
Mapping of Service Level Objectives
to Performance Queries

Jürgen Walter
University of Würzburg

97074 Würzburg Germany

Dušan Okanović
University of Stuttgart

70569 Stuttgart Germany

Samuel Kounev
University of Würzburg

97074 Würzburg Germany

ABSTRACT
The concept of service level agreements (SLAs) defines the
idea of a reliable contract between service providers and their
users. SLAs provide information on the scope, the quality
and the responsibilities of a service and its provider. Ser-
vice level objectives (SLOs) define the detailed, measurable
conditions of the SLAs. After service deployment, SLAs are
monitored for situations, that lead to SLA violations.

However, the SLA monitoring infrastructure is usually
specific to the underlying system infrastructure, lacks gen-
eralization, and is often limited to measurement-based ap-
proaches. This makes it hard to apply the results from
SLA monitoring in other stages of the software life-cycle.
In this paper we propose the mapping of concerns defined in
SLAs to the performance metrics queries using the Descartes
Query Language (DQL). The benefit of our approach is
that the same performance query can then be reused for
evaluation of performance concerns throughout the entire
life-cycle, and regardless of which approach is used for eval-
uation.

1. INTRODUCTION
The importance of performance is common in many work-

ing environments. For example, a salesman is required to sell
a specific amount of items over a certain period of time. If
he has not reached the required number of sales, agreed on
in his contract, he will earn less money. This concept, with
only small changes, can be applied in different environments.
The above principle is applied to the world of IT-services
using specific contracts defining the requirements for service
providers, to satisfy their clients.

A service level agreement (SLA) defines the idea of a re-
liable contract between service providers and their users.
It contains the information about the responsibilities, the
scope, and the expected quality of service (QoS). An SLA
contains an aggregation of different Service level objectives
(SLOs), where a single SLO defines a specific performance
goal to be met. One common example of these goals is “ser-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053646

vice response time below a certain threshold.” SLOs define
the detailed, measurable conditions of the SLAs. Due to
the various domains in which these contracts are needed,
there are many different implementations, specific to their
particular domain.

In the work by Woodside et al. [22], two distinct groups of
approaches are identified in software performance engineer-
ing (SPE): model-based and measurement-based approaches.
Model-based approaches are used early in the software de-
velopment life-cycle. For example, in early stages of soft-
ware development, when designing the software to meet the
performance levels defined in SLA, one can employ model-
based approaches. On the other hand, measurement-based
approaches are used in later stages of the software devel-
opment life-cycle. For example, if we want to monitor and
evaluate the execution of SLAs in operation phase, we need
to use measurement-based approaches. The issue here is that
there is no (or almost no) connection between the two groups
of approaches. What is required is a unified view on the soft-
ware performance, regardless of the software life-cycle stage.

In our previous work we proposed the Declarative Per-
formance Engineering (DPE) [21] and the Descartes Query
Language (DQL) [3], as an approach to provide a declara-
tive, unified language to trigger performance measurements
and predictions. Using DQL, performance metric queries
can be evaluated in the same way, regardless of the stage in
the software development cycle. In this paper, we propose a
mapping of SLAs to performance queries, to abstract from
the evaluation mechanism (measurement or model-based)
and provide a reusable SLA framework. The DQL language
definition is extended to support the definition of SLAs and
SLOs. Further, we implement a mapping to performance
queries to automatically evaluate SLAs. This mapping al-
lows for:
• An interface between an SLA language and perfor-

mance evaluation mechanisms, for any kind of soft-
ware.
• The reduction of the effort required for applying differ-

ent performance evaluation methods in different SLA
life-cycle stages.
• Bridging the gap between model- and measurement-

based approaches [21, 22] for performance evaluation.
• Language support for service level improvement (ac-

cording to Sturm et al. [16]) using reactive approaches,
e.g., auto-scaling in cloud-based systems, to automat-
ically mitigate the performance issues.

The subsequent sections provide an overview of the related
work (Section 2), emphasize the addressed problem (Sec-

197

SLA Template
Development

SLA
Advertisement

SLA
Matchmaking

Negotiation
Agreement &
Deployment

Execution &
Assessment

Settlement Archive

Figure 1: SLA life cycle according to [9]

tion 3), and outline our approach (Section 4). In Section 5
we describe our SLA language and the benefits of our user
interface, in Section 6 the extensions to the DQL framework
required to evaluate SLAs, and in Section 7 the mapping
of SLOs to DQL elements. The evaluation of our approach
is shown in Section 8. The last section provides conclusion
and outlines the future work.

2. RELATED WORK
Works related to the one presented in this paper can be

divided into three main categories: 1) works that deal with
the SLA life cycle, 2) works dealing with languages for SLA
specification, and 3) works on systems for SLA execution
assessment.

SLA life cycle: There is a research area on SLA life cy-
cle and management. Kritikos et al. [9] propose an SLA
life cycle depicted in Figure 1. In Comuzzi et al. [2] differ-
ent roles are assigned to organizational units within each in-
volved party. When communicating among each other, units
use internal SLAs. The idea is to manage the complete IT
stack. In contrast to our approach, they do not focus on
evaluation mechanisms throughout the software life cycle.

Languages: Survey by Kritikos et al. [9] shows that there
are many languages available for SLA specification. Well
known examples are WSLA [5], SLAng [15], GXLA [17],
SLA* [4]. Early works on SLA formats usually focused on
defining a machine readable format [17], e.g. XML, as they
were supposed to be processed automatically. However, this
increases the manual effort required for their maintenance,
and calls for a format that is both machine- and human-
readable [13, 18].

Some recent works focus on using SLAs in new environ-
ments, such as cloud computing, where the landscape, on
which the service is running, does not consist of, e.g., an
array of dependable servers, but fluctuates. For example,
formats like CSLA [7] and SLA* [4] are designed to cope
with this kind of environment.

Assessment: The most common approach for the eval-
uation of SLA execution, is to monitor the service during
the production phase, and check for any violation of SLA.
Although it would be possible, monitoring is usually per-
formed by the provider, using its infrastructure, rather than
by some third party [9]. Therefore, most monitoring solu-
tions are proprietary and tied to a certain platform. For
example, WSLA [5] framework also provides monitoring ca-
pabilities to accompany the SLA specification, but the pro-
totype implementation is available only for IBM environ-
ments. In order to be independent of a specific SLA format,
approaches by Okanović et al. [12] and van Hoorn [19] pro-
pose to use some intermediate form to represent the SLA and
compare it to the measured values. In contrast to the pre-
viously presented approaches that use run-time data, Klatt
et. al. [6] perform model-based SLA analysis. In their work,
they integrate QoS prediction support in a large-scale SLA
management framework and a service mashup platform.

To the best of our knowledge, no other approach aims

to cover both the design- and production-time evaluation
of SLAs, using the SLA definition that is both human- and
machine-readable, while being general and applicable to any
kind of system.

3. PROBLEM STATEMENT
The following user stories illustrate our motivation for this

work.
• “As a user, I want to evaluate my SLAs with different

SPE methods in different stages of the software life
cycle.” SLAs are known to all stakeholders from the
beginning of the life cycle, but this is not enough. Cur-
rent practice evaluates software against SLAs only in
latter stages, mainly in production. It would be ben-
eficial to evaluate SLAs, e.g., using models, in early
stages of software development. The evaluation against
SLAs during the whole life cycle would allow for per-
formance problems to be avoided in latter stages, when
fixing becomes more expensive.
• “As a user, I want the approach to require low ef-

fort.” This can be achieved through an easily read-
able and understandable SLA definition language, with
an editor that supports syntax highlighting and auto-
completion. The language should also allow for the
reuse of goals in different SLAs. Underlying mech-
anisms should automatically choose the right analy-
sis approach, depending on the current development
stage. Analysis results should be accessible using the
same language.
• “As a user, I want to use SLAs for different use cases.”

For example, qualitative analysis can detect that there
was a violation, and can be useful for design space
exploration. Quantitative analysis finds the number of
violations, and is more detailed. Also, results can be
used to automatically ensure the service levels, e.g., for
auto-scaling.

In order to define non-functional properties for services,
an SLO has to specify thresholds, metrics, and comparators.
However, in modern environments there are new, previously
unknown challenges. Due to inherent characteristics of mod-
ern environments, e.g., cloud, SLAs have to cope with the
acceptable margins [14]. Also, sometimes it is not possible
to meet all SLOs at the same time. SLA implementations
should therefore support modeling of such conflicts.

Software evolution can be hindered by the inability to have
efficient communication between different stages of develop-
ment. Being able to automatically map concepts from one
stage to another would ensure that the quality of service is
properly addressed throughout the software life cycle.

4. APPROACH
Software performance evaluation against SLAs should be

performed at different life-cycle stages [9]. However, there is
no unified approach nor tooling to achieve this. In our pre-
vious work [21], we proposed how to perform performance

198

DQL Language
& Editor

DQL Query
Execution Engine

DQL
Connector Registry

DQL
Connector

<<register>>

<<submit query>>

External Toolchain

Figure 2: DQL Architecture [3]

EVALUATE QUANTITATIVELY

AGREEMENTS

sla1 CONTAINS (slo1 , slo2*2, slo3)

GOALS

slo1: service1.availability > 90%

slo2: service1.responseTime < 0.2ms,

FUZZINESS 0.1

PENALTY 6.0 EUR

PER 3 VIOLATIONS

slo3: (slo1 * 3, slo2) >= 97%

PENALTY 7.0 EUR

FOR SERVICE "service1Identifier" AS service1

CONSTRAINED AS fast

USING connector@ ’domain_access ’;

Figure 3: Example Goal Definition

evaluation regardless of development stage. In this paper, we
propose to reuse the performance metrics query interface, in
order to query the system performance. The existing DQL
architecture (Figure 2), with the supporting infrastructure,
such as connectors for using external tool chains (measure-
ment, simulation or analytical solvers/SPE techniques), can
be reused to evaluate SLOs. This leads to an interchange-
ability of evaluation approaches for SLA evaluation.

We extend the DQL Framework [3] to evaluate SLA com-
pliance by reusing existing connectors for different evalua-
tion approaches, even though the core concepts are applica-
ble to other SLA languages and frameworks as well.
DQL language extension The SLAs evaluation requires

a language definition. We extend DQL language in-
troducing an SLA syntax that builds upon established
SLA definitions. Further, to proactively support the
DPE vision we include an extension for SLA languages
to support prioritizing and weighting of goals required
for proactive assurance mechanisms (Section 5).

DQL framework extension What is needed is an exten-
sion to DQL Execution Engine to include an evalu-
ation algorithm that supports comparators, penalties
and fuzziness (Section 6).

Mapping Finally, we extend DQL framework with map-
ping of SLOs to DQL performance metrics queries, to
provide a unified interface to the system under test
(Section 7).

5. SLA LANGUAGE DEFINITION
We build our syntax upon the established CSLA [7] and

WSLA [10] frameworks, and compose SLAs from SLOs. We
extend their SLA definition to prioritize SLOs over others.
In contrast to the mentioned frameworks, we provide a lan-
guage implementation, instead of using XML files. We in-
tegrated our language implementation into the DQL frame-

work (Figure 2). Extending the DQL Language & Editor

component allows for language auto-completion and syntax
highlighting. Providing a user-friendly interface decreases
the initial effort and improves usability and readability in
the long run.

Figure 3 shows an illustrative example to which we will
refer in the following. Generalizing the example, Figure 4
presents the top-level integration of GoalQuery into DQL
Syntax. GoalQuerys reuse EntityReferenceClause, Con-

straintClause and ContextAccess from DQL. The under-
lying concepts are not common in other SLA languages. To
be interpretable, all queries include a ContextAccess, lo-
cated at the end. As can be seen in the example, it starts
by a USING statement, followed by an identifier of the con-

nector to evaluation mechanism, and finalized by domain
access. The domain access can be a link or path to a per-
formance model, log files or a measurement-script. The op-
tional ConstrainedClause may influence processing within
connector, if the connector supports constraints. For ex-
ample, CONSTRAINED AS fast triggers approximative solu-
tions for model-based analysis, or may be interpreted by a
measurement-based connector to trigger shorter measure-
ment periods and extrapolate afterwards. If the IDs of
resources or services are too long or cryptic they may be
mapped to human readable aliases in the EntityReference-
Clause. The EntityReferenceClause enables to map iden-
tifiers from the context to query elements. The identifiers
may vary for different evaluation approaches. For exam-
ple, EMF models often use cryptic hash values as identi-
fiers. Moreover it enables to create short names for complex
identifiers. The EntityReferenceClause starts with the FOR
terminal followed by one or more EntityReferences. An En-

tityReference starts with the type terminals RESOURCE or
SERVICE, then EntityID (can be derived from the context)
and is finalized by AS keyword and the alias.

Figure 5 depicts the coarse grained syntax of our DQL
GoalQuery language extension. A language statement starts
by a processing identifier, followed by an sla, and slo clause.
The processing identifier specifies the kind of actions to per-
form based the SLAs. We include the keywords: EVALUATE

QUANTITATIVELY, EVALUATE QUALITATIVELY and ENSURE. Af-
ter the processing identifier, the SlaClause, started by the
AGREEMENTS identifier, consists of one or more SLA defini-
tions. An SLA (Figure 6) references a set of SLOs using
the CONTAINS identifier. Priorization of SLOs happens by
multiplying weights. In our running example, slo2 is twice
as important as slo1 and slo3 since it is multiplied by 2
while the others have no weight assigned (matches a weight
of 1). After the SlaClause, the GOALS identifier starts the
SloClause, containing one or more SLO definitions. An
SLO, (see Figure 7), consists of an unique id, a Metri-

cReference, a Comparator (<,≤, >,≥, . . .) and a thresh-

old. Referring to the example, slo1’s MetricReference is
defined as service1.availability. Further, SLOs can be
extended employing two optional penalty and fuzziness def-
inition. FUZZINESS describes an allowed deviation from the
desired threshold of an SLO which blurs the metric’s thresh-
old. This is useful to cope with uncertainties and fluctua-
tions which can occur in cloud environments. Similar to
other SLA languages (e.g. WSLA and CSLA), it is possible
to associate a penalty with an SLO using the PENATLY key-
word. For example, it is possible to restrict the penalty to
apply for multiple violations. The penalty in slo2 has to be

199

Figure 4: Integration of GoalQuery into DQL Syntax

Figure 5: DQL GoalQuery Syntax

Figure 6: SLA Syntax

multiplied times the violations divided by three.
As stated previously, we allow for composition of SLOs.

This allows for extra penalties when a specific combination
of SLOs is present. In the example (Figure 3), slo3 specifies
that slo1 and slo2 have to be compliant in 97 % of all
requests. Similar to SLAs, SLOs in a composition can be
weighted in order to prioritize their importance.

6. FRAMEWORK EXTENSION
In order to evaluate SLAs, we extended the DQL Query

Execution Engine component (cf. Figure 2). This com-
ponent abstracts from concrete connectors and model spe-
cific external tool chains. It only triggers methodology pro-
vided by the connector interface. Through this we get a
re-usability for every connector. Our extension supports
qualitative and quantitative SLA evaluation. The qualita-
tive evaluation breaks on the detection of the first violation
which is more effective (in case of an early violation detec-
tion) than evaluating all SLOs. This is sufficient, for exam-
ple, when exploring the design space for non-SLA-violating
configurations. Quantitative evaluation is required when the
performance engineer is interested, e.g., in the number of vi-
olations and for penalty calculation.

Algorithm 1 shows pseudocode for our SLA evaluation.
It iterates over all referenced SLOs. Our implementation
caches SLO evaluations that are referenced multiple times
to be analyzed (measured, simulated, analyzed analytically)
only once (lines 4-6). Line 4 checks if the SLOs have been
evaluated before, as SLOs may be referenced in multiple
SLAs. If not, the mapping to performance metrics queries
happens in line 5. This line also includes the execution
of the newly created query resulting in metric value(s) re-
quired for SLO evaluation. Lines 7 to 16 evaluate the SLO,
based on the derived metric value. Line 7 takes comparator
and threshold of the SLO to compare with derived metric.
The comparison also considers the optional fuzziness setting.
Note that the comparator has to handle single values as well
as sets. Line 8 sets SLO to violated, line 15 to compliant.
Lines 9 and 10 cause a break of evaluation on first SLO vio-
lation for qualitative evaluation, while line 12 sums penalty
costs for quantitative analysis.

To summarize, our framework extension automates the
detection of violations by interpreting query results and cal-
culates penalty costs.

Figure 7: SLO Syntax

Algorithm 1 SLAs Evaluation

1: function EvaluateSLAs(List<SLA> slas, boolean
isQualitativeEvaluation)

2: for all sla in slas do
3: for all slo in sla do
4: if slo.isCompliant == null then
5: slo.metric ← run query (slo)
6: end if
7: if evaluateSLO(slo, metric) then
8: slo.isCompliant ← false
9: if isQualitativeEvaluation then

10: return false
11: else
12: sla.penalty + = slo.penalty
13: end if
14: else
15: slo.isCompliant ← true
16: end if
17: end for
18: end for
19: return true
20: end function

7. MAPPING
The mapping of SLOs to performance metrics queries hap-

pens in the line 5 of Algorithm 1. Our implementation cre-
ates one metrics query per SLO. Another option for process-
ing would be to merge queries so that one query includes all
MetricReferences in one MetricReferenceClause. In fig-
ure 8, performance metrics query specific syntax is shown
(EntityReferenceClause and ModelAccess, are already de-
picted in Figure 4, and here are omitted).

In the following we explain the mapping. We start the
PerformanceMetricsQuery with the SELECT and the Met-

ricReference extracted from the SLO (Figure 7). Then
we add EntityReferenceClause, ConstraintClause (if set),
and ContextAccess from the GoalQuery. The optional De-
gree of Freedom (DoFClause) of PerformanceMetricsQuery

can be ignored for the mapping.
The example SLA from Figure 3 can be mapped to the

queries depicted in Figure 9. The query at the top is required
to answer slo1, the query for slo2 is at the bottom, slo3
can be deduced from previous two.

8. EXAMPLE OF USE
The following example demonstrates how to evaluate SLAs

measurement and model-based using our approach.
Sample Application To evaluate our approach, we se-
lected the Pet Clinic application, that represents a portal for

200

Figure 8: Performance Metrics Query Syntax

SELECT service1.availability

FOR SERVICE "service1Identifier" AS service1

CONSTRAINED AS fast

USING connector@ ’domain_access ’;

SELECT service1.responseTime.max

FOR SERVICE "service1Identifier" AS service1

CONSTRAINED AS fast

USING connector@ ’domain_access ’;

Figure 9: Performance Queries Resulting from SLA Exam-
ple in Figure 3

vet appointments.1 We deployed it on a Dell Power Edge
R815 with 48 cores, each core equipped with an Opteron
6174 CPU 2.6 GHz. The application was running on an
Ubuntu 14.04.5 VM, with 16 GB RAM. We modified the
“browse and edit” workload shipped with the application re-
moving the “edit” operations to avoid database contention
(due to locking). The resulting workload is open, with an
exponentially distributed arrival rate. Each vet customer
calls the following sequence of interfaces: The vet visits
the start page (welcomeGET), looks at the list of all vets
(showVetListGet), searches pet owners (initFindFormGet
and processFindFormGet) and displays all pet owners
(showOwnerGET). Then the vet triggers two times a specific
pet owner page (processFindFormGet). Besides workload,
we modified the application to cache the vet catalog once at
startup, to improve performance.
SLA Evaluation Settings For the described setting, we
measured a calibration workload at low utilization, used to
trigger performance model extraction employing the Perfor-
mance Model Extractor (PMX) [20] tool. The extracted
model enables to evaluate SLAs using model-based analyses
in addition to measurements. We evaluated the SLA de-
picted in Figure 10 triggering two existing DQL connector
implementations. We performed:
• measurement-based analysis using the connector for

Kieker [1], that is able to trigger analysis runs and an-
alyze log files using the Kieker Monitoring framework
[19]. In our experiment we triggered the measurements
separately using an Apache JMeter load script and per-
formed DQL analyses only at the monitoring log files,
excluding ramp up time.
• model-based Analysis: using Descartes Modeling Lan-

guage (DML) connector [8], that triggers the analysis
of an architectural performance model using the anal-
ysis approach based on a transformation to Queueing
Petri Net (QPN) [11] and simulation using SimQPN.

The additional SLA evaluation required no modifications to
connectors. One can switch from DML-based analysis to
Kieker-based analysis changing the final line of the query
by replacing USING dml@’model.properties’; with USING

kieker@’logfile’;.
Results We triggered SLA evaluation for two different work-
load settings. The first setting has an arrival rate of 732

1https://github.com/spring-projects/spring-petclinic

EVALUATE QUANTITATIVELY

AGREEMENTS

sla CONTAINS (slo1 ,slo2 ,slo3 ,slo4 ,slo5)

GOALS

slo1:welcomeGET.responseTime.mean <1.3ms,

PENALTY 1.0 EUR

slo2:showVetListGET.responseTime.mean <1.7ms

PENALTY 1.0 EUR

slo3:initFindFormGET.responseTime.

mean <1.3ms, PENALTY 1.0 EUR

slo4:processFindFormGET.responseTime.

mean <4ms, PENALTY 1.0 EUR

slo5:showOwnerGET.responseTime.mean <2.6ms

PENALTY 1.0 EUR

USING dml@ ’model.properties ’;

Figure 10: PetClinic SLA Definition

Entity Evaluation
Analysis Method

measurements model-based

customers 732 1300 732 1300

slo1 false true false true

slo2
Violating

false true false true

slo3
Operations

false true false true

slo4 false true false true

slo5 false true false true

sla1
Conformance true false true false

Penalty 0 5 0 5

Table 1: SLA Evaluation Results.

customers per second, which causes negligible resource con-
tention. The second setting has 1300 customers per second,
causing a higher resource contention resulting in SLA viola-
tions. Table 1 depicts results for both settings. Considering
the presented two settings, both evaluation methods pro-
vided similar results. However, the model does not reflect
all of the peaks that appeared in measurements. The mea-
surements of response times have been fragile due to inac-
curacies in workload provisioning of JMeter and side effects
caused by garbage collection or log storage operations. In
general, mean values of response times are much more stable
than peaks. Future work could focus on improving perfor-
mance models to reflect indeterministic peak behavior not
caused by application load.

9. CONCLUSIONS
In this work we integrated the definition and the eval-

uation of SLOs and SLAs into the Descartes Query Lan-
guage (DQL), with the goal to use DPE to reduce the effort
of the evaluation of SLAs in different stages of software life
cycle. We propose the extension to DQL to support the
mapping of SLOs to DQL performance queries. Extensions
were made also to the DQL Execution Engine, to support
the evaluation of SLAs using the mapping to performance
metric queries.
Future work We identified several possible improvements
to the approach. Some DQL connectors allow to derive met-

201

rics using optimizations, e.g., simulation breaks at a certain
accuracy before the configured run length has been reached.
Therefore, future work should discuss different run lengths.
Moreover, SLA evaluation results in as many performance
queries as SLOs, even if multiple SLOs target the same ser-
vice and metric. An optimization would be to detect over-
laps and execute less queries. We also plan to implement
processing strategies for the ENSURE keyword in goal queries.
We already included the extensions to SLA languages to in-
clude prioritization and weighting of goals. We envision to
connect to auto-scaling mechanisms that also build upon
query results.

Acknowledgments
This work is supported by the German Research Foundation
(DFG) in the Priority Programme “DFG-SPP 1593: Design
For Future—Managed Software Evolution” (HO 5721/1-1
and KO 3445/15-1) and by the Research Group of the Stan-
dard Performance Evaluation Corporation (SPEC). Further,
we want to thank Lukas Harzenetter and Niko Stadelmaier
contributing to language implementation.

References
[1] M. Blohm, M. Pahlberg, S. Vogel, J. Walter, and

D. Okanovic. Kieker4DQL: Declarative Performance
Measurement. In Proceedings of the 2016 Symposium on
Software Performance (SSP), November 2016.

[2] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann,
U. Winkler, and G. Zacco. A framework for multi-level SLA
management. In Int. Conf. on Service-oriented Computing
(ICSOC/ServiceWave ’09), pages 187–196, 2009.

[3] F. Gorsler, F. Brosig, and S. Kounev. Performance queries
for architecture-level performance models. In 5th
ACM/SPEC Int. Conf. on Perf. Eng. (ICPE 2014), pages
99–110, 2014.

[4] K. T. Kearney, F. Torelli, and C. Kotsokalis. SLA*: An
abstract syntax for service level agreements. In 11th
IEEE/ACM Int. Conf. on Grid Computing, pages 217–224,
2010.

[5] A. Keller and H. Ludwig. The WSLA framework:
Specifying and monitoring service level agreements for web
services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[6] B. Klatt, F. Brosch, Z. Durdik, and C. Rathfelder. Quality
Prediction in Service Composition Frameworks. In 5th
Workshop on Non-Functional Properties and SLA
Management in Service-Oriented Computing
(NFPSLAM-SOC 2011), December 2011.

[7] Y. Kouki and T. Ledoux. CSLA: A Language for improving
Cloud SLA Management. In Int. Conf. on Cloud
Computing and Services Science, CLOSER 2012, pages
586–591, 2012.

[8] S. Kounev, N. Huber, F. Brosig, and X. Zhu. A
Model-Based Approach to Designing Self-Aware IT
Systems and Infrastructures. IEEE Computer, 49(7):53–61,
July 2016.

[9] K. Kritikos, B. Pernici, P. Plebani, C. Cappiello,
M. Comuzzi, S. Benrernou, I. Brandic, A. Kertész,
M. Parkin, and M. Carro. A survey on service quality
description. ACM Comput. Surv., 46(1):1:1–1:58, 2013.

[10] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck.
Web Service Level Agreement (WSLA) Language
Specification, v1.0, Jan. 2003.

[11] P. Meier, S. Kounev, and H. Koziolek. Automated
transformation of component-based software architecture
models to Queueing Petri Nets. In 19th IEEE/ACM Int.
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, 2011.

[12] D. Okanović, A. van Hoorn, Z. Konjović, and M. Vidaković.
SLA-driven adaptive monitoring of distributed applications
for performance problem localization. Computer Science
and Information Systems, 10(1):25–50, 2013.

[13] T. Parr. Humans should not have to grok XML.
http://www.ibm.com/developerworks/library/x-sbxml/
x-sbxml-pdf.pdf, 2001.

[14] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux,
J. Lejeune, J. Sopena, L. Arantes, and P. Sens. Towards
QoS-oriented SLA guarantees for online cloud services. In
13th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid
Computing (CCGrid), pages 50–57, 2013.

[15] J. Skene, F. Raimondi, and W. Emmerich. Service-level
agreements for electronic services. IEEE Transactions on
Software Engineering (TSE), 36(2):288–304, 2010.

[16] R. Sturm, W. Morris, and M. Jander. Foundations of
Service Level Management. SAMS, 2000.

[17] B. Tebbani and I. Aib. GXLA a language for the
specification of service level agreements. In First
International IFIP TC6 Conference on Autonomic
Networking, pages 201–214, 2006.

[18] R. Vaderna, Ž. Vuković, D. Okanović, and I. Dejanović. A
domain-specific language for service level agreement
specification. In 7th Int. Conf. on Inf. Tech., pages
693–697, 2015.

[19] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In 3rd ACM/SPEC Int. Conf.
on Perf. Eng. (ICPE ’12), pages 247–248, 2012.

[20] J. Walter, C. Stier, H. Koziolek, and S. Kounev. An
Expandable Extraction Framework for Architectural
Performance Models. In Proceedings of the 2017
International Workshop on Quality-Aware DevOps
(QUDOS’17) co-located with 8th ACM/SPEC
International Conference on Performance Engineering
(ICPE 2017). ACM, April 2017.

[21] J. Walter, A. van Hoorn, H. Koziolek, D. Okanovic, and
S. Kounev. Asking “What?”, Automating the “How?”: The
Vision of Declarative Performance Engineering. In 7th
ACM/SPEC Int. Conf. on Perf. Eng. (ICPE ’16), March
2016.

[22] M. Woodside, G. Franks, and D. C. Petriu. The future of
software performance engineering. In 2007 Future of
Software Engineering, FOSE ’07, pages 171–187, 2007.

202

