliability properties of soft-
ware systems whose failure counts (and other system prop-
erties) may be quantitatively very different. This may be
useful, for example, in determination of reliability growth
model family for particular software system.

The first author is currently working on topological epi-
demiological data analysis. The aim of his ongoing research
is to model spreading behaviour of diseases (e.g. influenza)
with the help of topological data analysis. The second au-
thor is working on modelling the behaviour of complex soft-
ware systems. The aim of their research within the ongo-
ing projects is to empirically and analytically investigate
behaviour of complex software systems and develop solid
ground for their simulation and modelling of their behaviour
[10, 9]. Here, we analyse time series data based on software
failures in the several releases of two open source software
products from Eclipse community (JDT and PDE) and sev-
eral releases of an industrial system from telecommunication
core network product provider (MSC). The discussion in this
paper reveals new opportunities for research in two direc-
tions. One is in extending the application of the underlying
mathematical models to explain the behaviour of complex
software systems and compare so obtained reliability prop-
erties with existing reliability models. The other is to find
in that use-case new motivations to discuss the topological
analysis of time series data. This paper will discuss the main
research goals being: (i) to explore application of persistent
homology on reliability behaviour of software system; (ii) to
observe topology similarities with other complex systems.

2. THE PROBLEM, THE DATA AND THE
APPROACH

One of the key system properties for mission critical soft-
ware systems is reliability. Roughly speaking, reliability of
a system is a measure of probability of its failure in time.
It is usually assessed using the fault or failure count over
time. There are various analytical models of reliability, the
so-called reliability growth models (RGM). In many cases
they are applied to predict failures of software systems in
operation, as well as the remaining number of faults in the
system during its development. The latter is of great im-
portance for software development companies, because the
correct prediction of remaining faults in the system can sig-
nificantly reduce cost of testing and verification effort with-
out risking the expensive failures during operation at the
customer’s site.

In applications of RGM in practice, there are two main
difficulties that should be addressed. The first difficulty is
the choice of the family of models which to apply. This
is quite often a serious issue even for systems that are not
evolutionary developed. Since reliability modeling is used
for verification planning it is very important to determine
the right model early enough within development process,

while we can still act cost effectively to verification activi-
ties. The second difficulty is the possible change of models
during evolution, that is, from release to release of a soft-
ware system. Although the software system in evolution is
only changing partially, it is often the case that the proper-
ties of software, such as quality or reliability, change from
release to release. The reasons for that are in many fac-
tors that influence the software properties, which may be all
referred to as environmental factors (e.g. development orga-
nization, software structure, size change). Hence, it is quite
rare that the reliability models can be directly applied from
release to release. The idea behind this work is that it is
quite possible that, although the quantitative values of the
reliability measures may vary during evolution, their shape
may be preserved. This hidden shape of reliability data is
studied using the recent topological method in data science,
the so-called topological data analysis. Topology is the field
of mathematics dealing with qualitative, instead of quanti-
tative phenomena, in particular, it is concerned with shape
of objects rather than their measures. Therefore, here we
want to explore if we can use topological data analysis to
understand a system failure time series. This may be help-
ful for identifying some hidden similarities between software
systems failure time series and these may be further used
for characterizing their reliability behaviour. In the next
section we present toplogical data analysis measures that
we use to find out if we can find these hidden similarities by
using these measures in the failure time series.

The purpose of this preliminary study is to assess the fea-
sibility of this approach by considering three evolutionary
developed software systems; two open source and one closed
source. We used the failure data reported in project fail-
ure repositories. The failure data were counted within the
one week period, with removed duplicates, and represented
as time series in weeks as is presented in Figure 1. The
first two figures represent time series of open source Eclipse
projects, Java Development tools (JDT) and Plug-in De-
velopment Environment (PDE) respectively, for which we
collected data from the Bugzilla repository. The last one
is a dataset from a mission critical system in telecommu-
nication network, application software of Mobile Switching
Centre (MSC) from an Ericsson core network product line
[8]. We choose industrial and open source projects with the
aim to understand if there are differences in their topological
behaviour, as one may expect, since this difference has been
reported in many other empirical studies. These develop-
ment environments are very much different and in most of
the studies is mentioned as cause of different results stressing
that same models may not be applicable for both environ-
ments. From the figure their different behaviour is visible,
although we may not conclude that open source projects are
more similar to each other than to the industrial project. We
have chosen three projects with quite different failure fault
time series with the intention to compare their topology.

3. ENCODING THE TOPOLOGICAL INFOR-
MATION

Topological Data Analysis (TDA) applies the qualitative
methods of topology to problems of machine learning, data
mining and computer vision. Persistent homology identifies
a global structure by inferring high-dimensional structure
from low-dimensional representations and studying proper-
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Figure 1: Time series for failure data in three soft-
ware projects: the open source JDT (above) and
PDE (below), and the industrial MSC (center).

Figure 2: Encoding persistent topological features of
a pointcloud (on the left) into a persistence diagram
(on the right) by approximating the space through
simplicial complexes (in the middle) [11].

Figure 3: Persistent homology permits to consider
the homology of the filtered simplicial complex at
all times during the filtration [21].

ties of a (often) continuous space by the analysis of a discrete
sample of it, assembling discrete points into global structure
[2]. Topological data analysis is interested in problems relat-
ing to nonlinear systems, large scale data and development
of more accurate models. The study of time series is a great
source of problems that focus aspects of that nature. It
has applications in digital disease detection [3] which have
motivated this study.

TDA is used to infer topological structure in data sets
while variations on the method can be applied to study the
shape of point clouds (see Figure 2). Instead of choosing
one particular threshold, persistent homology considers a
continuous height function that permits us to observe the
connectivity on our data at all times (see Figure 3). By con-
sidering all possible scales, one can infer the correct scale at
which to look at the point cloud simply by looking for scales
where the persistent homology is stable. To encode the life-
time of that connectivity, we plot birth times and death
times (as starting/ending times) in a plane to what we call
a persistence diagram. In particular, persistence diagrams
are a clear and practical tool that allows us the detection of
outliers and to capture the dynamics of the system.

In the recent years the method of sliding window persis-
tence has been successful in the study of gene expression
time series data (see [19], [18] and [4]). We shall apply
this method to the study of reliability during the software

Figure 4: The sliding window persistence method
applied to time series data, where the window size
is w [18].
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Figure 5: Heat maps representing the distance ma-
trix between the points in the 5-dimensional point
cloud (generated by the sliding window of size 5)
that are at a distance higher then a certain thresh-
old r, for r=150 (above), r=250 (center), and r=500
(below).

evolution in this paper. Given a time series g0, g1, . . . , gS
measured at times t0, t1, . . . , tS , we consider the graph of g
restricted to the interval [ti, ti+w], where i = 0, . . . , S − w
and w is the length of the window, and we consider the
pointcloud

{(gti , . . . , gti+w ) | i = 0, . . . , Sw}.

This method is illustrated in Figure 4.
The heat maps in Figure 5 represent the distances between

points in the data cloud at several threshold levels, permit-
ting us to track the relevant parameters for the construction
of simplicial complexes.

The input structure is given as the pairwise distance ma-
trix – using Euclidean distance – between points in a given
point cloud. In Figure 6 we can see three steps of the con-
struction of the Vietoris-Rips complex providing us with the
persistence diagram encoding the topological information of
the software failures over time and across new versions dur-
ing its lifetime.

The simplicial complexes originated in the filtration of the
space at several levels varying according to a parameter r
for the input time series with parameters: r = 150, r = 250,
and r = 500 (see Figure 6). These parameters were cho-
sen randomly to illustrate the construction of the simplicial
complex at each step while increasing the distance threshold.

Persistence diagrams encode the birth and death time of
a topological feature of the data. Much of the applications
within the recent research require manipulation and compar-
ison of persistence diagrams. We will focus on the degree 1
persistence diagrams as they are the ones that provide us
with more information on the topological features of the in-
put data (see Figure 7). The outlier on the top right corner
in all the diagrams represents a qualitative feature that is
born late but has a longer lifetime. On the other hand, most
of the features that are born early are so close to the diago-
nal (have a ’short life’) that can be considered noise. These
persistence diagrams were computed using the open source
freely available tool perseus [17] that is based on [15].

4. COMPARING SOFTWARE EVOLUTION
The bottleneck distance is still today the standard method

to compare two persistence diagrams. The bottleneck dis-
tance is based on a bijection between the points and is there-
fore always at least the Hausdorff distance between the two
diagrams. For points p = (p1, p2) and q = (q1, q2) in R2, let
‖p− q‖∞ be the maximum of |p1 − q1| and |p2 − q2|. Let X
and Y be multisets of points. Every persistence diagram is

Figure 6: Simplicial complexes approximating the
shape of the 5 dimension point cloud (generated by
the sliding window of size 5) that are at a distance
higher then a certain threshold r, for r = 150 (above),
r = 250 (in the center), and r = 500 (below).
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Figure 7: Persistence diagrams of dimension 1 for
the topological data analysis of the software faults
data in the several versions and updates of the soft-
ware products JDT (above), MSC (in the center)
and PDE (below).

Figure 8: The bottleneck distance comparing two
persistence diagrams [5] (on the left), and the bot-
tleneck distances between persistence diagrams of
degree 1, representing the software products JDT,
MSC and PDE, using the package TDA for R [7, 6]
(on the right).

such a multiset. The bottleneck distance between X and Y
is defined as

dB(X,Y ) = inf
η

sup
x∈X
‖x− η(x)‖∞,

where the infimum is taken over all bijections η from X to Y .
Each point with multiplicity k in a multiset is interpreted as
k individual points, and the bijection is interpreted between
the resulting sets.

As illustrated in Figure 8 for the case of persistent dia-
grams Dgm(f) and Dgm(g), the bottleneck identifies the
closest elements of each diagram and determines the global
distance based on that [5]. We have used the TDA pack-
age of the statistical application R [7, 6] to compute these
distances, included in the table of Figure 8.

The computation of the bottleneck distances between the
persistence diagrams in degree 1, each of them corresponding
to one software product, permit us to access the distance
between the evolution of reliability behavior similarities of
these software products themselves.

By direct analysis of the table in Figure 8, the closest per-
sistence diagrams in degree 1 are JDT and PDE while the
most distant are MSC and JDT or MSC and PDE, distances
that cannot be distinguished by the basic bottleneck dis-
tance. Interesting here is to observe that JDT and PDE are
both open source Eclipse projects with quite different devel-
opment practices from the industrial MSC software product.
This seems quite promising for further research, as it shows
that topological properties of the reliability time series may
be used to as a measure to characterise development envi-
ronment in respect to various system properties.

5. CONCLUSION AND FURTHER WORK
In this paper we present an initial investigation towards

new approach to predict reliability of large software systems
by using the topological data analysis approach. Software
system reliability is related to failure time series and soft-
ware reliability models aim to estimate the remaining num-
ber of faults that may lead to failure in software system
under the test. Our approach was to use topological data
analysis of failure time series data during software evolution
that may provide us with a complementary understanding of
the reliability behavior of that evolution. This is qualitative
information on the topological properties of the pointcloud
generated by the failure time series data within the sliding
window approach used in this study. In that, we show how
to extract the topological measure from the derived higher
dimension pointcloud, and how to use that information to
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describe how close are the reliability evolution paths of each
software instance. This may reveal hidden topological sim-
ilarities between software products and help us to charac-
terise its reliability behaviour. In this preliminary study we
illustrated the idea how we can use topological data analysis
for that purpose that give us some promising results that is
motivation for our future work.

In future work we want to compare obtained distances be-
tween projects to the traditional reliability growth models
[14, 16, 13]. From this future work we expect to gain deeper
understanding of different reliability behaviour among soft-
ware products and relate it to theory of reliability growth
modelling. This knowledge may be useful in early charac-
terisation of software system reliability behaviour that can
lead to early determination of the best reliability growth
modeling approach. As we show from analysed examples of
software systems this approach may be very useful to provide
a measure of development environment with respect to vari-
ous system properties. This information may be very useful
in early determination of the best mathematical model for
system behaviour.

The choice of distance used to construct the simplicial
complexes that originate the persistence diagrams can have
influence on the information extracted from them. This is a
topic of discussion in further work, where we shall also study
in depth the interpretation of the information provided by
the persistence diagram in the context of the original prob-
lem.

Moreover, the study of the dynamics of the reliability evo-
lution itself, and the identification of patterns, can be ac-
cessed by these methods and will also be subject of further
research. Also the distinctions between the different levels
of persistence landscapes can complement the comparison
information provided, and thus contribute to this research.
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[3] J. P. Costa and P. Škraba. A topological data analysis
approach to the epidemiology of influenza. In
SIKDD15 Conference Proceedings, 2015.
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