
Performance Engineering for Microservices:
Research Challenges and Directions

Robert Heinrich,1 André van Hoorn,2 Holger Knoche,3 Fei Li,4
Lucy Ellen Lwakatare,5 Claus Pahl,6 Stefan Schulte,7 Johannes Wettinger2

1 Karlsruhe Institute of Technology, Germany
2 University of Stuttgart, Germany

3 Kiel University, Germany
4 Siemens AG, Austria

5 University of Oulu, Finland
6 Free University of Bozen-Bolzano, Italy

7 TU Wien, Austria

ABSTRACT
Microservices complement approaches like DevOps and con-
tinuous delivery in terms of software architecture. Along
with this architectural style, several important deployment
technologies, such as container-based virtualization and con-
tainer orchestration solutions, have emerged. These tech-
nologies allow to efficiently exploit cloud platforms, provid-
ing a high degree of scalability, availability, and portability
for microservices.

Despite the obvious importance of a sufficient level of per-
formance, there is still a lack of performance engineering ap-
proaches explicitly taking into account the particularities of
microservices. In this paper, we argue why new solutions to
performance engineering for microservices are needed. Fur-
thermore, we identify open issues and outline possible re-
search directions with regard to performance-aware testing,
monitoring, and modeling of microservices.

1. INTRODUCTION
Microservices [9] have had a huge impact on the software in-
dustry in recent years [1]. Scalability, flexibility, and porta-
bility are very often named as particular benefits of this ar-
chitectural style. Furthermore, microservices are considered
to be an enabler for emerging software development prac-
tices, specifically DevOps and continuous deployment (CD)
[7], which aim for more frequent and rapid deployments from
development into production. Despite the fact that per-
formance is an inherent necessity to achieve scalability and
elasticity, performance engineering for microservices has so
far only achieved very little attention by both the micro-
services and the performance engineering research commu-
nities. An extensive body of approaches and best practices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053653

for performance engineering—involving measurement-based
and model-based techniques—for traditional software engi-
neering development environments and architectural styles
is available. However, already their application in DevOps
imposes both challenges and opportunities [3]. Therefore,
we discuss and identify research challenges and opportunities
for performance engineering for microservices in this paper.

To start with, we discuss in Section 2 specific character-
istics of microservices and explain why it is not possible to
simply transfer existing concepts from other fields to this
area. Afterwards, we will discuss particular research chal-
lenges for performance engineering for microservices (Sec-
tion 3) and conclude this paper.

2. BACKGROUND
Microservices can be seen as an advancement of service-
oriented architectures (SOAs). This is underlined by the
fact that Netflix, a company relying heavily on microser-
vices, used to refer to their architecture as fine-grained SOA.
SOAs have gained extensive attention by the research com-
munity in the last decade. This includes performance en-
gineering solutions, e.g., [2]. However, there are some im-
portant characteristics of microservices which make perfor-
mance engineering for microservices more complex and/or
do not allow the direct application of performance engineer-
ing approaches originally modeled for SOAs [11].

The fundamental difference between SOAs and microser-
vices is that they pursue very different goals. The primary
goal of SOAs is the integration of different software assets,
possibly from different organizations, in order to orchestrate
business processes. Thus, SOAs completely abstract from
the internal structure of the underlying assets. It is irrele-
vant if services are provided by several well-structured appli-
cations or a huge, tangled legacy monolith. Microservices,
on the other hand, aim at improving the development, de-
livery, and deployment of the software itself. Therefore, mi-
croservices are very much concerned with the internal struc-
ture of the software. Every service is required to be an
autonomous, independently deployable unit of manageable
size which interacts with other services only via technology-
agnostic interfaces such as RESTful Web APIs. In particu-
lar, code sharing between services and shared databases is

223

http://dx.doi.org/10.1145/3053600.3053653

Pipeline µS1:

Commit Build Testing 1 ... Testing NStages: Canary Normal Production

Build Test & Staging Production

t

Environments:

Pipeline µS3:

Pipeline µS2:

Coding

Containerized µSSource code of µSLegend: Mocked µS

Figure 1: Three Microservices (µS1. . .µS3) in a CD setup

discouraged, as both may lead to tight coupling and a loss
of the service’s autonomy.

Microservices are often considered to be an enabler for CD
and DevOps. The technical autonomy allows to create inde-
pendent deployment pipelines for each service, as depicted
in Figure 1. Thus, changes can be rapidly delivered to pro-
duction, since only the affected service needs to be built and
tested, and several pipelines can run in parallel. However,
this rapid delivery poses several challenges for performance
testing, which are discussed in Section 3.1.

Due to their highly distributed nature, microservices are
more difficult to operate than monoliths. Therefore, so-
phisticated (container-based) virtualization and infrastruc-
ture technologies such as Docker1 and Kubernetes2 have
emerged, which facilitate operations by providing functional-
ity such as rolling updates, automated scaling, and rebalanc-
ing in case of node failure. As a consequence, microservice-
based deployments are much more dynamic and volatile than
traditional applications, creating challenges for both moni-
toring and performance modeling. These challenges are dis-
cussed in Section 3.2 and 3.3, respectively.

3. RESEARCH CHALLENGES
This section addresses research challenges for performance
engineering for microservices, focusing on the aspects of test-
ing, monitoring, and modeling.

3.1 Performance Testing
Compared to traditional software architectures, DevOps and
microservices lead to a higher frequency and pace of releases.
Microservices are often deployed several times a day (or even
an hour), which influences the way performance testing can
be conducted.

In general, early-stage testing for microservices [9] that
happens before deployment (i.e., unit tests, etc.) follows
common software engineering practices. However, when con-

1https://www.docker.com/
2https://kubernetes.io/

sidering further test stages (i.e., integration and system tests
that involve other microservices), there are microservice-
specific challenges which need to be taken into account. For
example, extensive system tests are not feasible due to the
higher frequency of releases. Instead, service quality assur-
ance is often compensated or even replaced by fine-grained
monitoring techniques in production environments exposed
to the users of the application. Contrary to conducting
extensive tests before release, failures are monitored and
quickly corrected by pushing new releases to production en-
vironments. Therefore, microservices are deployed before
full-scale integration testing including all other relevant mi-
croservices in the application is performed. Consequently,
potential problems and errors are identified in the produc-
tion environment, e.g., by using canary deployment. This
approach fits the idea of each microservice being an indepen-
dently (re-)deployable unit [9], which is an essential techni-
cal foundation for microservice architectures to foster loose
coupling between components. Thus, an initial challenge is
to systematically investigate how to change and adapt es-
tablished performance testing strategies, so that extensive
integration and system tests are replaced and compensated
by respective activities in the production environment.

By the application of (containerized) microservices, per-
formance testing as well as performance regression testing
get simplified in the first place, i.e., the performance of
each microservice (technically often deployed as a single con-
tainer) can be measured and monitored in isolation. How-
ever, since the associated performance tests can take sev-
eral hours even for a single microservice, the feasibility of
extensive performance testing is limited. Once a microser-
vice is used in production, the monitored performance data
(e.g., using established application performance monitoring
approaches as discussed in Section 3.2) can in turn be uti-
lized to devise and improve performance regression testing.
This way, performance testing is made easier and faster by
effectively taking feedback from operations. Another key
challenge in this context is to better align performance test-
ing and performance regression testing with CD practices,

224

https://www.docker.com/
https://kubernetes.io/

especially focusing on speeding up the involved test stages
to make the pipeline as fast as possible while providing a
sufficient level of confidence.

As stated, microservice architectures are typically based
on CD practices [4, 7]. The pace of these practices, however,
would be hard to achieve when simply following extensive
integration and performance testing approaches. Thus, the
scope of tests must be carefully chosen: Which tests are run
for each commit and which tests are run for a consolidated
set of commits? Sophisticated test selection and classifica-
tion criteria are required for this decision. These must be
combined with dynamic mechanisms to decide which tests
to run in which situations. The selection criteria cannot be
static, but must be dynamically and (semi-)automatically
adapted to continuously guarantee a reasonable testing strat-
egy. Input from monitoring data, operational failures, and
the actual application status can be used to decide which
tests should be performed. Consequently, a further research
challenge in this context is the dynamic and (semi-)automa-
ted selection and separation of tests, in order to decide which
tests to run for which commit.

To sum up, three key challenges appear in terms of testing
applications that are following a microservice architecture:

• Replacing and compensating extensive integration and
system testing by fine-grained monitoring of produc-
tion environments

• Aligning performance testing and performance regres-
sion testing with CD practices, i.e., speeding up the
corresponding test stages

• Dynamic and (semi-)automated performance test se-
lection

3.2 Monitoring
Monitoring in microservice architectures can be done us-

ing similar techniques as in the state-of-the-art [6]. In tra-
ditional architectures, application performance management
(APM) tools that support the collection of various measures,
are used to collect performance-relevant runtime data of the
entire system stack starting from low-level measures such as
CPU and memory usage, via measures on the operating sys-
tem, virtualization layer, middleware, and application (es-
pecially detailed execution traces). Agents that collect data
from heterogeneous systems implemented with a variety of
technologies (Java, .NET, JMS, etc.) are provided by the
APM tools. Based on the history of data, APM tools com-
pute a model of the normal behavior (e.g., baselines) that
are then used to detect anomalies, such as exceptionally high
response times or resource usage. Similarly, performance-
relevant data in microservice architectures can be collected
from the microservice inside a container, from the container,
and from interrelated microservices. However, this poses
several challenges.

First, since microservices are commonly used to decom-
pose a single application, end-to-end traces can be collected
for individual client requests, as opposed to SOAs where
monitoring usually stops at calls to other services because
they are owned by other parties. A technical instrumenta-
tion challenge is imposed by the microservice characteristic
of polyglot technology stacks, particularly involving the use
of emerging programming paradigms and languages (e.g.,
Scala). We expect the APM tool vendors to provide suit-
able solutions in the near future; leading APM tools such

as Instana3 particularly focus on monitoring microservice
architectures. In addition to the technical instrumentation
challenge, these tools focus on dedicated interactive graph-
ical views displaying the large-scale topologies of these sys-
tems.

Second, additional measures that are important for the
ability to monitor specific architectural patterns at runtime
in microservice architectures are needed. Examples of these
include the state of resilience mechanisms [10], such as cir-
cuit breakers (open, half-closed, etc.). Usually, these pat-
terns can be used by including third-party libraries such as
the Netflix OSS stack and respective monitoring interfaces
are already included. Another reason for additional metrics
is the use of auto-scaling. For instance, data on the level
of containers (e.g., CPU or memory utilization, and startup
times of Docker containers) is needed to decide on scaling
up or down, as used by Kubernetes, for instance. More-
over, online testing techniques such as A/B testing require
dedicated monitoring.

Third, in microservice architectures, it becomes difficult
to determine a normal behavior. This is due to the frequent
changes (updates of microservices, scaling actions, virtual-
ization) where no “steady-state” exists. Existing techniques
for performance anomaly detection may therefore raise many
false alarms. A promising solution is to explicitly incor-
porate logs of change events into the decision whether a
deviation in runtime behavior is classified as an anomaly
or not [5]. We see the main field for researchers in the
topic of developing accurate and precise anomaly detection
techniques—and even addressing the consequent next step,
namely the diagnosis and resolution of the anomalies.

In summary, three key areas with respect to monitoring
in microservice architectures have been identified:

• Instrumentation for distributed monitoring in micro-
services that are characterized by a polyglot technol-
ogy stack

• Additional measures to monitor microservices

• Precise anomaly detection techniques in microservice
architectures

3.3 Performance Modeling
Performance modeling has gained considerable attraction in
the software performance engineering community in the past
two decades, most prominently for component-based soft-
ware systems [8]. Initially, performance modeling and pre-
diction had been proposed for early design-time performance
evaluation. In the last years, the focus of modeling moved to
runtime aspects—e.g., extracting models from operational
data and using them for online performance evaluation and
resource management. However, so far no approaches for
performance modeling of microservices exist. In the remain-
der of this section, we present a number of observations to
argue why existing approaches cannot simply be applied to
microservices.

Our first observation is that there has been a shift in use
cases for performance modeling, especially design-time mod-
eling. Being a so-called cloud-native architecture, micro-
services almost perfectly exploit the elasticity provided by
cloud platforms and container-based virtualization. Thus,

3https://www.instana.com/

225

https://www.instana.com/

for instance, a traditional use case for design-time perfor-
mance modeling, namely capacity planning, has become
much less important in such settings. Instead of detailed
upfront planning, a thorough cost controlling is employed.
On the other hand, we see applications for design-time per-
formance modeling emerge in new areas, such as reliability
and resilience engineering and the design of runtime adap-
tation strategies.

These new applications require some fundamental changes
to the models themselves, which is our second observation.
In particular, new abstractions are needed to adequately
capture the recent advances in deployment technology. Clus-
ter management tools like Kubernetes automatically manage
the deployment of services on a pool of machines, and contin-
uously adapt the deployment structure at runtime. Amazon
Lambda4 even goes one step further and completely hides
machines from the developer. In such settings, traditional
performance models based on the notion of distinct (virtual)
machines are inadequate. New modeling strategies must be
found to adequately represent such structures and the be-
havior of the automated infrastructure components. An-
other challenge is the size of the models, as large microser-
vice installations may consist of tens of thousands of service
instances. We expect that it will be necessary to reduce the
level of detail to be able to cope with such models in a timely
fashion.

Our third observation is that the creation of such models
becomes more difficult. Unlike traditional models, it is not
sufficient to discover the relevant structural entities, such
as clusters or services, and extract static parameters from
runtime data. The behavior of the dynamic components, in
particular the aforementioned management tools, must also
be learned. We assume that techniques from machine learn-
ing can be helpful in this task. Due to the highly dynamic
nature of those deployments, it is also necessary to keep the
models up-to-date automatically.

Thus, four key challenges emerge for performance model-
ing for microservices:

• Adopting performance modeling to shifted use cases

• Finding appropriate modeling abstractions

• Automated extraction of performance models

• Learning of infrastructure behavior and integration into
performance models

4. CONCLUSIONS
Microservices are an emerging architectural style enabling

the efficient use of cloud technologies and DevOps practices.
So far, performance engineering for microservices has not
gained attraction in the relevant communities. In this pa-
per, we argued that the existing performance engineering
techniques—focusing on testing, monitoring, and modeling—
cannot simply be re-used. Particular challenges include i.)
strategies for efficient performance regression testing, ii.)
performance monitoring under continuous software change,
iii.) appropriate performance modeling concepts for shifted
use cases.

For our community, these challenges impose a number
of interesting research questions and directions — involving

4https://aws.amazon.com/lambda/

both testing, monitoring, and modeling in isolation along
the pipeline but especially settings in which they comple-
ment each other. Examples include:

• The use of performance models to prioritize tests cases,
including the decision whether and when (pipeline vs.
production) tests are executed

• The use of monitoring data to create and refine per-
formance tests, including the creation of representative
usage profiles and performance-aware service mockups

• The use of tests and resulting monitoring data to au-
tomatically create performance models, including the
combination of data from different environments

• The use of models to guide the diagnosis of perfor-
mance problems

• Learning and assessing deployment strategies based on
monitoring data

5. ACKNOWLEDGMENTS
This paper is a result of the GI-Dagstuhl Seminar 16394
“Software Performance Engineering in the DevOps World”
(http://www.dagstuhl.de/16394).

6. REFERENCES
[1] L. Bass, I. Weber, and L. Zhu. DevOps: A Software

Architect’s Perspective. Addison-Wesley, 2015.

[2] P. C. Brebner. Performance modeling for service
oriented architectures. In Comp. of the 30th Int. Conf.
on Software Engineering (ICSE ’08), 2008.

[3] A. Brunnert et al. Performance-oriented DevOps: A
Research Agenda. Technical Report
SPEC-RG-2015-01, SPEC Research Group — DevOps
Performance Working Group, Standard Performance
Evaluation Corporation (SPEC), August 2015.

[4] L. Chen. Continuous delivery: Huge benefits, but
challenges too. IEEE Software, 32(2), 2015.

[5] M. Farshchi, J. Schneider, I. Weber, and J. C. Grundy.
Experience report: Anomaly detection of cloud
application operations using log and cloud metric
correlation analysis. In Proc. 26th IEEE Int. Symp. on
Software Reliability Engineering (ISSRE 2015), pages
24–34, 2015.

[6] C. Heger, A. van Hoorn, D. Okanović, and M. Mann.
Application performance management: State of the
art and challenges for the future. In Proc. 8th
ACM/SPEC Int. Conf. on Performance Engineering
(ICPE ’17). ACM, 2017.

[7] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley, 2010.

[8] H. Koziolek. Performance evaluation of
component-based software systems: A survey. Elsevier
Performance Evaluation, 67(8):634–658, 2010.

[9] S. Newman. Building Microservices. O’Reilly, 2015.

[10] M. Nygard. Release It!: Design and Deploy
Production-Ready Software (Pragmatic Programmers).
Pragmatic Bookshelf, 2007.

[11] M. Richards. Microservices vs. Service-Oriented
Architecture. O’Reilly Report, 2016.

226

https://aws.amazon.com/lambda/
http://www.dagstuhl.de/16394

