
Towards Omnia: a Monitoring Factory
for Quality-Aware DevOps

Marco Miglierina
Politecnico di Milano
Via Golgi 42, 20133

Milan, Italy
marco.miglierina@polimi.it

Damian A. Tamburri
Politecnico di Milano
Via Golgi 42, 20133

Milan, Italy
damianandrew.tamburri@polimi.it

ABSTRACT
Modern DevOps pipelines entail extreme automation and
speed as paramount assets for continuous application im-
provement. Likewise, monitoring is required to assess the
quality of service and user-experience such that applications
can continuously evolve towards use-centric excellence. In
this scenario however, it is increasingly difficult to pull up
and maintain efficient monitoring infrastructures which are
frictionless, i.e., they do not introduce any slowdown neither
in the DevOps pipeline nor in the DevOps organizational
and social structure comprising multiple roles and responsi-
bilities. Using an experimental prototype, this paper elabo-
rates Omnia an approach for structured monitoring config-
uration and rollout based around a monitoring factory, i.e.,
a re-interpretation of the factory design-pattern for build-
ing and managing ad-hoc monitoring platforms. Comparing
with practitioner surveys and the state of the art, we ob-
served that Omnia shows the promise of delivering an effec-
tive solution that tackles the steep learning curve and entry
costs needed to embrace cloud monitoring and monitoring-
based DevOps continuous improvement.

Keywords
Monitoring, Monitoring Management, Monitoring Factory,
Monitoring Interface, Monitoring Infrastructure as Code,
Monitoring Configuration as Code

1. INTRODUCTION
The advent of cloud computing triggered a huge change

in software release cycles for an increasing number of com-
panies embracing cloud technologies as the 21st century’s
technological utility. Upfront investments in physical servers
are being replaced by on-demand and pay-per-use cloud ac-
cess while complex manual deployment procedures are au-
tomated in the context of DevOps [7]. However, where au-
tomation is needed to speedily deploy new versions of a ser-
vice in a safe and reproducible way, monitoring is required
to assess the quality of service and the user experience in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053629

order to understand and solve problems and take business
decisions equally fast. Also, both automation and monitor-
ing play multiple roles in a complex organizational and social
structure [19] around the cloud application, its required mid-
dleware (often from an open-source community) and indoor
components.

In our previous work [13] we observed that effective moni-
toring in such a complex organizational structure and ecosys-
tem [18] is still a difficult task, hardly affordable by small
and medium enterprises where resources and expertise avail-
ability are scarce. Although a huge number of monitoring
tools, both commercial and open-source ones, proliferated in
the last few years, there is no holistic framework that drives
the embracing of standardized monitoring solution [6] for
monitoring while big corporations with high expertise such
as Google, Facebook or Netflix are developing and refining
their own appropriate solutions.

The main objective of this work is to provide an initial
investigation of such a standardized monitoring solution, by
offering an approach called Omnia, whose key objective is
reducing the learning curve and entry-cost to monitoring
technologies. Omnia is an approach that assists system ad-
ministrators in deploying a monitoring system and devel-
opers in configuring and accessing monitoring information,
exploiting DevOps practices such as Infrastructure as Code
and automation [20]. Omnia consists of two major parts: (1)
a monitoring interface for developers that helps using mon-
itoring systems, independently of the specific implementa-
tion, and (2) a monitoring factory for system administrators
that helps building a monitoring system that is compatible
with such interface, leveraging existing monitoring tools.

Our approach is a reinterpretation of the factory pat-
tern [10]. Similarly to the famous design pattern, our moni-
toring factory creates a concrete implementation of a moni-
toring system (by automatically composing and configuring
existing monitoring tools) and users refer to it using a com-
mon monitoring interface that is independent of the actual
implementation.

Together with the implementation of the tool, we also
propose the definition of a common reference vocabulary
for resources being monitored and general purpose metrics,
versioned with the Omnia source code and to which every
component should adhere when integrated with our tool.
Although many research works exist in the scope of mon-
itoring research (e.g., as highlighted by several surveys in
the field [9, 6]), a fundamental lack in the monitoring re-
search scenario is the definition of a reference dictionary as
for monitoring is concerned. On the one hand, the approach

145

Prod
Mgr UX Dev QA DB

Admin

Product Team

Product Team

Product Team

A
P
I

Sys
Admin

Net
Admin

SAN
Admin

Platform Team

Figure 1: Team organization at Netflix. Retailored
from [12]

proposed in this paper helps system administrators address
the multitude of available tools and easily setup a monitor-
ing system [13]. On the other hand, Omnia assists all soft-
ware practitioners throughout all phases of their monitoring
infrastructure lifecycle (e.g., dashboard configuration, data
exchange, analytics representation and more) providing to
the entire organizational structure a single protocol, a com-
mon vocabulary and a versionable monitoring configuration
language, compatible with any monitoring system deployed
via the Omnia monitoring factory.

In conclusion, comparing the proposed research solution
with challenges and pitfalls observed in industrial practice [13,
17], we argue that although in a prototype stage, Omnia
and connected technical contributions offer a valuable basis
to enter the complex and often (very) expensive world of
monitoring infrastructures for cloud applications.

The rest of the paper is structured as follows. Section 2
outlines the organizational and socio-technical scenario that
Omnia was designed to address as well as required terminol-
ogy and motivations for this contribution. Section 3 de-
scribes the approach and the technological contributions.
Section 4 compares the state of the art with our solution.
Section 5 concludes the paper.

2. RESEARCH PLAYGROUND
This section outlines the organizational and socio-technical

scenario that Omnia was designed to address. More in par-
ticular, we elaborate on the domain assumptions and ter-
minology typical of the scenario we have in mind. Even
though the approach could be extended to different usage
scenarios, for the design of an initial prototype we consider
a scenario in which a cloud application is structured ac-
cording to the microservices architecture pattern along with
the typical organizational-social structure [19] connected to
that pattern - the scenario we address is tailored from the
one adopted at Netflix [12] (Figure 1).

2.1 Domain Assumptions
Omnia assumes that each product team is responsible for

its own product (or service), which is implemented as a mi-
croservice, for which source-code is maintained in a separate
versioned repository and following an organization where
development and deployment cycles are still independent
from each other. Conversely, the platform team is cross-
functional: it is in charge of supporting product teams pro-
viding infrastructure support, e.g., via APIs, orchestration
software, middleware and similar technology. Such plat-
forms are either managed by a public cloud provider, man-
aged in-house, or a mix of these two. However, according
to Netflix, there are at least three key properties that shall

define the platform usage: “API-driven, self-service and au-
tomatable” [12].

2.2 Terminology
This section recaps the terminology and common vocab-

ulary we use throughout this paper:

• Metric: a measurable property of a phenomenon that
can be quantitatively determined. Example: response
time is a metric measuring the “elapsed time between
the end of an inquiry or demand on a computer system
and the beginning of a response” [11].

• Monitoring datum: a single measurement of a met-
ric. Example: the authentication service took 100 ms
to respond.

• Resource: anything that can be monitored and, con-
sequently, the source of a monitoring datum. Exam-
ple: a web server, a database, a virtual machine, a
container.

• Data collector: a software component in charge of
collecting monitoring data from a resource, also called
monitoring agent.

2.3 Motivations
Standardizing a way to describe what every product team

would like to see and be notified about is definitely challeng-
ing, since every monitoring tool has its own peculiarity and
is usually focused on delivering value from a specific per-
spective. For example, a graphing tool maybe able to plot
multiple time series on the same graph for simplifying the
comparison, or some analysis tool may be able to compute
prediction or perform statistics that another tool is not able
to perform. Or else, some tool may be able to send app
notifications while another is only able to send emails.

With Omnia, our goal is to find a reasonable subset of
standard features a company with small to medium cloud
resources (e.g., personnel, expertise, consultancy, budget or
otherwise) would like to have available, from a monitoring
perspective. Omnia assumes that, stemming from these
standard features, that very same company can gradually
and incrementally: (a) add new features to its own indoor
monitoring “language”; (b) push monitoring tool vendors to
implement the missing ones or alternatively, (c) elaborate
further on their own monitoring (micro)services to fulfill new
feature requests.

In this scenario, every product team can describe its Mon-
itoring Configuration as Code, and keep that code versioned
together with its services code in the root of its repository.
The next section elaborates further on this key idea, which
constitutes the basis of the Omnia approach.

3. THE OMNIA APPROACH
Considering an organizational and social structure like the

one we described in Section 2.1, we describe how monitor-
ing and its management is addressed today and how it can
be addressed with our approach. Figure 2 depicts a fic-
tional scenario where a company with low budget constraints
wants to monitor its microservices architecture using exist-
ing open source monitoring tools. After studying existing
solution, the platform team decides to build a monitoring
system composed of 3 different components on the server

146

T
I

M
E

CLASSICAL APPROACH OMNIA-BASED APPROACH

Legend:
Team

Monitoring
System v1

Monitoring
System v2

Microservice Omnia codeInstrumentation
library

manual action

automated action

Product Team
Alfa

Service Alfa
v0.1

TDB X Lib

Dashboard
X

TDB X

Platform
Team

learn, configure, view

pushData

learn, code, release

Agents X

pushData

learn, configure, deploy
Alerting X

sendAlerts

learn, configure
Product Team

Alfa

Service Alfa
v0.1

Omnia Lib

Dashboard
X

TDB X

Platform
Team

view

pushData

learn, code, release

Agents X

pushData

Alerting XsendAlerts

Omnia CLI

omnia.yml

omnia.admin.yml
v1

learn, use learn, code

parse
parse

configure, deploy

Product Team
Alfa

Service Alfa
v0.1

Omnia Lib

Monitoring
Tool Y

Platform
Team

view

Agents Y

configure, deploy
pullDatapushData

omnia.yml

sendAlerts

Omnia CLI omnia.admin.yml
v2parse

codeuse

parse

Product Team
Alfa

Service Alfa
v0.2

AgY Lib

Monitoring
Tool Y

Platform
Team

learn, configure, view
learn, code, release

Agents Y

learn, configure, deploy

pullData
pushData

sendAlerts

Figure 2: Comparison between the classical approach and the Omnia approach when adopting different
monitoring solutions.

side: the temporal database TDB X for storing historical
data, the Dashboard X for exposing time-series in form of
graphs via a web interface, and Alerting X for sending no-
tifications to product teams. Moreover, the team decides to
adopt Agent X as data collectors to be run as daemons on
the hosts.

On the left of Figure 2 the reader can look at how the
adoption would work according to the classical approach.
The platform team has to learn how to use the different
tools, configure and deploy them. The platform team would
then ask product teams to instrument their microservice
with a vendor dependent instrumentation library, i.e., the
TDB X Lib. Product teams have to learn how to configure
and use the graphical user interfaces provided by the de-
ployed monitoring tools in order to setup their graphs and
alerts. The entire process require a steep learning curve and
most of the work is manual or can be automated using cus-
tom scripts.

By using Omnia, on the other hand, most of the process is
automated. The platform team has to describe the system
using the proposed Infrastructure as Code approach. The
automated setup and deployment is carried out transpar-
ently by the Omnia CLI, using a convention over configu-
ration approach. Product teams describe their graphs and
alerts using the proposed Configuration as Code approach
and keep the file versioned in their code base.

After few months of practical experience with the installed
monitoring system, performance problems as well as usabil-
ity issues are raised and the platform team decides to switch
to a more simple all-in-one monitoring solution, offering stor-
ing, graphing and alerting features in a single application
and using a pull strategy for retrieving data instead of hav-
ing agents pushing data to the time series database (bottom
side of Figure 2). On the left side, we can see how the mi-
gration process would work in a classical scenario. Most of
the effort carried out by all teams is thrown away, and an
additional learning step is required. The platform team has
to configure the new platform and deploy it. Product teams
has to release a new version of the microservice with a new
instrumentation library, i.e., AgY Lib, has to learn how to
use the new graphical interface of Monitoring Tool Y and
reconfigure all required graphs and alerts.

By using Omnia, on the other hand, no additional learning
step is required. Product teams are not even required to
touch their code. They just start using the new dashboard,
with the same kind of graphs they defined for the first version
of the platform already available. Alerts will be received as
well as configured in the previously released Configuration
as Code file. The platform team only requires to update the
Infrastructure as Code file and trigger a new deployment
phase via the Omnia CLI.

147

Product Team

Product Team

Product Team

Omnia
protocol

omnia.yml

Product Team
Omnia

Vocabulary

Platform Team

omnia.admin.yml

Omnia CLI

Monitoring
System

Monitoring
Interface

Monitoring
factory

Figure 3: Omnia technological contributions

Both the product- and the platform-team workflows can
be reiterated multiple times independently.

In the following sections we are going to detail the tech-
nological contributions we overviewed in the above example
scenario. Figure 3 depicts such contributions and highlights
how such decoupling between teams is obtained.

3.1 The monitoring interface

3.1.1 The Omnia vocabulary
The Omnia vocabulary is a dictionary of terms defining

naming conventions for resource types and metrics that are
common to all applications. It is supposed to be extended
and maintained together with Omnia development and the
addition of tools and libraries. Whenever Omnia is extended
for supporting a new collecting tool, such tool should be
adapted to agree with Omnia vocabulary. If some metric or
resource is missing, this should be added to the Omnia vo-
cabulary. The same is valid when building instrumentation
libraries. Users can obviously specify custom metrics, but
meta-data such as the application name should be added to
monitoring data, possibly in a transparent way, using terms
from the Omnia vocabulary.

Here is a first version of the Omnia vocabulary with some
examples of resources definitions:

Resource Description
host a physical or virtual machine
service 5 an application
service id a unique identifier for an instance of

an application
container id a unique identifier for a Linux con-

tainer
container image a Linux container image

Metrics can be categorized according to the resource being
monitored. For example, here is a short list for host and Java
metrics:

Host metrics Java metrics
cpu usage user heap memory usage
cpu usage system thread count
cpu usage idle loaded class count
mem used garbage collection time
mem used percent thread count

Both files are maintained together with Omnia source
code.

3.1.2 The Omnia protocol and instrumentation libraries
The Omnia protocol specifies how monitoring data should

be serialized and sent by data collectors to the other tools
composing the monitoring system. We decided to adopt an

existent and widely adopted protocol, that supported multi-
dimensional meta-data in form of key values, since we could
rely on existing community provided libraries and ease the
adoption of industries. Such protocol is the Statsd protocol,
with Influxdb tagging extension1.

Once a protocol is defined, it is important to maintain
instrumentation libraries that adhere to such protocol and
enforce Omnia conventions. There exist an ever growing
number of languages and frameworks, and each combina-
tion of these requires a library. A Omnia-compatible instru-
mentation library must adhere to the following mandatory
requirements:

MR1. Use the Omnia protocol, i.e., the Influx
Statsd protocol to serialize metrics and send met-
rics
MR2. Use the common Omnia vocabulary (Sec-
tion 3.1.1) for decorating metrics with meta-data
MR3. Set http://collector:8125 as default end-
point for sending metrics

Also it should adhere to the following optional require-
ments:

OR1. Require the least possible instrumentation
effort and overhead to product teams
OR2. Offer an API that is not supposed to change
in the near future
OR3. Favor convention over configuration, for ex-
ample by automatically inferring meta-data to be
added to monitoring data

For a first prototype, a Java library for the Spring Cloud
framework2 was developed3. Instrumentation only requires
to add a Maven4 dependency to the project and decorate the
main application class with the @EnableOmnia annotation.
This would automatically enables the collection of default
Spring Boot Actuator metrics (e.g., heap memory usage or
thread count) to the default endpoint (i.e., http://collector:
8125) and the addition to all metrics of the service and ser-
vice id meta-data. Moreover, developers can easily describe
additional custom metrics, such as the number of payments
processed by the service instance, using the the API pro-
vided by the Spring Boot Actuator library as described in
the following example.

@Service
pub l i c c l a s s MyService {

pr i va t e f i n a l CounterServ ice counter ;

@Autowired
pub l i c MyService (CounterServ ice counter) {

t h i s . counter = counter ;
}

pub l i c void pay () {
t h i s . counter . increment (”payments ”) ;

}
}

Listing 1: Custom metrics instrumentation

1https://www.influxdata.com/getting-started-with-
sending-statsd-metrics-to-telegraf-influxdb/
2http://projects.spring.io/spring-cloud/
3https://github.com/mmiglier/omnia-spring-boot
4https://maven.apache.org

148

In the prototype developed for this work, additional system
level meta-data such as the host name where the service is
running, will be added to each metric by the data collector
(or agent).

3.1.3 Monitoring Configuration as Code
The omnia.yml file is a versionable YAML file used for

configuring the monitoring activity, such as metrics time se-
ries to be plotted or alerts. Whenever a new version of the
omnia.yml file is pushed, Omnia will update the product
team specific dashboard together with any alert specified in
the document. If this configuration file was standard and
shared among tools, the monitoring team would be free to
update the tool set of monitoring tools without interfering
with the product teams work. During a first phase, inter-
preters and translators should be provided to compile the
standard configuration file into the tool specific configura-
tion format, with the hope an increase of popularity of the
standard format, it may become widely adopted.

The first version of the omnia.yml is composed of two
sections: (1) the dashboard section, where things to be vi-
sualized are described, and (2) the action section, where
things to be done in response to events are configured. The
dashboard can be composed of different kind of graphs, such
as time series or pie charts. In the action section, product
teams can describe actions such as email or SMS notifica-
tions, but could also adaptive actions to be triggered.

An example of omnia.yml file is shown in the following
listing:

dashboard :
t im e s e r i e s :
− metr ic : payments

compute : r a t e
− metr ic : java heap memory
− metr ic : cpu

compute : average by host
− metr ic : ram

ac t i on s :
emai l :
− cond i t i on : h t t p e r r o r s / h t tp r eque s t s >

0 .1

Listing 2: omnia.yml file for monitoring
configuration.

The file shall be automatically validated during automatic
integration tests. Also, the file shall favor convention over
configuration: every missing piece of information shall be
configured using standardizable defaults.

3.2 The monitoring factory

3.2.1 Monitoring Infrastructure as Code
The omnia.admin.yml file depicted in Figure 3 is a file

where the monitoring system is described as Infrastructure
as Code and product teams repositories are listed.

This Monitoring Infrastructure as Code file is composed
of 3 parts (1) the provisioner, where the platform team is
supposed to specify the provisioner the Omnia CLI should
use to provision the monitoring system, (2) the tools section,
where the platform team has to list the monitoring tools, the
functionalities they offer and their interconnections, and (3)
the team repos section, where product teams repositories are
listed.

For our first prototype we experimented Omnia integra-
tions with the following popular tools: CollectD, Telegraf,

InfluxDB, Prometheus, Graphite, Grafana, Riemann. Each
one offer different configuration languages and different func-
tionalities. The user is responsible of setting what role should
cover each tool under the provides field: agent, dashboard
or actions.

We here provide an example of omnia.admin.yml file:

p r ov i s i o n e r :
name : docker
args :

username : mmigl ier
images tag : l a t e s t

t o o l s :
t e l e g r a f :

p rov ide s :
− agent

pushes to :
− i n f l uxdb

in f luxdb :
gra fana :

pu l l s f r om :
− i n f l uxdb

prov ides :
− dashboard
− a c t i on s

teams repos :
− ”github . com/mmigl ier /omnia−examples /

s e r v i c e 1 ”
− ”github . com/mmigl ier /omnia−examples /

s e r v i c e 2 ”
− ”github . com/mmigl ier /omnia−examples /

s e r v i c e 3 ”

Listing 3: An example of omnia.admin.yml file.

3.2.2 The Omnia CLI
The Omnia CLI is the application that is used by the plat-

form team to deploy a monitoring system that implements
the monitoring interface according to the omnia.admin.yml
(see Figure 3). The application exposes three simple com-
mands:

• compile, the CLI parses the omnia.admin.yml file, re-
trieves omnia.yml files from team repositories and cre-
ates the required configuration files required by the
chosen provisioner to deploy the monitoring system;

• deploy : the CLI deploys the monitoring system using
the API offered by the chosen provisioner;

• stop: the CLI stops the monitoring system using the
API offered by the chosen provisioner.

The platform is written in Go5 and is easily extensible
with new provisioners and new monitoring tools by using the
Go template package6. During compilation time, both pro-
visioner’s and tools’ configuration files are generated from
templates by applying to them a data structure generated
from the omnia.admin.yml and the omnia.yml file. Besides
templates for configuration, a developer extending Omnia
CLI with a new tool has to create a setup.sh and a run.sh
script, which will be executed for setting up the tool and
running it respectively.

Starting from the Monitoring Infrastructure as Code ex-
ample in Listing 3, the Omnia CLI will generate the code re-
quired to provision the monitoring platform according to the
chosen provisioner. In our first prototype only the Docker

5https://golang.org
6https://golang.org/pkg/text/template/

149

provisioner was implemented and the final compilation will
be a Docker Compose file together with required scripts and
configuration files.

A prototype implementation of this component has been
released on GitHub7.

4. RELATED WORK
Existing monitoring solutions, such as Grafana [2] or In-

spectIT [4], usually provide graphical configuration inter-
faces as default option. For tools where a configuration lan-
guage is available, it is always a custom DSL and often highly
detailed [3]. Monitoring Configuration as Code approaches
have been used by using existing configuration and man-
agement tools such as Puppet [5] or Chef [1] with custom
plugins for writing checks [8, 16]. However this approach is
not portable across multiple monitoring platform and only
provide checks and not dashboards configuration.

Regarding the standardization of a common exchange for-
mat attempts have been done both in the academia [14] and
in the industry [15], however there is yet no strong adoption
of such proposals. Our approach does not aim at creating a
new protocol or a new vocabulary, we rather aim at reduc-
ing product teams efforts, preventing them to care about the
underlying protocol and make metrics available to them self-
service. As for the underlying protocol, we aim at reusing
existing contributions and de-facto standards.

5. CONCLUSION AND FUTURE WORK
In this paper we proposed Omnia, an approach and a tool

with the key objective of reducing the learning curve and
entry-cost to monitoring technologies. The concept of mon-
itoring factory was introduced, as a reinterpretation of the
famous design pattern where the concrete implementation
of a monitoring system is kept hidden to developers via a
common monitoring interface. Deployment and configura-
tion of the monitoring platform is automated via the simple
API offered by the monitoring factory we presented. Sys-
tem administrators can leverage the proposed Monitoring
Infrastructure as Code to easily compose the set of existing
monitoring tools to use and configure their roles and inter-
connections.

Our monitoring interface allows to separate the develop-
ment workflow of the core application from the monitoring
system, increasing agility and reduce effort required. The
monitoring factory permits to switch across different mon-
itoring solutions, automating the deployment of a solution
that is compliant with our monitoring interface.

The proposal we offer in this paper is a baseline approach
for further experimentation of wrapping monitoring solu-
tions within a common abstraction layer. To our knowl-
edge, this is the first attempt and it is exposed to the risk
of simplifying tools specific characteristics. In this paper we
addressed very simple example for demonstration purposes.
We planned to address real world examples where monitor-
ing requirements have been selected by the teams according
to real world scenarios and better evaluate our approach.

6. ACKNOWLEDGMENTS
The authors’ work is partially supported by the European

Commission grant no. 644869 (H2020 - Call 1), DICE

7https://github.com/mmiglier/omnia

7. REFERENCES
[1] Chef. https://www.chef.io. Accessed: 2017-02-17.

[2] Grafana. http://grafana.org. Accessed: 2017-02-17.

[3] Grafana scripted dashboard.
http://docs.grafana.org/reference/scripting/.
Accessed: 2017-02-17.

[4] Inspectit. http://www.inspectit.rocks. Accessed:
2017-02-17.

[5] Puppet. https://puppet.com. Accessed: 2017-02-17.

[6] G. Aceto, A. Botta, W. de Donato, and

A. PescapÃČÂĺ. Cloud monitoring: A survey.
Computer Networks, 57(9):2093–2115, 2013.

[7] L. J. Bass, I. M. Weber, and L. Zhu. DevOps - A
Software Architect’s Perspective. SEI series in software
engineering. Addison-Wesley, 2015.

[8] K. Buytaert. Monitoring in an infrastructure as code
age. PuppetConf, 2013.

[9] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P.
Morrison, and T. Lynn. A survey of cloud monitoring
tools: Taxonomy, capabilities and objectives. J.
Parallel Distrib. Comput., 74(10):2918–2933, 2014.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Elements of reusable object oriented
software, 1995.

[11] IBM. IBM Dictionary of Computing. McGraw-Hill,
Inc., New York, NY, USA, 10th edition, 1993.

[12] T. Mauro. Adopting microservices at netflix: Lessons
for team and process design.
https://www.nginx.com/blog/adopting-microservices-
at-netflix-lessons-for-team-and-process-design/, 2015
(accessed January 16, 2017).

[13] M. Miglierina. Monitoring Modern Distributed
Software Applications: Challenges And Soloutions.
PhD thesis, Politecnico di Milano, 2017. Under
revision.

[14] D. Okanović, A. van Hoorn, C. Heger, A. Wert, and
S. Siegl. Towards Performance Tooling
Interoperability: An Open Format for Representing
Execution Traces, pages 94–108. Springer
International Publishing, Cham, 2016.

[15] D. Plaetinck. Metrics 2.0: An emerging set of
conventions, standards and concepts around timeseries
metrics metadata. http://metrics20.org.

[16] S. Porter. Infrastructure as code & monitoring.
AutomaCon, 2015.

[17] R. Rabiser, M. Vierhauser, and P. GrÃijnbacher.
Assessing the usefulness of a requirements monitoring
tool: a study involving industrial software engineers.
In L. K. Dillon, W. Visser, and L. Williams, editors,
ICSE (Companion Volume), pages 122–131. ACM,
2016.

[18] S. SchÃijtz, T. Kude, and K. Popp. The impact of
software-as-a-service on software ecosystems. In 4th
International Conference on Software Business,
Potsdam, Germany, 2013.

[19] D. A. Tamburri, P. Lago, and H. van Vliet.
Organizational social structures for software
engineering. ACM Comput. Surv., 46(1):3, 2013.

[20] L. Zhu, L. Bass, and G. Champlin-Scharff. Devops and
its practices. IEEE Software, 33(3):32–34, 2016.

150

