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ABSTRACT
The paper presents an industrial application of a DevOps
process for a Tax fraud detection system. In particular, we
report the influence of the quality assessment during deve-
lopment iterations, with special focus on the fulfillment of
performance requirements. We investigated how to guaran-
tee quality requirements in a process iteration while new
functionalities are added. The experience has been car-
ried out by practitioners and academics in the context of a
project for improving quality of data intensive applications.
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1. INTRODUCTION
Building a service-time effective and reliable Data-Intensive

Application (DIA) consists in finding a suitable combination
between a varieties of frameworks that meet requirements.
Besides, without a careful design by developers on the one
hand, and an optimal configuration of frameworks by oper-
ators on the other hand, the quality of the DIA cannot be
guaranteed. In fact, in a DevOps process developers build
and test the application in an isolated, so-called, develop-
ment environment, while operators are in control of a tar-
geted run-time environment. Conceptually, the latter com-
prises all entities that will interact with the program: infras-
tructures, operating systems, Web servers, software agents
and individuals. It is the responsibility of operators to guar-
antee that every framework needed by the DIA is installed
in the production environment and properly configured for
an optimized performance.
Within the DICE European project [3], Netfective Tech-

nology started building a solution (Big Blu) to demonstrate
the capabilities of Big Data in e-government applications, es-
pecially for Tax fraud detection. Because of the complexity
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of Big Blu, we have a plethora of requirements to consider
while building our solution. One of this most primordial
requirement is that the whole system must be performance-
effective, especially in terms of service throughput and re-
source utilization, because we are targeting data stores be-
hind applications that manage country wide invoice records,
tax payments or refunds (so billions of records of heteroge-
neous information), just to mention a few of the tax-involved
categories. Moreover, many questions have to be addressed
at early stage: How to design a reliable Big Data architec-
ture? How could all the quality requirements be satisfied?.
For example, given a set of requirements for a tax agency,
we can identify and create optimal architecture or evalu-
ate alternatives and measure the impact of business logic
changes. What architecture to adopt keeping in mind the
future evolution of the system?
DICE project researches towards building a quality-driven

framework for development, deployment, monitoring and
continuous improvement of DIA. DICE accommodates De-
vOps practices for simplifying the Devs and Ops activities
in DIA through this quality-driven framework. The idea of
quality assessment in DICE is to reduce the number of De-
vOps iterations, by assessing quality properties of software
designs before construction. This paper investigates such
an idea through its application in the Big Blu system. Our
investigation uses a simulation tool (SimTool), developed
within DICE, for quality analysis.
The rest of the paper is organized as follows. Section 2

presents SimTool. Section 3 presents Big Blu. Section 4
reports a couple of experiences carried out using SimTool
for developing Big Blu. Section 5 concludes the work and
revises some related work.

2. AUTOMATING QUALITY PRACTICES
Within the DevOps practices, we allocate the quality as-

sessment actions in between the design and code implemen-
tation stages. SimTool contributes towards automatizing
these actions. Concretely, it computes performance metrics
(throughput, utilization and service response time) and a
reliability metric, the service time to failure. SimTool fits
within the DICE IDE toolchain, which defines the complete
DevOps workflow for a DIA, to effectively accomplish the
quality assessment in a Dev iteration.

2.1 Typical Usage Scenario
SimTool targets to enhance the quality of the code af-

ter each DevOps iteration. The objective is to reduce the
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number of iterations needed to fulfill the required quality
of the product. Hence, the quality in each Dev iteration is
more likely to be accepted in its respective Ops iteration,
i.e., it is reduced the number of quality issues found during
monitoring in the real production environment.
A typical usage scenario of the SimTool happens when

a new Dev cycle starts, the addition of a new functional-
ity is planned, and monitored information from the Ops is
received. The overall system, including the new function-
ality, needs to satisfy quality requirements, which were al-
ready defined or updated in the current iteration. Using
the monitored information, the quality parameters in the
design models, e.g, the actual host demands, are automat-
ically updated. Moreover, the developers update the edu-
cated guesses used in the previous iteration.
However, it is unclear for developers the required system

quality considering the single new functionality. In fact,
the requirements refer to the overall system quality, there-
fore the developer has no clue for synthesizing quality re-
quirements based on the new functionality. Using SimTool,
the developers carry out a sensitivity analysis1 to discover
the expected overall system quality based on assumptions
about the quality that the new functionality can offer. For
instance, developers will predict the system response time
considering different execution times for the new functional-
ity, but according to the actual host demands for the already
monitored software components. Without SimTool, the de-
veloper would remain clueless about the quality expectations
introduced by the new functionality.
Consequently, SimTool helps developers to produce a piece

of software that contributes to satisfy the overall system
quality when it executes in the production environment.
The developer has now an asset to assess the quality of
the developed piece of functionality before notifying the
next stage of the toolchain. Quality properties can now
be checked through tests performed over the design of the
single new functionality, instead of needing to wait until ac-
ceptance or system tests, or in a worst case to wait to the
production environment to realize that the overall system
quality does not satisfy the requirements.

2.2 SimTool Architecture
SimTool implements, within the DICE toolchain, the us-

age scenario above described. Therefore, the tool takes as
input, for the current Dev iteration, a DICE profiled2 de-
sign model. Then, it computes the aforementioned quality
metrics for an assessment of the new DIA functionality.
A high-level architectural view of SimTool is depicted in

Figure 1. The following paragraphs describe the responsi-
bility of each component, inside SimTool, for carrying out
the metrics computation.
The Simulator GUI component, firstly searches in the

UML [15] model for the input variables (e.g., routing rates
or execution host characteristics) and the quality metrics de-
fined. Secondly, the user is allowed to configure the model,
i.e., to introduce the actual values for the variables and to
select the subset of metrics to compute. Thirdly, the com-
ponent launches a simulation of the configured model, i.e.,
1The sensitivity analysis allows to obtain multiple results
for the metric by considering multiple input values.
2The DICE profile [8] is based on the standard MARTE
profile [14] for performance and on the DAM profile [2] for
reliability.

Figure 1: Component and connector view of the
SimTool

a computation of the quality metrics. Finally, when the
simulation finishes, it displays the results for the metrics
(view-results operation).
The Simulator component offers a launch operation to

the Simulator GUI for the actual simulation of a configured
model. The Simulator selects the simulation engine based on
the characteristics of the model and the chosen metrics, e.g.,
a Petri net simulator for performance or a fault tree analysis
engine for reliability. It implements M2M transformations
from the UML design to the target formalism, e.g., to the
PNML3 [10] format for Petri nets.
The GreatSPN adapter component follows the Adapter

design pattern [7] to implement a simulate interface, which
is the expected one for the Simulator component. It trans-
forms the PNML [10] into the GreatSPN [5] Petri net file
format. The GreatSPN engine simulates the model and re-
turns the results.
The Credentials manager component stores credentials for

connection to different simulation engines allocated through
different servers. We decided this separate component for
managing credentials, rather than setting them in the Sim-
ulator, because credentials are used by several components
implementing the simulate interface, and the used compo-
nent is chosen at runtime.

3. A FRAUD DETECTION DIA
Tax frauds represent a huge problem for governments,

causing them a big loss of money each year. The Euro-
pean Union has estimated the fiscal loss lost due to tax
evasion to be of the order of 1 trillion euros [4]. Govern-
ments are increasingly using Big Data in multiple sectors to
help their agencies manage their operations, and to improve
the services they provide to citizens and businesses. In this
case, Big Data has the potential to make tax agencies faster
and more efficient. However, detecting fraud is actually a
difficult task because of the high number of tax operations
performed each year and the differences inherent in the way
the taxes are calculated.
Netfective Technology has started building a Tax fraud

DIA, called Big Blu. As stated in the Introduction of the
paper, Big Blu requirements cannot be meet without the
joint contribution of developers and operators. Indeed, even
if it is well programmed, the DIA may fail to reach its
3Petri Net Markup Language.
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functional or non-functional goals due to failures, problems,
or incorrect behaviors occurring in the production environ-
ment. The core idea of DevOps is to foster a close cooper-
ation between the Dev and Ops teams. In our context and
through the adoption of the SimTool, we built this required
cooperation thanks to shared UML models. They serve as
contracts where every expected aspects of the production en-
vironment are clarified and specified in terms of SLA (ser-
vice level agreements), time requirements or other quality
requirements. We have designed UML DICE-profiled dia-
grams, see Figures 2 and 3, for this purpose.
Following a lean approach [12], Netfective built a simple

but realistic plan for the development of the solution (ini-
tiated 12 months ago). First, we built a rapid prototype
to validate the whole approach around focus groups and in-
ternal requirements gathering. Second, we built an MVP
(Minimum Viable Product) respecting the 80/20 rule which
means 80 percent of the expected results must come from
20 percent of efforts. This MVP has been developed, de-
ployed and tested on a private Cloud relying on an agile
DevOps approach. The third and last step of our plan is
to move from an MVP to a first release with a stable and
scalable architecture which can be deployed on a production
environment. This step will be carried out during the next
months. The current version of the MVP is based on Java
and Scala as programming languages above a Cassandra [9]
and Spark [16] clusters respectively for data management
and data processing. The global solution is made of 3 main
parts:

• the graphical user interface which is a web application
developed using AngularJS 2

• the DIA itself

• And a restful webservice which makes the glue between
the user-interface and the DIA

This application is deployed on a private Cloud and tested
on a data set containing about 10 million taxpayers with all
related details (the data were generated in order to avoid
any privacy and confidentiality issues). The application is
continuously running above the Cassandra databases which
are filled with taxpayers detail, historical tax declarations,
etc. The application performs computation on all data in-
cluding new generated inputs (simulation of user inputs and
details coming from various sources). These data have to
be processed using Fraud Indicators (FI) which are a set of
rules described by a domain expert and are known fraud be-
haviors. In the case a recently added FI, we have to proceed
to a new batch processing phase on all the data. But we
need to be able to answer any real time query using a merge
between old batch results and new real-time computations.
This architecture is a concrete application of the Lambda
Architecture [13]. The user will be notified on the graphical
user interface with the taxpayers who may be fraudulent.
It is also possible to gather statistics on fraud results. The
three layers of the solution are presented by the profiled ac-
tivity diagram in Figure 2. In the first row, we can identify
the various possible user interactions such as the selection
of the fraud indicator to be applied for the detection, the
exploration of the results or the monitoring of the status of
a launched detection. These interactions are managed at
the layer of the middle which sends the “orders” to the DIA
to execute the underlying Spark jobs.

The UML models in Figures 2 and 3 were annotated with
the input performance information needed to carry out the
metric computation. However, since these values are not
visible in the figures, we report them in Table 1. Moreover,
the performance requirements are: the path that executes
Launch fraud detection activity in Figure 2 should have
a response time lower than 10 minutes; the rest of paths
should have a response time lower than 10 seconds.

Probabilities. Prob. of... Workload
Fraud indicator creation 0.11 1 request every 600s
Starting fraud detection 0.5 Resources. Num. of...
Stopping fraud detection 0.02 Web Server 1

Getting fraud Big Data
detection status 0.12 Management 1
Getting fraud Big Data

detection results 0.25 Processing 1
Activities Service Times

Request fraud indicator creation 2s
Select fraud indicators 3s

Request fraud detection stop 3s
Request fraud detection status 1s
Request fraud detection results 2s

Create fraud indicator 3s
Submit fraud detection 2s
Stop fraud detection 1s

Get fraud detection’s status 0.1s
Get fraud detection’s results 3s

Store analysis results 20s
Launch fraud detection 150s

Table 1: System properties annotated in the UML
models

4. EXPERIMENTATION
As indicated, the MVP product was developed, deployed

and tested by Netfective following DevOps. Next subsec-
tions report a couple of experiences conducted for assessing
quality during two iterations.

4.1 Quality Issues
In a given iteration, the Ops team reported saturation

of the Big Data processing computational node, see Fig-
ure 3. In particular, response time for the computational
branch initiated by Starting fraud detection, see Fig-
ure 2, was required to be completed in 10 minutes, however
this was largely surpassed.
The Dev team realized, by inspecting monitored informa-

tion, that the issue could be due to some events:

• The growth in the number of requests to the system.

• The growth of the database.

Any of these situations -and, thus, also their combination-
would cause that requests to Launch fraud detection ac-
tivity arrived more frequently than they could be served
by the Big Data processing node. Therefore, the requests
would be waiting in an increasing size queue.
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Figure 2: Execution scenario of the fraud detection DIA

Figure 3: Deployment diagram of the fraud detec-
tion DIA

Using SimTool, we tried to confirm our guess by simulat-
ing increments in the arrival rate of requests to the process-
ing node, and also increments in the execution time required
by Launch fraud detection. Concretely, we simulated the
arrival rate from 0.0016 req/s until reaching system satura-
tion and the execution time from 2.5 minutes to 5 minutes.
Figure 4(a1) depicts the simulation results. Firstly, note

that we have depicted a yellow plane at response time value
of 600 seconds, for the reader to easily check whether the re-
quirement is fulfilled or not, i.e., if it is below to 10 minutes
or not. For the initial configuration (2.5 minutes of execu-
tion time and 0.0016 req/s), the system was stable and the
response time was 3 minutes and 46 seconds. If only the
arrival rate is increased, up to 3 requests every 10 minutes,
then the response time is 8 minutes and 45 seconds. If only
the execution time increased, up to 5 minutes, then the re-
sponse time is 10 minutes and 25 seconds. If both variables

increase (5 minutes of execution time and 3 requests every
10 minutes), then the response time increases unlimitedly4.
Fig. 4(a2) studies the utilization of the Big Data Processing

node with respect to our two variables. We observe that, for
an arrival rate of 3 requests every 10 minutes and an execu-
tion time of 3.5 minutes, the node is almost saturated, with
a 97.8% of utilization. When execution times are above 3.5
minutes, then the node is saturated, at 100% of utilization.
In the subsequent Plan stage of the new Dev cycle, devel-

opers faced two alternatives:

• Acquire new nodes in the private Cloud devoted to the
Big Data Processing, so to parallelize the requests to
the Launch fraud detection activity.

• The reengineering of the Launch fraud detection ac-
tivity to make it faster, they had already observed that
some parts of the code could be refactored.

The second alternative could easily reduce the service time
by 40%, although going further this reduction would require
much work. We used again SimTool to deeply analyze the
first alternative and a combination of both.
Figure 4 (b1) depicts the results of the first alternative.

It shows that using 3 nodes, the expected response time
is between 6 and 7 minutes. In turn, with 4 nodes, the
system will be able to satisfy more than 6 request every
10 minutes. Part (c1) also considers the second alternative
by refactoring of the activity down to 3 minutes, i.e., an
improvement of 40%. Then, using 2 nodes, we could offer
an expected response time between 4 and 5 minutes. In
turn, using 3 nodes, more than 8 requests every 10 minutes
could be served. Parts (b2) and (c2) depict the utilization
of the nodes for the same alternative solutions as (b1) and
(c1), respectively.
4Figure 4(a1) does not show graphically this tendency to
infinite values as it is cut at the response time value of 1000.
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Figure 4: SimTool results for the “Quality Issues" DevOps experience

The decision was to use 3 processing nodes, which should
satisfy the response time requirement.

4.2 Adding New Functionality
The experience here reported corresponds to the scenario

described in Subsection 2.1. In particular, the new function-
ality is an API, that will be configured to be automatically
and periodically called by clients. The API provides volatile
information of interest for all clients. Expectations are that
each client will make an automatic request to the API every
minute, and currently there are 200 clients. Moreover, an
API method is expected to execute, exclusively in the Web
Server node, at a very fast speed, between 10 and 20 mil-
liseconds. However, such interval is not granted yet, then
the developers want to be assessed with an upper limit for
it. Hence, they could themselves assess whether the func-
tionality performance is acceptable already in the unit tests
of the functionality.
First, engineers extended the UML design to consider the

new functionality in the activity diagram. Later, they used
the SimTool to predict the activity response time within the
whole system.
Figure 5(a) ensures that the current deployment can sat-

isfy the system response time requirement, even when exe-
cuting the new functionality. Even having a 20 ms of exe-
cution time for the new functionality and doubling the ex-
pected arrival rate of requests, the expected response time
is below 60 ms.
Figure 5(b) shows results to understand the limits of the

current deployment depending on the achieved execution
time of the new functionality. From this simulation, we
obtained that, for the current workload expectation of 200

requests per minute, the new functionality could take up to
260ms of execution time without violating the response time
requirement. This obtained value is given to developers, to
be checked in their unit tests. Looking at both the response
time and utilization charts in Figure 5(b), engineers also use
the value of 160ms of execution time of the new functionality
to set an alert in the monitoring of the application. Under
the current assumptions, if the new functionality goes over
such value, the expected response time would be 0.4s and
the Web Sever utilization would go over 50%. So, when the
alert goes on, although the requirement should still is sat-
isfied, the engineers may want to study how the system is
behaving and might take some actions for the next DevOps
cycle, such as creating a cluster of Web Server nodes.

5. CONCLUSION AND RELATED WORK
This work has reported an experience on the usage of a

software quality evaluation tool during a DevOps-oriented
software development. The application under development
is Big Blu, a Tax Fraud Detection system. We presented
two common scenarios during development. In particular,
during the DevOps planning and software creation stages.
The purpose was to reduce the number of DevOps iterations
until satisfactorily completing a modification of the system.
This goal was achieved by reporting during the Dev stages
the expected quality of the application.
Currently, SimTool is incorporating specific characteris-

tics of Big Data technologies, which will help on the evalua-
tion of alternative designs for DIA. In fact, Big Blu foresees
the use of technologies of this type, such as Cassandra or
Spark.
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Figure 5: SimTool results for the “Adding New
Functionality" DevOps experience

Related Work.
The Software Performance Engineering community has

traditionally brought theories and tools to facilitate the qual-
ity evaluation of software systems. Recently, this community
has started paying attention to DevOps approaches, and to
how software products developed under DevOps practices
could benefit from diverse quality evaluations along their
development life cycle. A research agenda towards the ap-
plication of performance engineering approaches in DevOps
developments has been defined [1]. Work in [6] proposes a
model-based evaluation of software with Continuous Deliv-
ery in every build right after their acceptance tests. How-
ever, SimTool is intended to be used in earlier stages of the
development cycle, and therefore it can guide the coding
phase, while it does not give feedback to the developer after
the code commit is done, as [6] is able to do. The approach
in [11] also aims at reducing DevOps cycles, by proposing
a continuous performance evaluation of the application, in-
cluding monitored performance information.
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