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ABSTRACT

When real-time embedded systems fail: patients die, war-
ships shoot passenger jets, airplanes crash, cars stop on
freeways or accelerate uncontrollably, and other documented
problems. Preventing these problems saves lives, money, en-
ables faster delivery, improves architectures, and improves
performance. Performance engineering enables developers
to predict performance, identify, and correct problems be-
fore products are built that contain serious potential failures.

This paper examines current technical and performance
issues in real-time embedded systems (RTES) including soft-
ware and systems developed for the Internet of Things (IoT).
We describe the model interoperability framework that uses
Model Interchange Formats (MIFs) to exchange performance
models among modeling tools. Performance models for RTES
or IoT require the representation of additional features, and
solution methods beyond efficient, exact model solutions.
We introduce the extensions then describe the extended meta-
model for the model interoperability framework. We con-
clude with an evaluation of the approach and how it can be
used for performance evaluation of RTES and IoT. While
our work specifically focused on RTES and IoT features, the
results are applicable to the performance evaluation of many
different types of systems.

Keywords
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1. INTRODUCTION
Real-time embedded systems (RTES) “monitor, respond

to, or control an external environment. This environment
is connected to the computer system through sensors, ac-
tuators, and other input-output interfaces.” The Internet
of Things (IoT) is “the interconnection via the Internet of
computing devices embedded in everyday objects, enabling
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them to send and receive data.” Performance issues for these
objects and systems include:

• Individual actions must meet often-strict performance
requirements

• The latency from the time a request arrives until the
final action is complete must be responsive to users

• Sizing of hardware devices and components influences
cost and thus competitiveness in the market

• Networks of devices and systems collect and consoli-
date data; the number of sources and amount of data
to be processed requires dramatically increasing speed
and capacity.

SPEmodels have been demonstrated to be valuable in pre-
dicting performance of software and systems [22, 23]. RTES
and IoT need models that assess both high-level system de-
sign issues as well as models that evaluate more detailed
implementation options. They often involve hardware/soft-
ware co-design [17]. This work extends the software perfor-
mance model technology previously reported [22], to include
new modeling primitives needed to evaluate these types of
systems. While our work specifically focused on RTES and
IoT features, the results are applicable to the performance
evaluation of many different types of systems.

This work is based on the model interoperability frame-
work previously reported in [16]. The core of the framework
is a model interchange format (MIF) that is a common rep-
resentation for data required by performance modeling tools.
Using the MIF, tools in the framework may exchange models
by implementing an import/export mechanism and need not
be adapted to interact with every other tool in the frame-
work. In fact, they need not know of the existence of other
tools thus facilitating the addition of new tools. Our work
uses two MIFs: the Performance Model Interchange Format
(PMIF) and the Software Performance Model Interchange
Format (S-PMIF) [19, 9, 14, 11].

AModel Interchange Format (MIF) for VLSI designs (ED-
IF) [1] followed by a MIF for Case Data Interchange Format
(CDIF) [2] for software design interchange (based on EDIF)
were proposed in the 1980s. The Software Performance
Model Interchange Format (S-PMIF) and system Perfor-
mance Model Interchange Format (PMIF) adaptations were
proposed in the 1990s [21, 24]. In 2004 we introduced PMIF2,
implemented it using XML, and established proof of con-
cept [19]. Revisions to S-PMIF first updated and imple-
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mented with XML [14], then later added features for com-
ponent based and real time systems (S-PMIF2) [11].

Other model interchange formats and model representa-
tion extensions have since been proposed. Examples include:

• UML2 - Unified Modeling Language (UML) is a lan-
guage for modeling software. Its sequence diagrams
and activity diagrams represent software processing
steps in different formats [7].

UML may be used as the source for performance model
evaluation, or it may be supplemented with MARTE
described next.

• MARTE - Modeling and Analysis of Real Time Em-
bedded Systems is a language that adds specifications
to UML for model-based design and analysis of real
time and embedded systems. Performance Analysis
Model (PAM) is the subprofile of MARTE that sup-
ports early analysis of performance [6, 12, 10]

• CSM - Core Scenario Model, notation developed for
functional analysis and preliminary performance anal-
ysis of software systems [26]

• Performance by Unified Model Analysis (PUMA) - a
framework into which different kinds of software de-
sign tools (UML based) can be plugged as sources and
different kinds of performance tools can be plugged as
targets, using CSM [25]

• Palladio Component Model (PCM) - for representing
software architecture with respect to structure, behav-
ior, resource usage, execution environment and usage
profile [3, 8]

• KLAPER - Kernel Language for Performance and Re-
liability analysis of component based models [5]

• EX-SE - Experiment Schema Extension for specifying
the experiments to run with the models [16].

It would be possible to develop a unified superset of these
meta-models; however, the resulting meta-model would not
be as closely tied to individual modeling paradigms. It seems
better to use M2M transformations among them in a model
interoperability framework [16]. We used these meta-models
in determining features to be included in our MIF exten-
sions. An extensive discussion of this and other related work
is covered in [15, 4].

The next section presents extensions to S-PMIF that in-
corporate modeling features useful for modeling RTES and
IoT.

2. S-PMIF+

2.1 Extensions
Our initial MIFs were restricted to Queueing Network

Models (QNM) that can be solved by efficient, exact so-
lution algorithms. This scope let us explore the end-to-end
process of creating models, exchanging them among multiple
tools, running experiments, and comparing solutions. The
MIFs and the overall model interoperability approach have
been demonstrated to be viable. These extensions broaden
the scope to support performance models that can be solved
with additional methods such as analytical approximations

or simulation solutions. We add a plus sign to distinguish
this version (S-PMIF+).

The extensions included in S-PMIF+ are:

1. Wait/Queue/Set Event - An Event may be Set or
Cleared. Workloads may Wait or Queue for an event
to be Set. When an event is Set, all waiting workloads
and one queued workload may proceed.

2. Allocate/Deallocate Resource - When access to a pas-
sive resource is restricted, a workload may request ac-
cess and wait in a queue until the resource is Allocated.
When access to the resource is no longer needed the
workload Deallocates the resource. A scheduling pol-
icy determines the next workload to receive the Allo-
cation.

3. Request/Release/Create/Destroy Token - A Token is
a special type of passive resource. In addition to Al-
locate/Deallocate, it is possible to dynamically Create
and Destroy tokens.

4. Get/Put Buffer - A Buffer is another special type of
passive resource, with a specified initial size (therefore
it uses Get/Put operations instead of Allocate/Deal-
locate). Get requests the specified quantity from the
Buffer and waits until it is available. Put adds the
specified quantity to the Buffer and waits if there is
insufficient space.

5. Read/Write Shared Variable - A workload can either
read or write a variable which is shared with other
workloads. It allows multiple readers but writers must
have exclusive access.

6. Send/Receive Message - A mailbox is a container for
holding messages. A workload can Send a message to
a mailbox. A workload can Receive a message from a
mailbox; if the mailbox is empty, the workload waits
until the next message is Sent to that mailbox.

7. Call/Accept/Return Synchronization Point - A work-
load may Call another workload and wait for the called
workload to signal that it has completed the request;
the called workload Accepts the request and later Re-
turns to the waiting workload.

8. Allocate/Deallocate/Add Memory - Memory is a spe-
cial kind of resource, with an initial quantity. A work-
load can request allocation of a specific amount of
memory and may queue if it is not available. Allocate
requests a specified amount of a memory, the workload
must wait if it is not available. Deallocate releases the
specified amount of the specified memory; the wait-
ing workload(s) that will fit are allocated, but a lower
priority workload cannot go ahead of a higher priority
one. Add increases the amount of a specified Memory.

9. Fork/Split/Join Workload - A workload may Fork or
Split into one or more child workloads that execute
concurrently. Forked workloads later Join; the parent
workload waits until all child workloads Join, then the
parent workload resumes execution. Split workloads
do not join, they eventually complete and leave the
system.
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10. Phase Change - A workload may have distinct exe-
cution characteristics such as routing, resource con-
sumption, or passive resource usage. A Phase iden-
tifier distinguishes the behavior specifications; phases
may Change at specific execution points, and execu-
tion output metrics may be associated with Phases.

11. Priority - Workloads may have a Priority that con-
trols queue scheduling. A higher priority workload is
ahead of a lower priority one. For equal priorities the
scheduling is usually first-come, first-served. Priorities
may be changed during execution.

12. Arrival and Service Distributions - a broader set of
stochastic distributions can be used when solving mod-
els with simulation and approximation methods in-
cluding: exponential, hyperexponential, uniform, nor-
mal, erlang, constant, and a generic other.

13. Queue Scheduling Disciplines - additional disciplines
can be used to determine the next workload selected
from a queue: to FCFS, IS, PS, RR, LCFS, FCFSPR,
FCFSPRS, RRP, and LCFSPR.

2.2 Meta-model
The S-PMIF+ meta-model is in Figure 1. In the following

discussion new or changed features are indicated with (R).
Software performance is represented with a Project that

is composed of one or more Scenarios, one or more Facili-
ties, and zero or more Passive Entities (R). The specification
of a ProbabilityDistribution (R) different from Exponential
(which is the default) is allowed for interarrival specifica-
tions for PerformanceScenarios (R) and for serviceTime of
ActiveService (R).

Nodes may be either Processing Nodes or Compound Nodes.
CriticalSection (R), a new SyncNode, represents process-
ing that must be uninterrupted, i.e., it is guarded with a
semaphore. Other nodes are unchanged from earlier ver-
sions of S-PMIF.

There are some revisions to S-PMIF to better represent
the OverheadMatrix and its parts. The ServiceSpec (R)
shows three types of service: ActiveService (R), Calculat-
edService (R), and PassiveService (R). The CalculatedSer-
vice makes explicit that it is computed from the SWRe-
sourceRequirement and OverheadMatrix. This is the typi-
cal ServiceSpec for software performance models. The Ac-
tiveService and PassiveService are added to correspond to
the PMIF+ ServiceRequestPlus [9]. They specify a com-
bination of active and passive service requests that can be
made, with an optional sequenceNumber which specifies the
order of execution when ordering is required. ActiveSer-
vice requests specify a computer resource requirement for a
specified server. They may use a special ProbabilityDistri-
bution (R) or a load dependent service time (R). The latter
is specified as a string that will be interpreted by the tool.
PassiveService requests specify the command, the quantity,
and reference the PassiveEntity (R). The specifications in
Table 2.2 are included in S-PMIF+.

Queue scheduling disciplines are extended (R) as above.
Other parts of the meta-model are unchanged so they are
not explained here.

The S-PMIF+ meta-model allows for easily adding addi-
tional communication and coordination model features. If
additional needs are identified in the future, a new Pas-

siveEntity can be added along with its PassiveService com-
mands. Other parts of the meta-model are unaffected.

3. EVALUATION
We have validated S-PMIF+ meta-model by constructing

test models of all features, then creating and solving those
models in two very different modeling tools. Qnap [13] and
a new prototype tool with a working title RTES Analyzer
created from the SPE·ED [23] solver [20] to handle the S-
PMIF+ extensions.

We have also created and solved more complex models of
actual systems that use most of the new features in com-
bination, and compared simulation results. We confirmed
that it is feasible to represent and solve all the included fea-
tures, that we have defined the features correctly with all
necessary data specified, and that it is feasible to automati-
cally translate models that conform to the meta-models into
different modeling tools.

It is beyond the scope of this paper to cover all these ex-
amples. Details may be found in [18]. Instead, we selected
one example that requires a solution with analytical approx-
imation or simulation and illustrates passive resources and
other model features.

The example has a pipe and filter architectural style. Data
arrives from an external source at a constant arrival rate of
1 unit per second, it is processed by the first (open) work-
load, GetIm, then put in a buffer. The second (closed)
workload, Spatial, after a thinkTime of 0, begins with a get
from that buffer, when the data arrives Spatial processes it,
then puts it to another buffer, and the cycle repeats. Three
other “downstream”closed workloads, Temporal, Threshold,
Paths, do the same. Each workload executes on its own pro-
cessor so the workloads can execute in parallel. Workloads
may have to wait on a get for data to arrive in the buffer,
or at a a put if there is not space in the buffer because a
downstream process has not yet processed earlier data.

Each buffer is declared as a PassiveEntity. To specify
buffer access, the ServiceSpec for the scenario at its CPU
specifies:

• a PassiveService with the command “get” and a refer-
ence to the buffer (which may cause a wait if the data
has not arrived)

• an ActiveService for its CPU service (with normal ser-
vice distribution)

• nother PassiveService with the command “put” and
reference to the appropriate buffer (which may release
a waiting workload, or cause a wait if the buffer is full).

The following shows an excerpt of the xmi specification
with a ServiceSpec for one of the scenarios at its CPU1.

<s c e na r i o s x s i : type=”spmif : PerformanceScenario ”
name=”Spat i a l ”>

<mainEG
startNode=”// @scenar ios . 0/@mainEG/@nodes . 0 ”
name=”Spat i a l ” isMainEG=”true ”>

<nodes x s i : type=”spmif : BasicNode”
name=”SpatialNode ”>

<se rv i c eReq xs i : type=”spmif : Pa s s i v eS e rv i c e ”
executesOn=”//@server . 0 ”
sequenceNumber=”1 ”

1Note that the ServiceSpecs are not necessarily in order thus
the requirement for sequenceNumber attribute
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Passive Entity Commands
timer start/stop
mailbox send/receive
resource allocate/deallocate
token wait/queue/create/destroy
event wait/queue/set/clear
buffer get/put/create/destroy
sharedvar read/write
memory allocate/deallocate/add
syncpoint callreturn/accept/return

Table 1: PassiveEntity options with their associated commands

pas s i v eEn t i t y=”// @pas s i v eEn t i t i e s . 0 ”
command=”get ” quant i ty=”1”/>

<se rv i c eReq
x s i : type=”spmif : Ac t i v eS e rv i c e ”
executesOn=”//@server . 0 ”
sequenceNumber=”2”
se rv i c eTime=”2.83E−4”>

<s e r v i c eD i s t r i b u t i o n
d i s t r i bu t i onType=”normal ”
parameter1=”2.83E−4”
parameter2=”1 . 0E−5”/>

</se rv i c eReq> . . .

The Buffer implementation in Qnap is easily done with
Semaphores, which consist of a queue and a counter. The
counter is the number of pass grants available if positive, and
the number of customers waiting if negative. The workload
that puts data to the buffer produces a pass grant for the
semaphore, and the workload that gets data from the buffer
asks the semaphore for a pass grant and it waits if the value
of the counter is ≤ 0.

The implementation in RTES/Analyzer is also easy. Its
simulation engine, CSIM, has a buffer type that is declared
and a size specified; operations sendRequest and receiveRequest
have the desired semantics and CSIM manages the wait-
ing/activation of processes when appropriate. Both constant
and normal probability distributions (and others) are sup-
ported by CSIM.

The results are shown in Table 2. Because of the constant
arrival rate, and normal service time distribution, the results
are identical except for the precision reported thus confirm-
ing that the models have been correctly implemented.

This example illustrates using a fixed-size buffer for send-
ing data between processes which includes requesting a pas-
sive resource, possibly waiting, then releasing it which may
schedule another waiting workload. It uses two different
ProbabilityDistributions, and buffers for synchronization be-
tween processes, which is supported differently in the two
tools. A similar technique is used for most of the Pas-
siveEntity/Command combinations in Table 1. The timer
for recording end-to-end response time, and syncpoint for
synchronization of concurrent processes have different be-
havior [18].

4. CONCLUSIONS
This paper describes performance modeling challenges of

RTES and IoT. Additional types of evaluations are needed,
such as end-to-end latency and hardware/software codesign.
Extensions that model additional types of communication
and coordination that require new types of model solutions
were also described. The S-PMIF+ meta-model was pre-
sented and explained. We then described our validation

process. We have used these model features to represent
actual RTES and IoT case studies and found the modeling
power to be sufficient to evaluate their system performance.

After years of creating test models and comparing results,
we are confident that:

• Key performance-determining features are included in
the MIF

• They are correctly represented with the meta-model

• The behavior of the performance models corresponds
to the meta-model

• The model solutions are correct

The extended S-PMIF+ is ready to be used by other re-
searchers and practitioners.
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