A Generic Platform for Transforming Monitoring Data into
Performance Models

Jonas Kunz
Karlsruhe Institute of
Technology
76131 Karlsruhe, Germany
jonas.kunz@
student.kit.edu

ABSTRACT

The performance of software systems is an ongoing issue
in the industry, including the development of corresponding
performance models. Recently several approaches for de-
riving such performance models from monitoring data have
been proposed. A current limitation of these approaches is
that most of them are bound to certain monitoring tools for
providing the data, limiting their applicability.

We therefore propose a generic platform for transform-
ing monitoring data into performance models, encapsulat-
ing these approaches for deriving performance models. This
platform gives the flexibility of exchanging the monitoring
tool or the used performance modeling approach, allow-
ing more comprehensive performance analysis without ad-
ditional manual transformation work. A seamless exchange-
ability of the performance modeling approach enables the
generation of different types of performance models based
on the same monitoring data, while the exchangeability of
the monitoring tool enables the same approaches to be em-
ployed on a wider range of systems, as often the applicability
of certain monitoring tools is limited by environmental prop-
erties. In addition, the generic nature of the platform aims
to support the rapid development of prototypes of new, up-
coming ideas within the context of performance modeling
based on monitoring data.

During our evaluation we examine the quality of our ap-
proach in terms of accuracy and scalability. We show that
our platform for transforming monitoring data into perfor-
mance models scales with a very low overhead and that the
results of the integrated performance modeling approaches
are very accurate in comparison to the results of the non-
integrated versions.

Keywords

Model Transformation, Application Monitoring, Usage Pro-
file Extraction, Performance Model Generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. .. $15.00
DOL: http://dx.doi.org/10.1145/3053600.3053635

Christoph Heger
NovaTec Consulting GmbH
70771 Leinfelden-
Echterdingen, Germany
christoph.heger@
novatec-gmbh.de

151

Robert Heinrich
Karlsruhe Institute of
Technology
76131 Karlsruhe, Germany

robert.heinrich@kit.edu

1. INTRODUCTION

With the broad range of applications for software systems,
the performance of these systems continues to be an impor-
tant issue for the industry. This is especially the case for
web-based business applications, like e-commerce software.
In this field, the performance of the underlying system can
have a direct impact on the business success, as customers
expect fast response times as part of an appealing user ex-
perience, regardless of for example the amount of data to be
transferred over the available network [3, 7].

To address the issue of software performance, a common
approach is software monitoring. A wide range of tools ex-
ists for this task [14, 9, 2]. The metrics provided by these
tools reach from plain response times to detailed end-to-end
execution traces. These metrics can then be examined to
uncover existing performance problems either through tool-
guided or manual analysis.

A drawback of measurement based approaches is their re-
active nature: performance problems can only be uncovered
after they occurred and already had an impact on the run-
ning system. This is where performance modeling comes
into play, as performance models can be used to predict
performance issues possibly arising in the future. A current
problem with performance models however is that they are
often cumbersome to generate. The process of developing
such models usually involves a lot of expert knowledge about
the target domain an the modeled system. For this reason, a
tendency of monitoring approaches and performance model-
ing approaches to converge has been identified by Woodside
et al. [16]. The idea is to improve the quality of performance
models and to ease their creation by taking monitoring data
into account during the model generation process. There-
fore, several approaches have recently been presented for
transforming monitoring data into performance models. A
current limitation is that these approaches are mostly bound
to certain measurement environments: they usually require
monitoring data of a specific tool and have to be configured
using approach specific mechanisms. This restricts the ap-
plicability of the approaches to systems which are supported
by the used monitoring solution.

The idea of this paper is to solve this issue by provid-
ing a common infrastructure for transforming monitoring
data independently from the input format into performance
models based on existing approaches. We present the Moni-
toring Data Transformation Platform (MDTP) to decouple
the monitoring tool from the performance model generation
approaches to make both, the tool and the modeling ap-

proach, exchangeable. Additionally, this allows to combine
the benefits of the different model generation approaches by
executing each on the same set of monitoring data. Another
aspect of the generalization is to provide an infrastructure
for quick prototyping of new ideas within the topic of per-
formance modeling.

The main contributions of this paper are as follows:

e We propose a generic platform for transforming moni-
toring data into performance models, allowing the in-
tegration of existing and upcoming monitoring data
based performance modeling approaches. Hereby, we
decouple the model generation from the input monitor-
ing data using a new, generic monitoring data format
extending existing generalizations. This format is de-
signed to shift the execution of common analysis tasks
usually done by each performance modeling approach
into our proposed platform, avoiding a duplicate exe-
cution of these tasks.

e For our platform, we provide proof-of-concept integra-
tion for two common monitoring tools and two recently
presented performance modeling approaches which fo-
cus on the generation of system usage models.

e We give a short overview of an evaluation we perform
of our proposed platform based on the implemented
integrations presented in this paper.

2. STATE OF THE ART

The decoupling of the performance model generation ap-
proaches from their employed monitoring tools requires a
universal, tool-independent format for exchanging monitor-
ing data. Based on the data typically provided by moni-
toring tools and required for performance model generation,
several requirements for this format can be deduced. We
based this deduction on two specific performance model gen-
eration approaches, iObserve [4] and WESSBAS [15], how-
ever the requirements are kept generic to also be applicable
on other approaches. The requirements (REQ) are as fol-
lows:

REQ1 The format has to be capable of representing trace-
based monitoring data in a high level of detail, includ-
ing complex inter-dependencies, like the hierarchical
structure of method invocation sequences.

REQ2 The format must represent data on a high level of
abstraction hiding the details of the used monitoring
tool to capture the data. Therefore, typical analysis
steps performed on raw monitoring data, like session
and trace reconstruction from atomic events should not
be necessary anymore.

REQ3 The format should provide a mechanism to not only
represent control flow, but also other high level in-
formation, like observed structural changes (e.g., de-
ployment changes) or other occurring environmental
events, like incoming requests from users.

REQ4 The format should be extensible in order to support
new upcoming approaches in the future and to support
the integration of other existing approaches.

Several approaches for generalizing monitoring data have
already been proposed. Among them is OMG’s Structured
Metrics Meta-Model (SMM) [10] and an extension to it, the

152

Measurement Architecture for Model-based Analysis. An-
other similar approach is the Software Measurement Frame-
work introduced by Mora et al.[8]. These meta-models can
be used to represent data in a tool-independent manner
and are designed domain-independent, therefore they ful-
fill REQ2 and REQ4. However, these approaches focus
on the representation of the monitoring algorithm, the de-
scription of how the monitoring data is derived. Their high
level of abstraction prevents an straightforward realization
of REQ1 and REQ3, making them not suitable for our
purposes. A more similar approach to the desired generic
format is the Common Trace API (CTA), also known as
OPEN.XTRACE [12]. The CTA is an API for representing
monitored execution traces in a tool independent fashion,
therefore immediately satisfies REQ1 and REQ2. Addi-
tionally, as the CTA is designed as an API it is very extensi-
ble, fulfilling REQ4. However, currently the representable
data is limited to method traces. Other high-level data,
like observed deployment changes, can not be directly rep-
resented and require further analysis of the data. For this
reason REQ3 is not fulfilled. A common modeling formal-
ism meeting REQ3 are event-driven state machines. For
example, the UML state machines [11] are a widely used for-
malism for modeling the behaviour of a system, especially
the reaction to events including environmental changes. We
therefore decided to extend the CTA with an event mod-
eling mechanism, which is outlined in the following section
alongside with the structure of the MDTP.

3. PLATFORM DESIGN

In this section, we introduce the Monitoring Data Trans-
formation Platform (MDTP) [6], our proposed approach
for generalizing the transformation process from monitoring
data to performance models.

The goal of the MDTP is to increase the applicability of
existing approaches for generating performance models from
monitoring data. This is done by encapsulating the import
process of the monitoring data into a separate module for
each monitoring tool. Similarly, each integrated approach
for deriving the performance models gets encapsulated, al-
lowing a combination of each monitoring tool with each ap-
proach with less effort.

The benefit of our approach can be illustrated by a sim-
ple scenario: the owners of an already productive software
system decide to employ performance modeling to further
improve their quality-of-service. Two performance modeling
approaches are chosen for this purpose, e.g. one for building
architecture level performance models (like iObserve [4]) and
one for generating usage models (like Wessbas [15]). How-
ever, considering the state of the art these approaches are
bound to certain monitoring tools which are very likely to be
different or at least to require different formatted monitor-
ing data. There are two possible solutions for this problem
currently, which are both not feasible: (a) instrument the
productive system with both monitoring tools required at
the same time or (b) rewrite one of the performance model-
ing approaches to be compatible with the monitoring data
required for the other one. Alternative (a) is very likely
to induce a significant overhead on the system, which is a
productive system in our scenario. Alternative (b) would
solve the problem temporary, however the effort of rewrit-
ing an approach would be necessary again when another
performance modeling approach is employed. A better so-

Monitoring Data
(Tool-specifc Format)

Developer

Performance
Model
Transformation
Module

Performance
Model(s)

S Performance
tool-specific
Model -
Input .
Model(s) Transformation
(external Tool)

<<specifies>>

[Part of the MDTP

—Spasses> o, Part of an existing tool

I:l Transformation

O Model instance

Figure 1: Monitoring Data Transformation Platform Structure

lution is to employ the MDTP: for the MDTP, the modules
integrating each monitoring tool and performance modeling
approach have to be written only once and can afterwards be
combined in any way across different projects without addi-
tional effort. Therefore, the MDTP significantly lowers the
barriers for employing performance modeling on real-world
systems.

3.1 Structure

An overview of the proposed structure of the MDTP is
shown in Figure 1. The process starts with monitoring data
collected using a certain monitoring tool in it’s specific for-
mat. This data then gets transformed by a corresponding
Import Transformation Module into an instance of the
proposed MDM. For each monitoring tool integration a sep-
arate, independent module is implemented. Similarly, the
existing approaches for generating performance models from
monitoring data each get encapsulated in an own Perfor-
mance Model Transformation Module. Ideally, this
type of modules is very lightweight: the MDTP aims to inte-
grate existing approaches for deriving performance models,
referenced as “external tool” part in Figure 1 without requir-
ing many adaptions. The idea behind this encapsulation is
to allow an eased exchange of the individual approaches to
analyse the same set of monitoring data with different ap-
proaches. Most of these approaches require different input
in addition to the monitoring data, like predefined architec-
ture models of the target system. To allow the seamless in-
tegration, the modules offer an approach-independent solu-
tion for configuring this additional input data: each module
supplies meta-information about the required additional in-
put in a generic fashion through an extensible configuration
API. Based on this API, tools can make use of the MDTP
without any required knowledge of the internals of the used
performance models generation approaches. For example,
many approach require architecture models for generating
their performance models, these can be supplied through
this interface.

Before deriving the actual performance models, most ap-
proaches perform a preprocessing step and extract the re-
quired information from the monitoring data into an in-

153

stance of an approach-specifc input model. Based on this
common pattern, the Transformation Modules can usually
be structured in a similar way: the first action performed by
these modules is an Input Validation to check whether the
provided MDM instance together with the approach-specific
additional input artefacts are valid and provide the infor-
mation required. Afterwards, the monitoring data alongside
with the additional input artefacts are transformed into in-
stances of these approach-specific input models. This signif-
icantly reduces the effort required to integrate such trans-
formation approaches: After the specific input model has
been derived, the module can execute the encapsulated ap-
proach without additional modifications. Example instanti-
ations for monitoring data import modules and performance
model transformation modules are given Section 4.

3.2 Monitoring Data Model

The MDTP requires a generalized monitoring data format
for the exchange of monitoring data between the import
modules and the transformation modules. Deducing from
our analysis in Section 2, we decided to extend the CTA
with an event modeling mechanism, resulting in our Mon-
itoring Data Model (MDM). These events are used to en-
rich the technically detailed monitoring data representation
with more semantic information, which normally has to be
manually derived by the performance modeling approaches:
The MDM models the observed system as event-driven state
machine. Therefore, we assume that any computation the
observed system performs has been triggered by an event.
Examples for such events are incoming HTTP user requests,
operating system events or deployment changes. The trig-
gered processing of these events can then in turn trigger
other, internal events. For example, a call to a service within
the boundaries of the system could be modeled as such an
event. So in total, the MDM can be seen as a log of the
execution of a state machine: we log all observed events and
resulting processing into an MDM instance. The processing
of the events in turn is represented using the CTA, which is
referenced by attaching method invocation traces to events.

The MDM is modeled as an API, just like the CTA: we
provide interfaces to interact with a model instance but do

not specify an implementation of it, as this allows the MDM
to be extensible and allows the implementation of different
technology specific versions of the MDM. However, for vali-
dation purposes we provide a default implementation of the
MDM APT'.

4. PROOF-OF-CONCEPT INTEGRATION

In the previous sections we derived the requirements and
the design of the MDTP based on the state of the art. As
a proof-of-concept and as basis for the evaluation we pro-
vide an integration of two recent approaches for transform-
ing monitoring data into performance models as well as two
monitoring tools. For each, we provide a short introduction
in this section. The goal is to give an overview of the con-
ceptual differences in the integrated tools and approaches
making a generalization using the MDTP beneficial.

The first integrated approach is iObserve [4]. iObserve
alms to accompany the entire life cycle of an application
in order to monitor changes of the system’s environment
and to predict necessary adjustments. The approach espe-
cially takes cloud applications into account with their very
specific environmental properties, like the restricted knowl-
edge about changes behind the facades of used services [5].
Based on monitoring data, iObserve currently generates Pal-
ladio Component Model [13] instances, manifesting observed
structural changes as well as changes in the usage profile of
the monitored system. Currently, the iObserve approach
uses the Kieker Monitoring Framework [14] as monitoring
solution. iObserve follows the common pattern of trans-
forming the input monitoring data (form Kieker in this case)
into a custom, preprocessed input model. This model mainly
consists of events for representing deployment changes and
an entry call sequence model. The entry call sequence model
is used to model the interaction of users with the system:
for each user session, the sequence of calls received by the
observed system is stored.

The second approach we integrated is WESSBAS [15].
In contrast to iObserve, WESSBAS focuses entirely on the
modeling of system usage based on observed user behaviour
through monitoring data. As resulting performance models,
WESSBAS outputs either architecture level usage models or
load scripts for simulating the observed workload with load
generator tools (e.g., Apache JMeter). WESSBAS also uses
Kieker as monitoring solution and transforms the resulting
monitoring data into a custom input model, so-called session
logs. A session is a list of all user sessions observed. A user
session consists of an ordered list of user requests with their
mapping to the resulting system actions. As WESSBAS
especially focuses on the observation of Web-based applica-
tions, HTTP protocol information, such as the request URI
and parameters can be embedded into the log. This allows
the generation of ready to use load scripts.

The MDM proposed in the previous section therefore is
well suited for generating instances of the approach specific
input models for iObserve and WESSBAS: in the case of
iObserve, the events representing deployment changes can be
directly translated into corresponding MDM events. User in-
teraction with the system is modeled through HTTP events,
which also store relevant information such as a session iden-

"https://github.com /research-iobserve/
monitoring-data-transformation-platform/tree/
master-dev/mdm.default.impl

154

tifier and the URL. Having a trace of the resulting processing
attached, the transformation into session logs or the entry
call sequence model is straightforward.

To evaluate the exchangeability of the used monitoring
tool for performing the analysis, we choose two integrate
two tools. First we integrated the Kieker Monitoring Frame-
work, as it is used by both WESSBAS and iObserve. Kieker
stores the monitoring in form of basic records consisting
of primitive type attributes, requiring processing for recon-
structing their interdependencies. For example, a moni-
tored method call sequence is represented by one record for
each method call, making a tree reconstruction necessary
before further analysis is possible. Though Kieker offers a
framework for performing such common analysis tasks, these
tasks are currently necessary to be performed by the perfor-
mance model generation approaches, further binding them
to Kieker. When integrated in the MDTP however, we em-
ploy these analysis within the import module responsible for
transforming the Kieker data into an MDTP instance, which
significantly increases the flexibility.

As second monitoring tool to integrate we choose inspec-
tIT [9], as it fundamentally differs from Kieker. While Kieker
was designed for extensiblity and flexibility, the main goal
of inspectIT is usability. The monitoring data format of in-
spectIT, was not designed to leaf the inspectIT eco system,
but instead to be analyzed with the included UI. Therefore,
the monitoring format is very high level, already connecting
method calls and meta information belonging together in
so-called Invocation Sequences. This makes the integration
of inspectIT fundamentally different from the integration of
Kieker.

S. EVALUATION

Using the proof-of-concept integration from Section 4, we
performed an evaluation of our concept. In this section we
give a short overview of our validation, which is presented
in more detail in our previous work [6].

5.1 Goals

The idea of the evaluation is to examine the capability
of the MDTP to generalize the transformation process from
monitoring data into performance models. As this generic
goal cannot be directly quantified, we instead examine the
provided integrations of inspectIT, Kieker, WESSBAS and
iObserve into the MDTP as indicators.

The first goal we evaluate is the accuracy of the provided
integrations. For Kieker and inspectIT, we evaluate how ac-
curate the resulting MDMs represent the traced execution
of the monitored system. For iObserve and WESSBAS, we
want the integrated modules to behave as similarly as pos-
sible compared to the non-integrated approaches.

The second goal concerns the usability of the MDTP. To
be applicable in the real world, the MDTP must not intro-
duce a noteworthy overhead to the analysis tasks in terms
of runtime. Therefore, the second goal is to evaluate the
scalability of all implemented MDTP modules.

5.2 Experiment Environment

For the examination of the goals presented in the previous
section, we focus on the monitoring and analysis of user
behaviour on a experiment system. This is the core aspect
which is common to both WESSBAS and iObserve, showing
the benefit of a generalization.

For the evaluation of the accuracy and the scalability, we
require comparable and scalable sets of measurement data
generated with both inspectIT and Kieker. These sets have
to be comparable in the manner that they represent the same
monitored system under the same environmental conditions
(e.g. same hardware and same load).

For this reason, we setup a custom application on a local
machine, which we instrumented with both inspectIT and
Kieker. As application to monitor we choose “The Heat
Clinic”. “The Heat Clinic” is a Web shop which is provided as
a demo application for the Broadleaf Commerce Framework
[1]. Therefore, it offers the common functionality to users of
managing an account, a shopping cart and executing orders.
For this reason, we identified “The Heat Clinic” as a close
to real world application which is capable of complex user
interaction which we can use to generate monitoring data.

With one monitoring tool active, we set the system under
load using Apache JMeter and record the monitoring data.
JMeter is capable of simulating users by issuing series of
HTTP requests to the experiment system which are speci-
fied in a load script. The goal of our load script is to produce
load as similar as possible to real world users of the appli-
cation. Therefore, we chose to model our users through a
markov chain, which is closer to real-world users than a typ-
ically used linear script. This increased variance also helps
uncovering possible inaccuracies introduced by the MDTP’s
transformations. Our modeled customer starts by browsing
around the shop, searching and inspecting some products in
more detail. Eventually the user will login at some point
of time. Afterwards, the user continues browsing but then
possibly adds items to his cart. At the end of his visit before
logging off, the user then possibly performs a checkout.

We examine the MDTP modules using differently scaled
sets of monitoring data. Hereby, we scale the data in two
dimension: first, we vary the complexity of the usage script
by either making JMeter execute all available user actions or
by limiting it to just three simple browsing actions. Second,
we scale the data in size by varying the experiment duration
from 10 to 100 minutes.

5.3 Accuracy Evaluation

To examine the accuracy, first two sets of monitoring data
are generated using our experiment environment, one with
Kieker and one with inspectIT as monitoring tool. The load
script is configured to make use of all available user ac-
tions behaviour and an experiment duration of 100 minutes.
This results in the MDM having to manage more varying
requests, which is more sensitive for possible errors which
we want to uncover. The test duration was chosen to min-
imize the variance introduced by the randomized nature of
the load script while keeping the monitoring data sets small
enough to be safely handled by our system.

These two sets of monitoring data are then each trans-
lated into a MDM instance using the corresponding MDTP
modules. To measure the accuracy of these MDMs we com-
pare them to a reference model which represents the ideally
expected result. As we modeled the input load to the sys-
tem as a markov chain, this model can be calculated as the
stable state of this markov chain. Our hypothesis in case of
a correct integration is that the MDMs are equal to the ref-
erence model except some statistical variance. To perform
this comparison, we used the following criteria:

e The difference between the distribution of HTTP re-

155

15

7 o Simple Data
A Complex Data

10
1

Mean Import Duration (seconds)

[T T T T T T 1
0 50 100 150 200 250 300 350

Number of invocation Sequences (thousands)

Figure 2: inspectIT Module scalability results. Linear and
quadratic regressions lines included.

quest URIs in the MDM and the corresponding distri-
bution in the reference model.

e The difference between distribution of observed transi-
tions from one user action to another and the expected
transition distribution in the reference model.

Based on these criteria, we showed by using the Chi-
Squared test that the MDM instance generated from the
Kieker data as well as the instance generated from the in-
spectIT data accurately represent the execution of our ex-
periment system [6].

For evaluating the accuracy of the integration of WESS-
BAS and iObserve we used a similar approach. Both in-
tegrations were implemented by providing a transformation
from the generic MDM to their specific input artefacts: for
WESSBAS, these artefacts are session logs and for iObserve
sets of entry call sequences and deployment events respec-
tively. Afterwards, in both cases the MDTP executes the
analysis approaches without any modifications. For this rea-
son it is sufficient to analyse the transformation from the
MDM into the approach-specific input artefacts. As both
approaches use Kieker as monitoring solution in their non-
integrated version, we reuse the Kieker data generated by
our test environment as reference for the evaluation. The
idea is to first generate these approach-specific input arte-
facts as reference models. We then perform a structural
comparison of these reference models against the artefacts
generated using our respective MDTP modules based on
the MDM instance generated by the Kieker Import Mod-
ule based on the same monitoring data.

This structural comparison of the artefacts showed that
using the MDTP does not have a negative impact on the
accuracy of the resulting performance models, as the input
artefacts did not show any structural difference influencing
the analysis.

5.4 Scalability Evaluation

To analyze the scalability of all four provided module im-
plementations we reuse our experiment environment from
the accuracy evaluation. We generate differently scaled sets
of monitoring data for both inspectIT and Kieker by scaling
(a) the experiment duration and (b) the complexity of the
executed user actions. Based on these data sets, we bench-
mark the inspectIT and the Kieker modules.

As the transformation into MDM instances preserves the

size of the monitoring data (the transformation does not
introduce data loss, as shown in the previous section), we
generate differently scaled MDM instances using the Kieker
Module and the generated Kieker monitoring data. These
MDM instances of different sizes are then used to bench-
mark the WESSBAS and the iObserve module. For this
benchmarking we focused on the transformation into the
approach specific input artefacts, as we did not modify the
actual analysis approaches which are executed afterwards.
Our analysis showed that the use of the MDTP does not
introduce a noteworthy performance impact compared to us-
ing the standalone performance model generation approaches
[6]: using least-squares regression, we can show that the
Kieker, iObserve and WESSBAS Modules scale linearly with
the size of the input data. For the inspect]T Module we can
show at least an asymptotically quadratic behaviour, how-
ever without excluding the possibiltiy of a linear behaviour
as shown by Figure 2. To give a finite answer for the inspec-
tIT module, better hardware for the experiment system is
necessary, as the benchmarking has to be performed for big-
ger input data sets, which our system was not able to handle
due to memory limitations. With 16 gb of memory we were
just able to process our largest monitoring data set, which
has to be done in-memory currently due to API limitations
of inspectIT. Removing this limitation to allow a streamed
processing of the monitoring data is a future task.

6. CONCLUSION

In this paper, we proposed the Monitoring Data Transfor-
mation Platform (MDTP)) alongside with the Monitoring
Data Model (MDM) for solving the issue of current perfor-
mance modeling approaches being bound to certain moni-
toring tools. The MDTP is designed as an extensible plat-
form, allowing the integration of monitoring tools and per-
formance modeling approaches in form of exchangeable mod-
ules, which employ the MDM as exchange format for moni-
toring data.

For a proof-of-concept we provided module implementa-
tions for two monitoring tools, inspectlT and Kieker, and
two performance model generation approaches. As perfor-
mance model generation approaches we chose to integrated
the two state of the art approaches WESSBAS and iObserve.

The provided implementations were used to evaluate the
MDTP: we evaluated the four modules in terms of scalabil-
ity and accuracy. We showed that the platform is capable of
executing different performance modeling approaches based
on the same monitoring data, which was not possible with-
out manual transformation work before the MDTP. Addi-
tionally, we showed that the MDTP made an exchange of
the monitoring tool possible without affecting the analysis
results, increasing the flexibility of the existing performance
modeling approaches. Furthermore, through our scalability
analysis of the modules, we deduced that the MDTP does
not introduce a noteworthy overhead compared to the non-
integrated analysis approaches.

7. ACKNOWLEDGMENTS

This work is being supported by the German Federal Min-
istry of Education and Research (grant no. 011S15004, diag-
noselT), the DFG (German Research Foundation) under the
Priority Programme SPP1593 and the Research Group of
the Standard Performance Evaluation Corporation (SPEC).

156

8. REFERENCES

[1] Broadleaf Commerce, LLC. Open source enterprise
ecommerce platform - broadleaf commerce.
http://www.broadleafcommerce.com/, accessed
25.07.16.

H. Eichelberger et al. Flexible resource monitoring of
java programs. Journal of Systems and Software,
93:163 — 186, 2014.

T. Everts. Time is Money (Early Release). O’Reilly
Media, 2015.

R. Heinrich. Architectural run-time models for
performance and privacy analysis in dynamic cloud
applications. SIGMETRICS Perform. Eval. Rev.,
43(4):13-22, 2016.

R. Heinrich et al. Software Architecture for Big Data
and the Cloud, chapter An Architectural Model-Based
Approach to Quality-aware DevOps in Cloud
Applications. Elsevier, 2017. to appear.

J. Kunz. A generic platform for transforming
monitoring data into performance models. B. sc.
thesis, Karlsruhe Institute of Technology, 2016.

D. A. Menascé et al. A methodology for workload
characterization of e-commerce sites. In 1st ACM
Conference on FElectronic Commerce, pages 119-128.
ACM, 1999.

B. Mora et al. Model-driven software measurement
framework: A case study. In Ninth International
Conference on Quality Software, pages 239-248, 2009.
NovaTec Consulting GmbH. inspectIT: Manage your
Java Application’s Performance.
http://www.inspectit.rocks/, accessed 11.04.16.
Object Management Group, Inc. Architecture-driven
modernization (adm): Structured metrics meta-model
(ssm), v. 1.1.1. http://www.omg.org/spec/SMM/,
accessed 12.04.16.

Object Management Group, Inc. Unified modeling
language specification.
http://www.omg.org/spec/UML/, accessed 05.04.16.
D. Okanovié¢ et al. Towards Performance Tooling
Interoperability: An Open Format for Representing
Ezecution Traces, pages 94-108. Springer
International Publishing, Cham, 2016.

R. H. Reussner et al. Modeling and Simulating
Software Architectures — The Palladio Approach. MIT
Press, 2016.

A. van Hoorn et al. Kieker: A framework for
application performance monitoring and dynamic
software analysis. In 3rd ACM/SPEC International
Conference on Performance Engineering, pages
247-248. ACM, 2012.

A. a. van Hoorn. Automatic extraction of probabilistic
workload specifications for load testing session-based
application systems. In 8th International Conference
on Performance Evaluation Methodologies and Tools,
VALUETOOLS ’14, pages 139-146, 2014.

M. Woodside et al. The future of software
performance engineering. In Future of Software
Engineering, pages 171-187, 2007.

[2

3]

[4]

[5]

[6]

[7]

8]

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

