
Developing Software Performance Training at Alibaba
Kingsum Chow*, Wanyi Zhu, Chengdong Li, Si Chen, Tongbao Zhang, Chenggang Qin and Sanhong Li

Alibaba Inc.
Hangzhou, China

*kingsum.chow@gmail.com

ABSTRACT
Effective software performance analysis needs to be conducted by

crossing multiple disciplines such as algorithms, data structures,

effective coding, performance data collection and its associated

overheads, computer architecture, operating systems, containers

and virtual machines, statistical analysis, machine learning and

applied mathematics. However, no students are prepared to learn

all these subjects in school. There is a need to develop software

performance training at work. We need a training program that

targets the different needs of new and old employees. We are

working on developing such a program here at Alibaba. This

paper describes our focus on practical aspect of mastering various

subjects to aid software performance analysis.

CCS Concepts

• Computer systems organization ➝ Architectures ➝

Distributed architectures • Software and its engineering ➝

Software organization and properties ➝ Extra-functional

properties ➝ Software performance.

Keywords
Datacenter efficiency; software performance; capacity planning;

analytics

1. INTRODUCTION
The emergence of large-scale software deployments in the cloud

has led to challenges in measuring software performance, and

optimizing software deployments. This vision paper addresses the

two challenges by bringing the knowledge of software

performance monitoring in the data center to the world of

applying performance analytics. We developed an approach called

Performance Improvement and Planning Analytics (PIPA). In our

approach, we bridge together 4 key layers for (1) performance

data collections, (2) data transformations, (3) analytics, and (4)

decisions. The PIPA approach is a cost-effective performance

engineering solution in the datacenter. However, the approach

alone is not sufficient. We need software performance engineers

that can work along the PIPA approach. These are the engineers

that can continue to develop new analytics based on strong

understand of how to do software analysis. Thus, it brings to the

next question: where can you hire software performance

engineers?

To do a good job in software performance analysis, the engineers

need to have a breadth of knowledge in math, statistics, scientific

thinking, performance tools, data collections, performance

scaling, and tuning software applications. As there not many

people with these backgrounds, developing a training program to

develop performance engineers in house would be needed.

2. SOFTWARE PERFORMANCE

TRAINING
Many textbooks and papers describe a collection of aspects of

software performance analysis. Students can certainly read them

and learn from them. What is lacking seems to be why these

software performance analytical methods are needed.

Furthermore, there are certain industrial practices that we do for

practical results. We would like to get students excited by learning

these practices. We thought it would be good to collect a list of

mistakes in software performance and use them to highlight why

proper software performance analysis is needed.

We describe each of the software performance myths in each

subsection below.

2.1 Myth: My performance data collection

tool has low overheads because the throughput

has not changed when the tool is used.
One of the frequently claimed successes of performance data

collection tool is low overhead. To draw the conclusion, we would

run an in-house workload. We would report the configuration of

the experiments such as the number of users, the throughput and

response time of the transactions. We would run it with and

without the performance data collection tool. We would collect

the data indicating there is little change in both throughput and

response time. Then we would show that by collecting additional

data, the story could be quite the opposite. We are developing two

case studies here: (1) the performance tool affects all transactions

and (2) the performance tool affects just some of the transactions.

The second case study exposes another problem – if the number

of samples is small compared to all the transactions, then the

average throughput may appear to be stable even through the tool

has a huge impact to the sampled transactions.

2.2 Myth: Performance scaling experiments

are limited by the stress-testing tool failing to

saturate the system.
In the industry, we sometimes reach the limitation of the load

testing tools. The experiments can only be run with limited loads.

One may be tempted to conclude that no result can be obtained.

We will run some experiments and demonstrate that despite the

limitations we encounter, we can still identify performance-

scaling issues. We can study the workload characteristics at

multiple levels and study the scaling behavior, even though we are

not saturating the software system under test.

2.3 Myth: Performance measurement units

are not important.
We have been amazed by how often measurement units are

skipped in analysis. Among them, CPU utilizations seem to be

leading the misleading analysis. In this lab exercise, we will have

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the Owner/Author(s). Copyright is held by the

owner/author(s).

ICPE’17 Companion, April 22–26, 2017, L'Aquila, Italy.

ACM ISBN 978-1-4503-4899-7/17/04.

DOI: http://dx.doi.org/10.1145/3053600.3053640

181

the students run some workloads and collect system performance

counters. We would illustrate how we can draw misleading

conclusions. Then we would show how to do it right. There are

two parts of this case study: (1) the performance unit itself is

misleading, e.g. CPU utilizations and (2) the missing units of

measurements prevent further analysis.

2.4 Myth: Incomplete software performance

logs lead to delay in analysis.
Different software applications may choose to log various amount

of information in the form of data logs. But during early

application development, the logs can be incomplete. Some

students would collect some performance data and claim that

analysis cannot be done due to missing data. We would

demonstrate that a lot of useful analysis can still be done despite

incomplete performance logs.

2.5 Myth: The same software application

must have the same behavior.
We will conduct experiments to show that even the same software

application can behave quite differently in different

configurations, containers or under-lying hardware. The

experiments will comprise of several cases: (1) changes in the

hardware configurations, (2) changes in the use of the hardware

components, and (3) changes in the software configurations. The

software performance behavior can be captured in the software

logs or common performance tools such as perf.

2.6 Myth: In Java applications, longer

garbage collections are always bad.
We will conduct experiments with varying amount of garbage

collections, and show that in some cases, they don’t matter. It is

important to identify what those cases are. We need to design a

couple of case studies that can help the performance engineer

develop the relationship between the amount of garbage

collections and the two key performance metrics: throughput and

response times.

2.7 Myth: Hardware options are optimized

for us and they cannot be changed.
We will conduct some experiments by changing how hardware

options are used. We would demonstrate a significant

performance improvement is possible with hardware options

tuning.

3. REPRODUCIBLE ANALYSIS
When the experts do software performance manually, the analysis

cannot be easily reproduced as the assumptions made, the process

of analysis and how the conclusion is drawn cannot be easily

documented. Here we propose the use of scripts to document the

analysis. We need reproducible analysis to advance software

performance analysis in the industry.

Our reproducible analysis is consisted of accessing the raw data

that are generated by the performance monitoring tools, our

scripts that process the raw data and transform the raw data into

something we apply analysis, the results of the analysis such as

graphs and tables can be generated from the scripts, and the

decisions that we make are documented. As the whole analysis is

documented, any assumption made during the analysis is revealed

in the script. If any assumption is deemed invalid, we can redo the

analysis by just changing that assumption.

4. SUMMARY
We covered only a small list of experiment driven analysis that

we hope to train new performance engineers. This is not an

exhaustive list. But we believe this is a good start. We also

highlight the importance of reproducible analysis as a documented

communication among performance engineers.

It is a daunting task to deal with large-scale datacenter

performance and efficiency analytics. In PIPA, we describe our

early thought in approaching this problem. We are just scratching

the surface of large-scale datacenter efficiency. After we realize

the need for a better performance analysis education, we have

started working on a training program. We believe we have many

years to learn from our mistakes, refine our techniques and

perhaps developing a much better approach.

ACKNOWLEDGMENTS
We thank multiple teams in Alibaba that has developed multiple

data collectors, storage and analysis portals for multiple projects.

182

