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ABSTRACT
Providing users with Quality of Service (QoS) guarantees
and the prevention of performance problems are challenging
tasks for software systems. Architectural performance mo-
dels can be applied to explore performance properties of a
software system at design time and run time. At design
time, architectural performance models support reasoning
on effects of design decisions. At run time, they enable au-
tomatic reconfigurations by reasoning on the effects of chan-
ging user behavior. In this paper, we present a framework for
the extraction of architectural performance models based on
monitoring log files generalizing over the targeted architec-
tural modeling language. Using the presented framework,
the creation of a performance model extraction tool for a
specific modeling formalism requires only the implementa-
tion of a key set of object creation routines specific to the
formalism. Our framework integrates them with extraction
techniques that apply to many architectural performance
models, e.g., resource demand estimation techniques. This
lowers the effort to implement performance model extraction
tools tremendously through a high level of reuse. We evalu-
ate our framework presenting builders for the Descartes Mo-
deling Language (DML) and the Palladio Component Model
(PCM). For the extracted models we compare simulation re-
sults with measurements receiving accurate results.

1. INTRODUCTION
During the life-cycle of a software system, performance

analysts continuously need to provide answers to and act
on performance-relevant questions about response times, re-
source utilization, bottlenecks, trends, anomalies, etc. It is
a common approach to evaluate systems using model-based
predictions in addition to measurement-based approaches.
Model-based predictions allow for exploration of alterna-
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tive deployments, architectures, and configurations without
the need to test them in a live system. Architectural per-
formance models, a subcategory of quality-aware architec-
ture description languages, can be applied to explore perfor-
mance properties of a software system for design time and
runtime scenarios. At design time models can be applied
to reason on effects of design decisions when implementa-
tion not fully available yet. At runtime they can be used to
reason on effects of changing user behavior on performance
to avoid contention via reconfiguration. The main advan-
tage of architectural models, compared to purely predictive
models, is that they preserve context information alongside
the performance information. Thereby, architectural per-
formance models provide actionable knowledge for automa-
ted or manual architectural design decisions. There exist
many architectural performance modeling languages, e.g.
Descartes Modeling Language (DML) [10], Palladio Com-
ponent Model (PCM) [4], CACTOS [1], UML MARTE [12],
and ACME [17]. Even though the mentioned architectural
models focus on different application domain, they have a
high semantic overlap. Key concepts such as compositio-
nality, component interfaces, and interface providing roles
can be found in all of the mentioned languages. Each of the
languages focuses on a different application scenario and is
supported by different tool chains for model analysis.

The manual creation of accurate performance models for
large scale systems requires extensive effort and knowledge of
the architectural modeling language. Existing performance
model extraction tooling focuses on the extraction of models
for a single language. This requires the reimplementation
and maintenance of extraction tooling for each architecture
language.

In this work we provide an expandable approach for auto-
mated extraction of architectural performance models. Our
approach isolates the extraction of shared concepts from lan-
guage specific implementations. Developers adopting our
framework only need to implement a builder interface co-
vering the language specific mapping of common concepts,
instead of implementing the entire extraction code. The
implementation of our approach, called Performance Model
Extractor (PMX), can be reused at different development
stages to create performance models of different modeling
languages. The remainder of this paper is organized as fol-
lows: Section 2 motivates our approach by means of a pro-
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blem statement. Section 3 presents our approach. Section
4 outlines the builder interface. Section 5 outlines how the
framework derives generic information used to trigger the
builder. In Section 8 we present the evaluation of our ap-
proach. Section 9 concludes.

2. PROBLEM STATEMENT
Architectural performance models can be applied for vari-

ous purposes and at different development stages [7]. Archi-
tectural performance models have been applied for runtime
optimization, as well as evolution scenarios. Further, archi-
tectural performance models have been applied to evaluate
different concerns. Analysis approaches include, e.g., SLA
evaluation, or extensions to support energy cost prediction.
To enable the application of previously described in an in-
tegrated approach, there is very limited tool support. Most
analysis techniques are only supported by a single analysis
tool chain. An integrated approach would enable the follo-
wing aspects:
• Analysis Tool chain Parallelism“As a user, I would

like to use different tool chains in parallel.” Advanced
Analysis approaches only supported for a limited set
of languages. Analysis tool chain parallelism would
enable an extended range of analysis techniques.
• Analysis Toolchain Flexibility “As a user, I pre-

fere not to be forced to decide about the toolchain in
advance.” Easy change of modeling formalism.
• Extraction Toolchain Reuse “As a user, I would

like to include performance model extraction for ne-
wly emerging formalisms without bothering about ex-
traction complexity.” Currently there is a reinvention
of extraction methodology for each modeling forma-
lism. The integration and composition of libraries for
the extraction causes huge efforts.

We see a need for an integrated approach that may reuse
the same monitoring data for different concerns. However,
performance model extraction tooling so far allows only for
the extraction of a single language.

3. APPROACH
The goal of our approach is to separate the extraction

of shared concepts and concerns found in many architectu-
ral performance models, from language specific construction
and mapping routines. A key concern shared when creating
architectural performance models is to determine resource
demands. Resource demands represent the computational
demand caused when users issue calls to the services of the
modeled system. Resource demand estimation techniques le-
verage measurement logs to estimate the resource demands
of individual service calls [14]. To provide resource demand
estimation techniques with sufficient information, the com-
positional structure and call dependencies between system
components need to be extracted. Kieker is an example of
monitoring tooling that supports this [20].

In this work we present a framework, called PMX, that
provides developers with a solution that integrates establis-
hed tooling for monitoring [20], log processing [19], and re-
source demand estimation [14]. To leverage PMX for model
construction, developers only have to implement a model
builder interface that maps language independent concepts
to language specific representations.

PMX employs the builder [8] pattern to decouple language
specific mappings from common model extraction concerns.

Figure 1 shows the coarse grained architecture including two
builder implementations. The intent of the builder design
pattern is to separate the construction of a complex com-
posed entity from its representation. Through this, the
same construction process can create different representa-
tions. The construction complexity of architectural perfor-
mance models is caused by control flow extraction, the high
degree of interconnection between concepts [18] and by the
choice of resource demand extraction techniques. By decou-
pling resource demand estimation and modeling extraction
methods for the concepts shared among architectural per-
formance models, PMX reduces the effort for implementing
automated performance model extraction.

4. BUILDER INTERFACE
Our approach builds upon the basic assumption that ar-

chitectural performance modeling languages share equiva-
lence classes of elements. For identification we orient at
model-driven software development (MDSD) community. Ta-
ble 1 shows the core concepts of architectural performance
models we identified. They include application architecture
concepts like e.g. role, interface, signature, components, ser-
vice behavior and resource demands. Those concepts occur
or correspond with entities in many quality-aware architec-
tural description languages like, e.g., DML, PCM, CACTOS
[1], UML MARTE [12], and ACME [17]. The terminology of
PMX builds upon the terminology used in DML, PCM and
CACTOS. The following outlines the correspondence bet-
ween the chosen terminology and ADL, if it deviates. For
UML Marte (AADL) for Embedded Systems, ClientServer-
Ports with kind = provided and kind = required correspond
to provided and required roles, respectively. WorkloadBe-
havior from the package PAM Workload has the role of a
service behavior. In ACME [9], ports subsume both requi-
red and provided roles of a component. The role of a port in
the connector between two components identifies a port as
either required or provided. The connectors correspond with
assembly connectors. Service behavior in a set of component
properties that can be parameterized. The identified core
concepts lead to the builder interface we present in the fol-
lowing.

public interface IModelBuilder {
public EObject createHost(String hostName, int

numberOfCores);
public EObject createComponent(String componentName);
public EObject createInterface(String

InterfaceName); //
public EObject createMethod(String interfaceName,

Signature signature);
public EObject createAssembly(String assemblyName,

String componentName);
public EObject createAllocation(String assemblyName,

String hostName); //
public EObject createProvidedRole(String

componentName, String interfaceName);
public EObject createRequiredRole(String

componentName, String interfaceName);
public EObject createServiceBehavior(String

componentName, String methodName,
List<ExternalCall> externalCalls, String
processingResource, double meanResourceDemand);//

public void createResourceDemand(String service);//
public void createWorkload(HashMap<String,

List<Double>> workload);
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PalladioBuilderBuilderPerformanceModelExtractor * PalladioModel

builder:Builder

DMLBuilder DMLModelconstruct()

this.builder.buildPart()

buildPart()

creates

Figure 1: Builder Pattern Architecture of PMX

Concept Description

Component
Component description includes provided and required roles, and behavior descriptions for the
signatures (derived from provided roles).

Interface contains a set of method signatures
Method signature operation description that may be equipped with a method parameters and a return value.
Providing and requiring
roles

Roles equip component definitions with an external access definition. They contain an interface
reference. Mapping between first class entities interface and component.

Assembly
Contexts support the multiple use of the same component type in several environments in an
assembly.

Host Infrastructure element where assembly components can be deployed on.

Assembly connector

After putting components into assembly contexts (from which provided and required context
roles can be derived) they can be connected by using system assembly connectors. A system
assembly connector connects a required role in of a component in a given assembly context
with the provided role of a component in a different assembly context. The referenced provided
role and the referenced required role refer to the same interface.

Service behavior
service behavior including resource demands, internal control flow and and external calls. As-
sociated to a component and signature.

Workload frequency and kind of system requests

Table 1: Core performance anotated architecture description language (ADL) concepts based on [4]

The creation methods of the interface, presented above, re-
present creation and/or connection functionality. The crea-
ted objects are referenced by other interface methods during
model creation. The implementation of creation methods
for host, component, and interface require only object in-
stantiation. The implementation of such creation methods,
for a concrete language, is straight forward. Those basic
elements are referred to in the performance model composi-
tion process at multiple stages. For example, createMethod
references interface to append signatures, createProvide-

dRole, createRequiredRole are appended to existing com-
ponents and reference the previously created interface, cre-
ateResourceDemand enriches service with internal resource
demand. The resource demand is not a parameter as it can
be taken from resource demand HashMap using identifier
(c.f. Algorithm 1). Other connections include, for example,
connectAssemblies requires to add references to connected
assemblies to the connection element. The function addCom-

ponentToAssembly sets the component for an assembly.

public EObject connectAssemblies(String
providingAssemblyName, String
requiringAssemblyName);

public void addComponentToAssembly(String
assemblyName, String componentName);

The model creation process needs to store created elements
to access them later for connection and references. Access

to previously created elements needs to be done based on
identifiers. Hence, the interface also includes various getter
functions.

public EObject getRole(String role);
public EObject getAssembly(String assemblyName);
public EObject getMethod(String methodName);
public EObject getInterface(String interfaceName);
public EObject getServiceBehavior(String

componentName,String methodName);

To relieve the developer of a builder implementation from
implementing all getter functions, we introduced Abstract-

ModelBuilder which implements all getter functions of the
IModelBuilder interface. It stores created elements in hash
maps so that they can be referenced within the extraction
algorithm. Hence, builder implementations also have to ex-
tend AbstractModelBuilder to be compatible with the fra-
mework.

5. FRAMEWORK IMPLEMENTATION
We build our framework to derive the core aspects of ar-

chitectural performance models like control flow, resource
demands, and workload. Then PMX uses them to trigger
the methods of the builder interface to create an architec-
tural performance model. Algorithm 1 represents the per-
formance model extraction receiving the path to monitoring
logs and a builder instance. Lines 2-7 extract information
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Algorithm 1 Model Extraction Using Generic Builder

1: function construct(Path path, Builder builder)
2: logs ← readLogFiles(path)
3: analyzer ← compose analysis filters
4: analyzer.analyze(logs)
5: operationGraph ← analyzer.getOperationGraph()
6: rds ← analyzer.getResourceDemands()
7: workload ← analyzer.getWorkload()
8: buildModel(operationGraph, rds, workload, buil-

der);
9: builder.save()

10: end function

independent of targeted language description which is used
in Line 8 to trigger the construct method of the builder pat-
tern that triggers calls to builder methods. The extraction
of basic information is based on filters that are connected
using pipes-and-filer architecture of Kieker [20]. The proces-
sing of monitoring logs is triggered in Line 4. The extraction
of control flow is based on Kieker filters that extract opera-
tion call graph including calls weights that allow to derive
call probabilities (for details see [? ]). The resource demands
extraction filters for method call times and resource logs. Af-
ter processing of all logs, the framework triggers the Library
for Resource Demand Estimation (LibReDE) [15, 14] 1 to
estimate resource demands. In case resource utilization in-
formation is available, estimation is based on service demand
law [6]. Otherwise, estimation uses a response time approxi-
mation approach. To describe the workload, PMX stores for
each interface/role at the system border the arrival times.
This allows for the creation of empirical workload models as
same as for aggregated probabilistic ones.

Algorithm 2 refines access of builder. Lines 2-5 apply Kie-
kers systemModel containing static system properties (na-
mes of hosts, components, interfaces, allocations) which can
be received counting divergent identifiers. Each of the na-
med lines iterates over all elements for the type. For exam-
ple, Line 2 triggers the createHost interface method for each
host. Interaction element creation happens using call graph
processing. Vertices represent methods (including informa-
tion about component and host). Edges represent calls to
other methods. Lines 6-23 process all call graph vertices. Li-
nes 7 and 8 create per edge an assembly and adds component
to assembly. method executions. Line 22, uses information
that is For each outgoing edge, a service call is created.

6. EXPANDABILITY OF FRAMEWORK
Even our framework covers a full extraction story, it not

yet covers all modeling techniques and possible extraction
techniques. Our implementation is limited by the builder
interface (shared concepts) and by the available input infor-
mation. In the following we sketch how to expand:

Information retrieval methods To include new infor-
mation retrieval methods without introducing new elements
is possible to extend the framework without changing the
builder interface. For example, when the monitoring fra-
mework enables to measure resource demands per request,
it could be included to replace estimation methods. Furt-
her, there exist some limitations using standard monitoring
log informations. The model creation of PMX builds upon

1http://descartes.tools/librede

Algorithm 2 Application of builder for Performance Model
Generation
1: function buildModel(systemModel, operationGraph,

resourceDemands, workload, builder)
2: createHosts(systemModel, builder);
3: createComponents(systemModel, builder);
4: createInterfaces(systemModel, builder);
5: createAllocations(systemModel, builder);
6: for all source : operationGraph.vertices do
7: component ← source.component.name
8: host ← source.host.name
9: assembly ← component + host

10: builder.addAssembly(assembly);
11: builder.assign(assembly, component);
12: for all edge : source.outgoingEdges do
13: target ← edge.getTargetVertice;
14: tComponent ← target.component.name
15: tHost ← target.host.name
16: tAssembly ← tComponent + tHost
17: builder.assign(tAssembly, tComponent);
18: builder.connect(assembly, tAssembly);
19: calls ← outgoing.getExternalCalls();
20: end for
21: rd ← resourceDemands.get(signature)
22: builder.addBehavior(component, signature,

calls, host, rd);
23: end for
24: end function

a probabilistic call graph introducing some limitations. For
example, it cannot be said whether a loop behavior has been
created using a ”for” or ”while”-operator. Hence, our frame-
work does neither. Moreover, component relations can be
extracted while containments cannot be derived from avai-
lable measurement information. The measurement logs do
not uncover whether a method call has been triggered by an
interface call or triggered by an event listener. Additional
use of source code information could improve the extracted
model and retract limitations.

Expanding information sources, additional runtime infor-
mation, e.g. garbage collection [23] could be included. Some
events, like garbage collection, may occur rarely. It depends
on chance if such information is included in measurements.
In the direction of rare events, the framework could be ex-
tended with outlier detection mechanisms.

New features It might be required for some applications
to expand PMX to extract additional language features avai-
lable only in a subset of formalisms. This requires to expand
the builder interface. We propose to use template method
[8] extending the skeleton of the CONSTRUCT method, defer-
ring building again to builders. It is important to provide
an empty default implementation to not break other builders
and remain downward compatible. Extending the common
set of core modeling techniques, there exist concepts which
are integrated differently. For example, parametric depen-
dencies (e.g. parametric resource demands and branching
probabilities) have been integrated differently. Hence, ex-
tensions in this direction should not be required for every
builder.

Modeling alternatives Some languages offer to model
the same systems properties in various ways. For exam-
ple, DML offers different granularities (black-box, coarse-
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Workload in requests per second
CPU utilization (average) session response time in ms (average)

Actual DML PCM Kieker DML PCM

1(calibration) 0.33% 0.35% 0.34% 14.24 14.13 14.13

732 25.22% 24.64% 24.84% 14.35 14.14 14.54

940 33.12% 31.64% 31.77% 15.65 14.14 14.69

Table 2: Evaluation Results Pet Clinic Case Study.

grained, fine-grained) for the behavior description. This can
be addressed providing different builder implementations for
the same language.

7. STATE OF THE ART
There exist various quality-aware architecture description

languages, often focused on performance. A comparison
of architectural performance modeling languages has been
performed e.g. in [3]. The extraction of such models can
be grouped by aspects (e.g. control flow and resource de-
mands), each providing different possibilities for their ex-
traction [21]. For example, the options for the extraction
of resource demands include direct measurement and many
estimation techniques [24, 14]. In [16] an agent-based model
update for online scenarios has been proposed, that updates
parts of the model in different frequency and can be applied
supplementary to the presented approach. The approach
in this papers compares mainly to performance model ex-
traction approaches targeting architectural models. Exam-
ples include e.g. [22], [25]. Compared to our contribution,
the named approaches are limited to a single modeling lan-
guage and rely on commercial monitoring infrastructure. In
addition to measurement-based extraction, there exist ap-
proaches that leverage both static code analysis and mea-
surements to extract architectural performance models [11].
The static analysis allows for the detection of architectural
information from source code, e.g., control flow causality for
loop counts. However, they require an active profiling of the
application to detect these causalities.

8. EVALUATION
To evaluate our framework, we developed two builder im-

plementations of the builder interface. We selected PCM
and DML. Both have been applied at design time and run-
time scenarios. While the first is more related to design
time, the second is more a run time architectural model.

Setting To evaluate our approach, we selected the Pet
Clinic application 2 representing a portal for vet appoint-
ments. We deployed it on a Dell Power Edge R815 with 48
cores, each core equipped with an Opteron 6174 CPU 2.6
GHz. The application was running on an Ubuntu 14.04.5
VM equipped with 16 GB RAM (to be no bottleneck) and an
assignment of 42 cores. We modified the “browse and edit”
workload shipped with the application removing the “edit”
operations to avoid database contention (due to locking).
The resulting workload is open with an exponentially dis-
tributed arrival rate. Each vet customer calls the following
sequence of interfaces: The vet visits the front page wel-

comeGET, looks at all vets showVetListGet, then searches

2https://github.com/spring-projects/spring-petclinic

pet owners initFindFormGet, processFindFormGet and dis-
plays all pet owners using showOwnerGET. Then the vet trig-
gers two times a specific pet owner page processFindForm-

Get. Besides workload, we modified the application to cache
the vet catalog once at startup to improve performance.

The load driver has been deployed at the application ma-
chine to avoid a network bottleneck that manifested itself
for transaction rates above 400 workload requests per se-
cond. We employed a JMeter instance as a load driver and
deployed it on a separate VM which received the remaining
six cores.

Results For the described setting, we measured a calibra-
tion workload at low utilization used to trigger performance
model extraction applying the builder implementations for
PCM and DML. Then we performed benchmark measure-
ments using the Kieker monitoring framework for different
load scenarios and compared them to simulation results of
the extracted models. We derived performance metrics in
the following way: Kieker log files where filtered using the
Descartes Query Language [5] to derive response times. Uti-
lization has been measured using the Linux top command.

DML Analysis used a transformation to Queueing Petri
Nets (QPNs) [13] and simulation using SimQPN simulation
engine. PCM analysis was performed using SimuLizar [2]
simulation engine. Table 2 compares the measured and pre-
dicted response times and utilizations. For the evaluated
scenarios we receive accurate model-based predictions. The
deviation for utilization is below 2% and below 10% for re-
sponse times.

9. CONCLUSION
In this paper, we present a framework for the extraction of

architectural performance models generalizing over the tar-
get modeling language. Using the presented approach, the
user only has to implement our builder interface to create a
performance model generation tool for a specific modeling
language. This lowers the effort for such a tool tremen-
dously through a high level of reuse. Our approach enables
an easy comparison of architectural performance modeling
languages and access to different tool chains. Our evalua-
tion presents accurate prediction results for the extracted
models. Source code as well as compiled eclipse plugins for
the framework as well as model specific extraction tools (in-
cluding concrete builder implementations) have been made
available online. 3
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