
Capacity Allocation for Big Data Applications in the Cloud

Michele Ciavotta
Politecnico di Milano,

Dipartimento di Elettronica,
Informazione e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
michele.ciavotta@polimi.it

Eugenio Gianniti
Politecnico di Milano,

Dipartimento di Elettronica,
Informazione e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
eugenio.gianniti@polimi.it

Danilo Ardagna
Politecnico di Milano,

Dipartimento di Elettronica,
Informatica e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
danilo.ardagna@polimi.it

ABSTRACT
The aim of this work is to present the problem of Capac-
ity Allocation for multiple classes of Big Data applications
running in the Cloud. The objective is the minimization of
the renting out costs subject to the fulfillment of QoS re-
quirements expressed in terms of application deadlines. We
propose a preliminary version of a tool embedding a local-
search-based algorithm exploiting also an integer nonlinear
mathematical formulation and a queueing network simula-
tion to solve the problem.

Keywords
Cloud; Big Data; QoS; Capacity Allocation.

1. INTRODUCTION
Nowadays, Big Data adoption has moved from experimen-

tal projects to mission-critical, enterprise-wide deployments
providing competitive advantage and business innovation.

Hadoop is one of the widely adopted solutions to sup-
port Big Data applications, since it overtakes the scalability
level of traditional data warehouse and business intelligence
technologies and supports both traditional batch and inter-
active data analysis applications. However, the adoption
of Big Data technologies is complex. The deployment and
setup of an implementation is time-consuming, expensive,
and resource-intensive. Companies need tools and method-
ologies to accelerate the deployment of Big Data analytics.
For this reason, Cloud Computing is becoming a mainstream
solution to provide large clusters on a pay-per-use basis.

Initially, MapReduce jobs were meant to run on dedicated
clusters. Now, applications have evolved and large queries,
submitted by different users, need to be performed on shared
clusters, possibly with some guarantees on their duration.
Capacity allocation becomes one of the most important as-
pects. Determining the optimal number of nodes in a cluster
shared among multiple users performing heterogeneous tasks
is an important and difficult problem [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22–26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053630

Our focus in this paper is to provide a software tool able to
support operators in the capacity planning process of shared
Hadoop Cloud clusters supporting applications with dead-
line guarantees. In a nutshell, we propose a search space
exploration able to determine the optimal virtual machine
(VM) type and the instance replicas for a set of concur-
rent applications, considering specific Cloud provider pric-
ing models. The underlying optimization problem is demon-
strated to be NP-hard and it is solved heuristically, whereas
job execution times are estimated via queueing network (QN)
models.

This paper is organized as follows. In Section 2 we present
the problem in more details, whilst the proposed tool is in-
troduced in Section 3. Finally, some conclusions are drawn
in Section 4.

2. PROBLEM STATEMENT
We envision the following scenario wherein a company

needs to set up a cluster to efficiently carry out a set of
interactive Big Data queries. A Hadoop cluster featuring
the YARN Capacity Scheduler and running on public IaaS
Cloud is considered a fitting technological solution.

In particular, the cluster must support the parallel execu-
tion of Big Data applications in the form of concurrent jobs.
Different classes gather applications that show a similar be-
havior. The cluster composition and size, in terms of type
and number of VMs, must be decided in such a way that, for
every application class i, Hi jobs are executed concurrently
and complete before a prearranged deadline Di. Finally,
in order to reduce the risk of data corruption and accord-
ing to the practices suggested by major Cloud vendors, the
datasets reside on an external storage infrastructure.

As, in general, IaaS providers feature a limited, but pos-
sibly large, catalog of VM configurations that differ in ca-
pacity (CPU speed, number of cores, available memory, etc.)
and cost, making the right design-time decision poses a chal-
lenge that can lead to important savings throughout the
cluster life-cycle. In this scenario, a pricing model inspired
by Amazon EC2 1 is considered. The provider offers: 1) re-
served VMs, for which it adopts a one-time payment policy
that grants access to a certain number of them for the con-
tract duration; 2) on demand VMs, which can be leased
with no long term commitments, but at a relatively expen-
sive hourly price; and 3) spot VMs, for which customers bid
and compete for unused datacenter capacity, yielding very
competitive hourly fees.

1https://aws.amazon.com/ec2/pricing/

175

http://dx.doi.org/10.1145/3053600.3053630
https://aws.amazon.com/ec2/pricing/

Reducing the operating costs of the cluster by using effi-
ciently the leased virtual resources is in the interest of the
company. This translates into a Capacity Allocation prob-
lem where the renting out costs must be minimized guaran-
teeing that certain deadlines Di are met. In the following,
we assume that the system supports Hi users for each class
and that users work interactively with the system and run
another job after a think time Zi, i.e., the system is rep-
resented as a closed model subject to a terminal workload.
In order to rigorously model and solve this problem, it is
crucial to predict with fair confidence the execution times
of each application class under different conditions: level of
concurrency, cluster size, and composition. Following the
approach presented in [3], it is possible to derive from the
Hadoop logs a job profile, which is a concise behavior char-
acterization for each class. Given the amount and type of
resources allocated, the concurrency level, and the job pro-
file, the execution time can be obtained with two main ap-
proaches: either evaluating approximate closed formulas, as
those presented in [2], or via the simulation of QNs, as done
in this paper.

3. D-SPACE4CLOUD
The tool implements an optimization mechanism that ef-

ficiently explores the space of possible configurations, hence-
forth referred to as Solution space. Figure 1 depicts the main
elements of the D-SPACE4Cloud architecture that come into
play in the optimization scenario. The tool takes as input a
description of the considered problem, consisting of a set of
applications, a set of suitable VMs for each application along
with the respective job profiles for each machine, and QoS
constraints expressed in terms of deadlines for each consid-
ered application. The Initial Solution Builder generates a
starting solution for the problem using a Mixed Integer Non-
linear Programming (MINLP) formulation where the job du-
ration is expressed by means of a convex function: [1] pro-
vides further details. The fast MINLP model is exploited to
determine the most cost effective VM type for all applica-
tions. Yet the quality of the returned solution can still be
improved, since the MINLP problem is just an approximate
model. For this reason, a more precise QN model is adopted
to get a more accurate execution time assessment for each
application: the increased accuracy leaves room for further
cost reduction. However, since QN simulations are time-
consuming, the space of possible cluster configurations has
to be explored in the most efficient way, avoiding to evaluate
unpromising configurations.

In the light of such considerations, a heuristic approach
has been adopted and a component called Parallel LS Op-
timizer has been devised. Internally, it implements a par-
allel Hill Climbing (HC) technique to optimize the number
of replicas of the assigned resource for each application; the
goal is to find the minimum number of resources to fulfill the
QoS requirements. This procedure is applied independently,
and in parallel, on all application classes and terminates
when a further reduction in the number of replicas would
lead to an infeasible solution. In particular, Hill Climbing
is a local-search-based procedure that operates on the cur-
rent solution performing a change (more often referred to as
move) in the structure of the solution in such a way that the
newly generated solution could possibly show an improved
objective value. If the move is successful it is applied again
on the new solution and the process is repeated until no

Parallel LS
Optimizer

Initial Solution

QN

Simulator

Optimized
Solution
{json}

Problem

Description

{json}

Initial Solution

Builder

Cost and Feasibility evaluator

MINLP

0.1

1

0.2

0.3

0.8

0.4

0.6
1

0.5

0.4 0.8

0.6

0.2 0.6

0.7

0.40

0.8

0.2

0.9

-0.2 0

1

-0.4 -0.2
-0.4-0.6

-0.6
-0.8

-0.8
-1 -1

Solver abstraction and connectors

Partial solution cache

D-SPACE4Cloud

Solver

Figure 1: D-SPACE4Cloud architecture

further improvement is possible. The HC algorithm stops
when a local optimum is found; however, if the objective to
optimize is convex, HC is able to find the global optimum
for the problem. This is the case of the considered cost func-
tion, which depends linearly on the number of VMs in the
cluster, since the VM types to use are fixed in the first phase
of the optimization process based on MINLP texhniques. In
other words, the joint selection of the VM type and their
number is NP-hard, but when the type of VM is fixed in the
first phase, the HC obtains the final solution for all classes
in polynomial time.

4. CONCLUSIONS
In this paper we briefly introduced the problem of ca-

pacity allocation in Big Data Cloud clusters with multiple
concurrent applications and a tool to effectively tackle it at
design time. The tool currently considers only public Clouds
and simple MapReduce jobs, but we are actively working to
support DAGs, as well as private Clouds.

Acknowledgments
The research reported in this article is partially supported
by the EU grant no. H2020-ICT-2014-1-64486 (DICE).

5. REFERENCES
[1] M. Malekimajd, D. Ardagna, M. Ciavotta, A. M. Rizzi,

and M. Passacantando. Optimal Map Reduce job
capacity allocation in Cloud systems. SIGMETRICS
Perform. Eval. Rev., 42(4):51–61, June 2015.

[2] M. Malekimajd, A. M. Rizzi, D. Ardagna, M. Ciavotta,
M. Passacantando, and A. Movaghar. Optimal capacity
allocation for executing MapReduce jobs in Cloud
systems. In SYNASC, 2014.

[3] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA:
Automatic resource inference and allocation for
MapReduce environments. In ICAC, 2011.

176

	Introduction
	Problem Statement
	D-SPACE4Cloud
	Conclusions
	References

