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ABSTRACT
Cyber-physical Systems (CPS) are engineered systems that
are built from, and depend upon, the seamless integration of
computational algorithms and physical components. There-
fore, the engineering of CPS is inherently collaborative, de-
manding cooperation between diverse disciplines. Besides,
it requires attention to not only the functional aspects, such
as behaviour and correctness, but also to performance char-
acteristics, such as timing constraints of the entire system.
In this paper we exploit an existing simulation environment
to model and analyze a robotic system, and some prelim-
inary performance analysis results are shown. This illus-
trative case study aims to bring upfront the challenges for
performance engineering of CPS.

CCS Concepts
•Software and its engineering → Software perfor-
mance;

Keywords
Performance Engineering; Cyber Physical Systems; Simula-
tion Models

1. INTRODUCTION
Cyber-Physical Systems (CPS) represent an evolution of

the traditional embedded systems, in fact they are known as
the integration of computation with physical processes [9], or
as an orchestration of computers and physical systems [12].
The overall idea is that the software part of CPS is able to
understand the environment reading data from sensors and
acting in the real world by interacting with actuators.

A well-know specification of CPS has been provided in
[15] by the National Institute of Standards and Technology:

”Cyber physical systems are hybrid networked cy-
ber and engineered physical elements co-designed
to create adaptive and predictive systems for en-
hanced performance. ”
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and the National Science Foundation posits that advances
in CPS will enable systems with adaptability, scalability,
resiliency, safety, security, and usability that will far exceed
that of today’s embedded systems [18, 15].

CPS, as well as embedded systems, have a wide range of
application areas like health-care, medicine, power manage-
ment, electric smart grid and renewal energy, automotive
with smart car and intelligent road system with unmanned
vehicle [1, 17]. Other examples of CPS can be found in the
areas of smart buildings [20, 2], medical devices, military
systems, traffic control and safety, process control, HVAC
(i.e., heating, ventilation and air conditioning) systems, in-
dustry automation and manufacturing systems [13], air traf-
fic control [12] and aircraft avionics systems [6, 12]. With
respect to an embedded system, CPS are not unique inte-
grated systems provided by an equipment manufacturer, on
the contrary they are the composition of cyber and hardware
components from different companies, delegating the choice
of which component to adopt in the hands of engineers de-
veloping the CPS. Such broad set of application areas makes
the task of designing CPS not trivial at all, in fact it is nec-
essary to combine multiple components with different levels
of abstraction along with their requirements [9, 6].

Due to all these factors, the development of CPS results
to be a difficult task that is inherently collaborative, and
requires demanding cooperation between diverse disciplines.
Today there is still limited availability of technical solutions
to deal with the modelling, analysis, and runtime support
of CPS. In particular, modelling the integration of different
system levels and their quality is still an open research prob-
lem, due to the interplay of different technical spaces. The
goal of this paper is to elicit the challenges of this domain by
presenting a case study modeled with an existing simulation
environment, i.e., Ptolemy1.

The paper is organized as follows. Section 2 provides an
overview of state-of-art for performance engineering of CPS;
Section 3 presents an illustrative case study to demonstrate
that more research is needed in this context; Section 4 dis-
cusses the devised challenges and concludes the paper.

2. RELATED WORK
Several research challenges arise in the context of CPS

[6, 15] and, as discussed in [15], the classical model-based
design approach is not enough for modeling and analyzing
CPS. Hereafter we discuss the methodologies that have been
proposed in literature for this goal.

1http://ptolemy.eecs.berkeley.edu
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Modeling of CPS. Modeling CPS involves different aspects
of the design phase, e.g., both the hardware and behavioral
part. This let to new modeling approaches to describe the
new systems features and characteristics. In [6] the authors
highlighted the need of new models of computation coop-
erating together for correctly modeling CPS. In particular,
the authors focused on the actor-based model-integrated de-
velopment approach commonly used for embedded systems.
An interesting approach to model CPS is the Mechatron-
icUML[3] method (that is based on the well-known UML
standard), since it enables the model-driven design of dis-
crete software of self-adaptive mechatronic systems. It is
built on a component-based system model integrated with
the controllers of the mechatronic systems, in order to ver-
ify safety properties. In [5] a model-driven development of
a reconfigurable CPS system using the MechatronicUML
formalism is presented. In [19] the problem of finding an
adequate language that is able to describe the behavior of
CPS is discussed, and a modeling language (namely ACU-
MEN ) that supports hybrid (continuous/discrete) mathe-
matical models is proposed. Another model-based approach
for CPS is the co-simulation method that takes models from
different specific domains and allows the simultaneous simu-
lation and interaction between these different models. This
method is suitable when the software, physical, and environ-
ment parts are described with different specific languages.
In [11] a model-integrated development approach for real-
time control systems is presented and it is integrated with
a Mathlab-based simulator for real-time control system. In
[7, 12] are presented and discussed the Ptides modeling ap-
proach that is a programming model serving as coordinator
language for model-based design of distributed real-time sys-
tems. The Ptides models define the functional and temporal
interaction of distributed software components, the networks
that bind them together, sensors, actuators and physical dy-
namics. This approach is used in the Ptolemy tool. In [20]
an approach extending the standard Building Information
Models (BIM) is presented allowing the modelling of build-
ings, adding components that empower the specification and
representation of the cyber-physical space. In [16] a resource
based-sharing framework (RSBF) for CPS is presented. It is
designed to model any CPS resource-sharing by combining
elements from graph theory and social welfare theory, thus
to describe complex systems, with the goal of maximizing
the CPS overall utility maintaining a decentralized control.
In [10] an approach to provide high assurances at runtime is
presented as a distributed and adaptive real-time (DART)
system, with a particular focus on the properties of such
system, e.g., timeliness, resource constraints, etc.

Analysis of CPS. In [8] an existing simulation framework
(FERAL) has been extended with the automotive open sys-
tem architecture (AUTOSAR) standard that provides ac-
cess to hardware services for the automotive field. FERAL
is able to provide virtual evaluation platforms by coupling
existing specialized simulators into one semantically inte-
grated simulation scenario. It implements a similar concept
of the co-simulation approach, as described in the model-
ing section. With the inclusion of AUTOSAR application in
this framework, it is also possible for suppliers to perform
virtual validation of automotive software without develop-
ing the specific required hardware, thus supporting the de-
velopment paradigm shift from dedicated hardware-software
systems to CPS.

Performance evaluation of CPS. In [14] the performance
degradation of CPS is investigated by considering stealthy
integrity attacks. The authors focus on quantifying the max-
imum perturbation that an attacker can introduce into a
control system via a stealthy integrity attack in the feedback
loop. Differently from our case study, in [14] the CPS perfor-
mance is calculated with a linear stochastic model that does
not include behavioural aspects of CPS. In [21] the problem
of privacy and performance trade-offs in CPS is tackled. An
optimization problem is formulated, and the system cost is
optimized subject to privacy requirements. However, in [21]
the performance evaluation is regulated by a control law in-
cluding a restricted set of system parameters, whereas our
case study includes a finer-grained level in the performance
modelling of CPS. In [9] the problem of evaluating the per-
formance of CPS is investigated by describing such systems
as hybrid and dynamic distributed ones that are made of
arbitrary compositions of timely (where execution time has
known bounds) and untimely components. However, in [9]
the simulation framework is sketched only, no case study is
shown to demonstrate how the combination of multiple CPS
models enables to get performance analysis results.

Summarizing, we found that in literature the performance
evaluation of CPS is mainly supported by ad-hoc modelling
and analytic/simulation tools, in fact the enormous vari-
ety of CPS makes the development of a uniform methodogy
too complex. Our case study focuses on the specification
of multiple models to strengthen the level of abstraction for
the derivation of performance metrics of interest.

3. CASE STUDY
Our illustrative case study is a cleaning robot (CR) that

moves through rooms in a building to clean up dirtiness. The
scenario is presented in Section 3.1, and with the support of
the Ptolemy II tool we define multiple models for triggering
its performance engineering, as described in Section 3.2. The
tool is constituted by a simulation environment from which
we get some preliminary experimental results that are shown
in Section 3.3.

3.1 Scenario description
The application scenario is inspired by the work of Bures

et al. in [4]. In particular, a cleaning robot, potentially a set
of robots, has to clean up a room, ideally a two dimensional
space. The robot is equipped with an electric engine that
allows it to move around the room, a downwards-looking
camera and sensors that let it to identify dirtiness on the
floor and for sake of simplicity each event of dirtiness can be
associated to a dirty tile in the room. The cleaning robot has
its own battery and when the energy level decreases under a
specified threshold, the robot goes toward a charging station
to recharge its battery. In Figure 1 we report an illustrative
scenario for our case study by depicting the room as a grid
where the robot moves to clean dirty cells, and a charging
station is located in one cell of the room.

The robot starts at some cell of the grid and it looks for
dirtiness around its location. The dirty spots are randomly
distributed in the room, i.e., it is not predefined when the
robot starts its cleaning duty. To be more realistic, each
dirty spot is different in terms of how much is dirty, thus the
time spent by the robot to clean up a dirty tile is different
for each dirty tile. Moreover, if the robot is looking for
dirtiness from a while but it does not find any, then the
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Figure 1: Case study scenario (inspired by [4]).

Figure 2: Scenario top-level model.

robot assumes the room is clean enough and it stops, coming
back to the ground station. This choice has been made to
simplify the model, but as future work we want to extend the
model by considering more rooms, hence instead of stopping,
the robot can move to an adjacent room. A robot that is
moving around or is cleaning, consumes energy and when
the robot battery level drops under a certain threshold, the
robot concludes any in progress operation and then goes to
the charging station. When the robot’s battery is recharged
over a certain threshold, the robot becomes operative again,
coming back searching for any other dirty spot.

3.2 Scenario models
In this section we describe some preliminary models spe-

cific for our case study with the goal to enable its perfor-
mance engineering. Figure 2 reports the top level model of
our scenario. This model includes two main entities, i.e., the
cleaning robot and the room.

Our model is constituted of one instance of the Room-
Role class (that is named room) and one instance of Clean-
ingRobotRole class (that is named robot). The whole model
is managed by a Discrete Event (DE) Director through which
it is possible to specify the start and stop times for the sim-
ulation. On the left side of Figure 2 there is a Single Event
actor called start that emits a single signal at time zero and
initiates the robot. The room instance generates randomly
dirty events that send to the robot through the connection
from its output port to the dirty queue input port of the
robot. Each time the robot fully clean a dirty spot, requires
any new dirty event to the room, through the loop back
link on the room trigger port. When the robot decide that
the room is clean enough and stops, emits a end signal that
triggers the measurement of the cleaning time. The Wait-
ingTime actor takes in input two events and outputs the
time elapsed between them. On the bottom of the model,
there is a component named cleaning percentage evaluator

that takes as input the counted dirty events created by the
room and the counted cleaned events by the robot, thus to
compute the percentage evaluation. In this way we are able
to derive after each run the cleaning percentage and the time
spent by the robot to reach that percentage. To enable a
parametric evaluation, we introduced the dirty rate param-
eter that represents how often dirty events are generated in
the room, but this parameter can also be read as the speed
at which the robot is moving. Similarly, for the robot class,
parameters battery level threshold and timeout are set with
specific value but its possible to change them at run time, by
passing new values directly to the respectively input ports.

For sake of space, we omit the description of the Room
Model and we describe hereafter the Robot Model only shown
in Figure 3. Figure 3(a) shows how all the domains and the
system environment are represented in the robot model, the
state domain model (battery management) is shown in Fig-
ure 3(b), whereas the behavioral domain model (cleaning
robot management) is shown in Figure 3(c).

Figure 3(a) reports the parameters that characterize the
robot: the name, the battery level is the energy level with
which the robot starts working, the current bl is the current
battery level and it is used to evaluate the energy dynamics,
the busy parameter is used in the mode controller and signals
if the robot is in a busy state. There are two PortParame-
ters: the battery level threshold that is the energy threshold
under which the robot goes to a charging station and the
timeout represents the time that has to elapse without any
dirty event before the robot decides to stop cleaning. More-
over, the battery consume factor parameter represents the
energy consumption at each time step, and the moving pa-
rameter indicates if the robot is moving from the operative
state to the stop state; finally the mode parameter repre-
sents with an integer number the operation modes of the
robot and it is used as synchronization between the control
actor. The last two parameters are: (i) the charging factor
that is the dual of the battery consume factor and represents
the energy charging factor of the battery; (ii) the charg-
ing threshold that is the dual of the battery level threshold
but for the charging phase.

Figure 3(b) shows the structural domain model of the
BatteryManager controller component as a finite state au-
tomaton. The controller starts in the initial state init and
after receiving a signal on the time port, it goes to the de-
crease state until the robot goes into a charging mode (i.e.,
mode==30), i.e., the guard transition mode==’charging’.
Until that, it continues to decrease the battery by the bat-
tery consume factor (bat cons fact in the transition) param-
eter at each time step. When the battery reaches zero it
keeps such value. When the robot switches to charging
mode, the battery controller goes into the charging state,
where it will increase the current battery level by the charg-
ing factor at each time step. When the battery reaches the
maximum it will stabilize the level to the maximum. When
the robot switches back to an operational mode, then the
battery manager goes again into the decrease state.

Figure 3(c) depicts the cleaning robot modal model. The
mode controller is the robot brain and represents the control
software that manages the robot operational modes. The
controller starts on the initial state wait and when there is a
signal on the input port in, it goes into the searching mode if
the initial battery level passed as parameter is greater than
the battery threshold, otherwise it goes into the charging
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(a) Robot model.

(b) Battery Manager model.

(c) Cleaning modes model.

Figure 3: Robot model and behavioral models.

mode. If it is in the charging mode, when the current battery
level will be greater or equal to the charging threshold, it
moves to the searching mode, calling for a job. When the
robot is looking for a job, it waits for a trigger of the camera
input port that signals if a dirty event is detected by the
floor camera. Meanwhile it is searching, if no dirty event
is triggered and timeout time is elapsed, then it makes the
assumption that the room is cleaned, and it stops moving,
i.e., it goes into the stop mode and emits the end signal. On
the contrary, if there is a signal on the camera input port
before the timeout expires then the controller moves to the
cleaning mode, i.e., the robot is busy cleaning a tile. As

shown in Figure 3(c), it keeps the cleaning state until the
service station completes the job and emits a signal on the
controller jobcompleted input port. When there is a signal
on that port, it means that the dirtiness was cleaned and
the system returns back to the searching state requesting a
new job if there is enough battery.

3.3 Experimental results
For our case study we measured the following indices: (i)

cleaning time, i.e., the time spent from the robot to clean
a room, calculated from when it is started until it assumes
the room is cleaned; (ii) clean percentage, i.e., the number
of dirtiness events that have been cleaned over the total
number of dirtiness events generated by the room.

In the following we report some plots obtained from simu-
lating the models and varying different parameters. All the
simulation runs were made with a total number of gener-
ated dirty events of ten (dirty amount = 10), a battery level
threshold equal to 20% under which the robot needs charg-
ing (battery level threshold=20%), and a charging threshold
equal to 90% over which the robot starts again to clean
(charging threshold=90%). The plots are generated by show-
ing the battery level with a black line, the robot modes with
a blue line and fixed values (i.e., wait=50, searching=70,
cleaning=90, charging=30, stop=0), the dirty events are
shown with red dots, and the end signal with a light blue.

Figure 4 shows the results we obtained while fixing the
dirty generation rate and the robot timeout, but varying
the robot service time, in fact the used parameters are: (i)
dirty rate = 0.2 and (ii) timeout = 12s, and (iii) lambda =
[0.1, 0.2], i.e., the service time of the cleaning robot is var-
ied with two values. Figure 4(a) depicts the robot service
time with an exponential distribution of lamda = 0.2 so the
mean time of cleaning a dirty event is 5 seconds. As the
figure shows, the robot is able to clean all the dirty events
before the timeout expires and the robot battery level goes
under the threshold. The robot goes into the recharge state
and after overing the charging threshold, it waits again for
the timeout to expire. Then it stops by concluding its job
in 129 seconds and achieving a cleaning percentage of 100%.
In Figure 4(b) instead we increase the lambda to 0.1, slow-
ing down the service time that in average is of 10 seconds.
Also in this run the robot, after a charging phase, is able to
complete all the jobs, but with an higher total time of 170.98
seconds. As expected, changing the service time value dis-
tribution affects the total time spent by the robot.

Figure 5 reports the results obtained while changing the
dirty generate rate from 0.2 to 0.1, i.e., slowing it down,
whereas the timeout is unchanged. We can notice that with
a lower generation rate, the timeout we fixed is not enough
to let the robot completing all the jobs. Figure 5(a) shows
that the robot is able to clean the first four dirty events but
then the timeout expires and the robot stopped after 37.82
seconds achieving a clean percentage of 40%. Similarly to
Figure 4, in Figure 5(b) we slow down the service time of the
robot and this change has the same effect as in the previous
experiment, and we can notice that with this change the
robot reaches a 30% cleaning percentage in 132 seconds.

Summarizing, all these plots aim to demonstrate the im-
portance of system parameters and how they affect the CPS
performance indices. Further challenges come from the spec-
ification of spatial characteristics, e.g., the size and the spa-
tial position of jobs in a room. Besides, the dirty rate pa-
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(a) lambda = 0.2 (b) lambda = 0.1

Figure 4: Plots for dirty rate = 0.2 and timeout = 12s, but different service time.

(a) lambda = 0.2 (b) lambda = 0.1

Figure 5: Plots for dirty rate = 0.1 and timeout = 12s, but different service times.

rameter can also represent the speed at which the robot is
moving, i.e., a faster robot detects possible dirty spots more
frequently since the generation rate of dirty jobs is higher.
On the contrary, a slower robot encounters possible dirty
spots less frequently since the generation rate of dirty jobs
results to be lower. We also added the dirty tiles parame-
ter that represents the amount of dirtiness in the room, but
also its size. A change in this parameter means either a more
dirty or a changed size room.

4. DISCUSSION AND CONCLUSION
During the development of the case study we have iden-

tified several challenges related to the research area of per-
formance engineering of CPS. For some of them we have
started a deep investigation, while some others result still
open. In the following, we briefly summarize the most rele-
vant challenges:

- Requirements: a well defined expression of requirements
for this type of systems, where different domains have to co-
exist, can be difficult. Indeed, different parts of the system
have multiple performance attributes that must be evalu-
ated, each one with its own unity of measure, scale and pre-
cision. How to express these attributes into requirements
is still an open problem. In our case study we focused on
the cleaning percentage and the relative time spent to reach

that coverage by the robot. We have then defined appropri-
ate parameters and aggregated measures, however a formal
approach would be necessary to guide the CPS development
process.

- Modeling : one of the major challenges is how to model
CPS. It is indeed difficult to define an hybrid formalism that
allows the combined modelling of software and hardware,
and to take also into account performance characteristics.
In literature the adopted solution is often to use different
models, and then let them coexist during all the system life
cycle. In our example, adopting Ptolemy, we used finite
state machines and modal models for the software and the
behavioral parts, and component models for the hardware
and the environment. However, a well defined (possible)
model-driven approach for the different model definitions
and interactions is still missing.

- Uncertainties: due to the nature of CPS, the knowledge
of the environment is not complete nor accurate. This en-
tails that the information included in the models is subject
to uncertainties. In this area we devise two main challenges:
(i) how to explicitly address the uncertainty at requirements
level, and (ii) how to recognize its presence at model level
and how to manage it, thus to mitigate its potentially neg-
ative effects and increase the level of assurance in a given
CPS. In the presented case study, we modeled the environ-
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ment uncertainty with the random generation of dirtiness
events in the room. However, a complete definition of mod-
els and methods for defining, recognizing and taming uncer-
tainties is still missing.

- Analysis and performance metrics: the enormous vari-
ety of CPS makes the specification of performance metrics
to analyse very difficult, in fact it is difficult to select the rel-
evant metrics among the stadard ones, such as reponse time,
utilization, and throughput. Moreover, the combined use of
multiple models at different abstraction levels leads to possi-
ble problems in their performance analysis. It is indeed im-
portant to take into account the different aspects and their
combination still maintaining, when possible, a separation
of concerns among the various parts of the systems. In the
modeled case study, we have defined an hybrid model that
we solved with the simulation environment of Ptolemy. The
model analysis allowed us to quantify the overall system per-
formance and the impact of parameter changes. However,
at present, the model analysis part is not predefined and it
strongly depends on the designer skill in the correct defini-
tion of necessary measurements and involved components.
A guided process allowing also the separation of concerns is
still missing.

-Refactoring : the usage of models in the system design
phase allows, among the other advantages, the possibility of
design space exploration. This facility is key in the definition
of possible refactoring actions when performance require-
ments are not met, for example. A challenge here is repre-
sented by the definition of suitable parameterizable models.
In the considered case study, we did a large use of parameters
and, as discussed in Section 3, we analyzed how the change
of value or meaning of these parameters leads to different
models and results. In this way, comparing the results col-
lected from different model settings allows the comparison
of a wider set of design choices. A well defined methodology
for design space exploration is still missing and would be of
key relevance in the design of CPS.

In the future, we plan to move along the research lines
we have listed above. According to that, we plan to in-
vestigate other case studies, possibly from the industrial
contexts, thus to extract further challenges of this domain.
Besides, we are working on developing a multi-modelling
approach that exploits both the principles of model-driven
engineering and the knowledge acquired in the closed do-
main of hardware-software co-design. The vision of such
approach is to enable the performance evaluation of CPS by
building models able to provide design alternatives dealing
with performance requirements.
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