
DevOps Performance Engineering:
A Quasi-Ethnographical Study

Giuseppe Vergori
Politecnico di Milano

Milan, Italy
giuseppe.vergori@polimi.it

Damian A. Tamburri
Politecnico di Milano

Milan, Italy
damian.tamburri@polimi.it

Diego Perez-Palacin
University of Zaragoza

Zaragoza, Spain
diegop@unizar.es

Raffaela Mirandola
Politecnico di Milano

Milan, Italy
raffaela.mirandola@polimi.it

ABSTRACT
DevOps is a software engineering strategy to reduce soft-
ware changes’ rollout times by adopting any set of tactics
that reduce friction in software lifecycles and their organisa-
tional variables, for example: coordination, communication,
product evolution, deployment, operation, continuous archi-
tecting, continuous integration and more. Going DevOps is
increasingly demanding that software engineering disciplines
which were typically product-oriented such as software per-
formance engineering to rethink their typical comfort zone,
enlarging their scope from product, to process or even fur-
ther to ecosystem and organisational levels of abstraction.
This article makes an attempt at understanding what are
the dimensions in DevOps organisational scenarios that can
be addressed with a performance engineering lens. To do
this, we performed a quasi-ethnographical study featuring
a real-life industrial DevOps scenario. Discussing our re-
sults we conclude that many synergies exist between De-
vOps and performance engineering each with peculiarities,
limitations and challenges - more research is needed to offer a
full-spectrum performance-engineering support for DevOps
practitioners.

Keywords
Software Performance Engineering, DevOps, The Phoenix
Project

1. INTRODUCTION
Quoting from Bass et al.’s definition, DevOps is “a set of

practices intended to reduce the time between committing
a change to a system and the change being placed into nor-
mal production, while ensuring high quality” [2]. The wide
spectrum of software practices entailed in this definition de-
mands typically product-oriented disciplines such as Soft-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053628

ware Performance Engineering (SPE) [20] to undergo a rad-
ical shift of scope from product- to process-, organization-
and even software ecosystems perspective. For example,
from a DevOps perspective, it is no longer sufficient to model
a queuing network [23] for a a software product to eval-
uate overall software performance. Conversely, that soft-
ware performance model needs to be evaluated against the
times and variables entailing integration and re-deployment
of improvements. Therefore, a “classical” queuing network
would need enriching with “organizational” rates (e.g., how
often are the components in the network integrated, de-
ployed or refactored) or even how long shall a certain refac-
toring demand (e.g., how many tasks need completion before
re-deployment).

A first step in this shift of focus is identifying which vari-
ables and dimensions need to be considered along with the
familiar notations and variables typically involved in SPE.
This paper makes an attempt at identifying these dimen-
sions using a quasi-ethnographical study. Ethnography is,
by definition, “the organised study of other groups of peo-
ple and is commonly associated with anthropological stud-
ies of other cultures [...]” [11] - this form of study usually
involved direct participation in organizational and socio-
technical processes involved [22]. Conversely our case fea-
tures quasi-ethnography, an instance of ethnography where a
qualitative dataset is generated using a second-hand report
of real-life scenarios. In our case, we analysed The Phoenix
Project [13], a case of industrial DevOps adoption, i.e., the
migration from a classical software engineering approach to
a DevOps oriented way of working.

Analysing our dataset we observed that SPE can play
a key role in improving performance not only of software
products but also on the (software-driven) organizational,
ecosystem and lifecycle dimensions behind, for example: (a)
planning continuous architecting/refactoring by prioritising
on more easily (re-)deployable components; (b) continuously
evaluating refactoring costs; (c) carrying out cost vs. perfor-
mance driven continuous deployment and more. However,
at present, a straightforward application of SPE techniques
is not possible. Towards this end, we launched a research
initiative aiming at understanding how models, parameters
and techniques in SPE can be applied to understand and
model in the most appropriate way the DevOps process.

The rest of this paper is structured as follows. First, Sec-
tions 2 and Section 3 outline the research design behind our

127

quasi-ethnographical study. Second, 4 outlines DevOps as
well as “The Phoenix Project”, the ethnographical report
we considered in the scope of this paper. Further on, Sec-
tion 5 and 6 provide our attempt at mapping SPE notations
with our quasi-ethnographical observations and discuss this
preliminary mapping, highlighting threats to validity and
outlining a research roadmap. Finally, Section 7 concludes
the paper.

2. DEVOPS IN PILLS
Several references are starting to emerge with the goal

of explaining and elaborating DevOps as an organizational
software engineering strategy. In essence the core idea be-
hind DevOps is fairly simple: over long years of siloed soft-
ware development (on one side) and software operations (on
the other), a series of distances in socio-technical and orga-
nizational practices and tools has been flourishing between
Dev- teams and -Ops teams. These distances make the flu-
ent and coherent collaboration between the two silos prac-
tically difficult if not impossible. DevOps entails a series of
socio-technical and organizational practices and tools that
address and tackle these distances one by one until a fast,
fluent and resilient organization is distilled.

Several socio-technical practices have been studied to date,
e.g., the merging of Dev- and -Ops teams under the same
banner and working roof or shifting operational concerns
such as infrastructure design to be addressed by software
developers themselves or even using software code, version-
ing, design patterns for infrastructure design itself [2].

Similarly, several organizational practices have been stud-
ied to date, e.g., using the same issue-tracking mechanism
for both development and operation such that there shall be
no difference between developer and operator at all or even
reducing the software architecture to a number of modules
(or microservices [1]) pretty much equal to the number of
developers+operators present and available for that prod-
uct such that each module can be developed and operated
even by the same person [2].

The above are mere examples of the series of practices en-
tailed in DevOps, with more tactics and strategies emerging
almost every month. In our context, we argue that SPE is
rich with practices that have been used to speed-up software
performance; in this vein, the same tactics can be re-thought
to address organizational and socio-technical performance
issues emerging in software lifecycles.

3. RESEARCH DESIGN
This section outlines the research problem, questions and

method behind the contributions in this paper.
First, the problem we address is that a DevOps perspec-

tive on software engineering forces several areas of research
and practice (including software performance engineering)
to undergo a shift of focus between a typical product-based
orientation to a wider angle, which includes organizational
(e.g., coordination cost, communication, etc.), socio-technical
(e.g., skills-based task-allocation costs) as well as lifecycle
and ecosystems aspects (e.g., continuous deployment). Al-
though this problem touches much more than SPE, we argue
that this discipline is rich with practices, models, methods
and tools that may well be used to devise even more refined
and advanced DevOps practices. To address this problem,
we formulated two research questions:

1. What software lifecycle variables are synergistic with
SPE?

2. What SPE models and notations may be used to study
these variables?

With the goal of giving a preliminary answer to these re-
search questions, we adopted qualitative empirical software
engineering inquiry featuring quasi-ethnographical research.
More in particular, instead of a classical ethnomethodolog-
ical approach where timely reports are generated by direct
observation of socio-technical and organizational phenom-
ena, we chose to adopt indirect observational means, using
the contents reported in [13] as ethnographical data (more
details on the contents and structure are outlined later in
Sec. 4).

Moreover, to analyse the above data we adopted content
analysis [12] and software lifecycle modelling [9] techniques
resulting in 13 simple and intuitive UML Sequence Diagrams
that capture the observed organizational and socio-technical
software lifecycle processes featuring DevOps, including the
variables and dimensions we were originally looking for.

4. A QUASI-ETHNOGRAPHICAL STUDY IN
DEVOPS: THE PHOENIX PROJECT

The Phoenix Project directly reports on the persona sce-
nario for Mr. Bill Palmer neo-elected vice-president of com-
pany “Parts Unlimited” (PU). PU is developing a new rev-
olutionary project codenamed “Phoenix”, fundamental for
the future of the company. Bill is essentially responsible
for the migration from the previous way of working in PU
to a DevOps-based software lifecycle strategy. The book
contains detailed reports on how and by means of which
practices and what concrete actions did the 150 employees
employed by PU actually migrate to DevOps. Coding these
reports and analysing the reports with content analysis [12]
we were able to distill a series of 13 detailed sequence di-
agrams1 that describe typical DevOps workflows in terms
of:

• Actors: these reflect the typical roles and people in-
volved in DevOps which are needed to enact the soft-
ware lifecycle (e.g., developers/operators), improve that
lifecycle (e.g., reporters, monitors, quality analysts)
and coordinate the lifecycle itself (e.g., product own-
ers);

• Actions: these reflect the typical tasks to be enacted
as part of the typical DevOps way, e.g., allocating
tasks, reporting incidents, adding or addressing issues
in the reference issue-tracker, etc.;

• Tools: these reflect the typical tools that automate
or accelerate the DevOps way - e.g., harmonised issue-
trackers and version-control systems, continuous inte-
gration pipeliners, continuous deployment, infrastructure-
as-code mechanisms, etc.;

• Variables/Risks/Decision-Points: these reflect the
decision points or loops we distilled from the scenario

1a complete technical report (only in italian) on the case-
study at hand and the tentative mapping proposed in this
thesis is available online: http://tinyurl.com/h3xoalc

128

at hand - for example, “the Phoenix Project” also con-
tains a detailed series of incident reports which can be
considered typical in DevOps software product chains
- the incident management procedures enacted in such
instances need to be further investigated to isolate
ways in which incident management can be sped up;

• Measurable Quantities: these reflect the quantities
that actors in PU used to evaluate, weigh and eventu-
ally consent on a common decision - these quantities
can be further investigated to understand trade-offs or
typical barriers in decision processes as well as decision
outcomes;

Figure 1, for example, outlines the process used to handle
software outage. The figure outlines the procedure as an
alternative of two sub-scenarios corresponding to “Known
Problems” or “Unknown Problems”; in the former (top of
the sequence diagram), employees emit corresponding help
requests outlining the problem in an appropriate form and
with corresponding problem information. Similarly, in the
sub-scenario wherefore outages and connected problems are
unknown, appropriate problem investigation ensues and so-
lutions plans are devised with consequent task assignments.

The key idea we advocate in this paper is that this and
similar lifecycle processes bear key variables and recurrences
with respect to typical software engineering processes - these
variables and recurrences along with the process behind them
may be further studied and instrumented with SPE models,
approaches and notations for improved DevOps speed.

5. SUPPORTING DEVOPS SCENARIOS WITH
PERFORMANCE ENGINEERING

In order to evaluate the performance of the software de-
velopment process following DevOps, we investigate whether
we can inspire by already proposed Performance Engineer-
ing techniques. Concretely, due to our previous experiences
in software quality evaluation, we focus on the reutilization
techniques coming from the model-based SPE research field.

Therefore, we apply techniques of performance evaluation
of a product to carry out the performance evaluation of a
process. Fortunately, many times the performance of the
Software product has been evaluated as the performance of
its workflow; while the software development process can be
also seen as a workflow of actions.

The successful application of a concrete model-based SPE
technique to study the performance of DevOps processes is
achieved if both the results offered by the SPE technique
are meaningful in the DevOps processes domain and the in-
puts required by the SPE technique are obtainable in such
DevOps domain. In this section we elaborate on this match-
ing between usefulness and obtainability of the outputs and
inputs, respectively, proposed SPE in the software devel-
opment process following DevOps practices. In the scope
of this mapping, our two main research questions can be
rephrased as follows:

1. Are the outputs offered by model-based SPE useful in
the context of performance evaluation of the software
development process? This research question is short-
ened to performance metrics matching

2. Are the inputs required by model-based SPE achievable
in the context of performance evaluation of the soft-

ware development process? This research question is
shortened to input information matching

We address these research questions in the following, using
our analysis of the information available from The Phoenix
Project [13].

5.1 Performance metrics matching
Metrics of interest when evaluating DevOps software de-

velopment process are much close to software process im-
provement research, e.g., the work of [15] or [7]. Similarly,
we report:

1. Expected task completion rate for a given assignment
of developers to tasks. In this way, the best assignment
of developers to tasks can be chosen;

2. Expected finishing time of the tasks associated to the
current cycle. In this way, the deadlines for the current
DevOps chain iteration can be established or renego-
tiated;

3. Probability of having finished all the tasks associated
to the current cycle by its deadline. In this way, it
can be done a risk assessment of the progress of the
iteration;

4. Expected percentage of tasks finished by the end of
the established iteration deadline. In this way, the
percentage of completed tasks by the deadline or the
deadline for all tasks can be renegotiated;

5. Expected finishing time of the whole development. In
this way, the expected finishing time of the project can
be devised. If the completion of the project is expected
to happen before final delivery, some developers can be
released and allocated to new projects. Otherwise, if
the project is delayed, the presence of some functional-
ities or the final release date can be renegotiated. Also
an attempt to satisfy the final delivery date by adding
more developers to the project can be discussed [6];

6. Probability of having finished all the tasks of the project
by its deadline. In this way, it can be done a risk assess-
ment of the overall finishing date of the project and, if
necessary, renegotiate the same topics as in point 5);

7. Proportion of time doing Dev activities and proportion
of time doing Ops activities. In this way, some sort of
“load-balancing” activity can take place between Dev-
and -Ops sides of the lifecycle, working to optimise
such times and reduce waste, if possible;

8. Frequency with which developers have to leave their
task unfinished and move to another either due to in-
cidents in the task under development that block it
because the have to be solved by project management,
or by interruptions coming from project managers to
solve incidents caused by previous tasks;

Familiar metrics in SPE are the system response time,
activity response time, system throughput, percentage of
utilization of resources, residence times in resources. More-
over, in the study of response times, it is commonly neces-
sary more information beyond its average or expected value.
In such cases, they are provided percentiles or partial cumu-
lative distribution functions of the response time. These

129

Figure 1: Example of DevOps process - handling software outages from our own experience report.

are expressed as P (t < T), and their values help to answer
questions in the software requirements domain such as the
system response time shall be lower than 2 seconds the 95%
of times.

These SPE metrics, for which there exists theories to cal-
culate their values from system models, match the presented
performance metrics of interest in DevOps software develop-
ment. Concretely, we can see that: metric 1) can be calcu-
lated by computing the system throughput, 2) is analogous
to expected response time of the development process, 3)
can be calculated by computing the probability that the re-
sponse time of the system is less than the remaining time
until the deadline, 4) can be calculated by using the through-
put (rate of tasks completion) and the deadline, 5) and 6) are
calculated as 2) and 3) but using as input the information
for the whole development instead of the information for the
current iteration, 7) is similar to calculation of utilization of
resources, 8) can be computed by using the relation between
the sum of rates with which developers change the task in
which they are working (throughput of start developments)
and the system throughput.

Therefore, for the performance metrics matching research
question, we have seen that SPE offer solutions for comput-
ing the software development performance metrics we have
been able to elicit.

5.2 Input information matching
The inputs for model-based SPE are software models that

represent the behavior of the system in one or more execu-
tion scenarios. These software models are built by software
engineers and expressed in languages that they master as
BPEL-WS [5] or the even more richer domain of UML [3,
10, 8, 18, 16] by applying profiles as MARTE[14]. Palladio
[19] follows the Meta-Object Facility (MOF) standard and is
a domain specific modeling language devised to model soft-
ware architectures and ease their performance evaluation.

We are not in a position to solve this research question
because we lack a comprehensive view of all the particulari-
ties that affect the good “health” of a software development
process in a organisation. However, we hypothesize that,
at least the fundamental activities and interactions of a De-
vOps software development process can be modeled with
general purpose languages like UML. To keep it as plausible
hypothesis or to refute it, we have done the experiment of
modeling the software development process and interactions
described in the The Phoenix Project case study with one of
the input languages accepted by SPE, concretely with UML.
Figure 1 shows one of the organisational scenarios, modeled
with a UML Sequence diagram. As described in Section 4,
the diagram represents the scenario of incidence manage-
ment of a development task with respect to the involved
teams and the task lifecycle. It is detailed the involvement
of incidence management levels, as “Level 3” and “Level 3S”
to help in “known problems”, and how they queue the di-
verse incidences that can exists in a given moment. It is
also detailed how, when the team faces an “unknown prob-

130

lem”, it is required a time consuming investigation whose
output will produce new tasks that will solve the incidence.
In turn, the implementation of these newly generated tasks
will consume time of developers, their completion will have
to satisfy delivery dates, and they will have to be scheduled
and addressed in one of the DevOps cycles. The conclusion
of this experiment has been that the generation of models
in the input languages used by SPE such as profiled UML
diagrams is a feasible work in the context of performance
evaluation of a DevOps software development process, al-
though we do not provide the full description of the study
and their modeling to the obtained 13 UML Sequence Dia-
grams due to space restrictions,

6. DISCUSSION
This section discusses the main benefits of the approach

and ideas contained in this paper, later touching on threats
to validity and outlining a tentative research agenda around
the ideas we proposed.

6.1 Discussions and Lessons Learned
First, we observed that the proposed idea leads to sev-

eral forms of evidence-based insight curiously reminiscent
of Joel Spolsky’s Evidence-Based Scheduling2. In so doing,
the idea of combining DevOps with SPE may lead to offering
insights that fit equally well in projects, teams and organi-
sations that already underwent a shift to agile methods or
in their non-agile counterparts. In the former scenario, the
discipline of DevOps performance engineering would help
planning cycles and iterations or during retrospectives while
in the latter scenario our approach would help proceeding
the software lifecycle in a flexible way, i.e., choosing the next
development/operation step in a way which is best-fitting
with the evidence at had. Additional research needs to be
invested on our approach first to understand the implica-
tions of this observation and second to understand if and
how our approach (with its supporting tools and notations)
may extend agile tools such as Trello or other tools typical
in more classical approaches to software engineering.

Second, the idea reported in this paper suggests that SPE
and DevOps are definitely synergistic when it comes to de-
ciding the best-fit task allocation considering the various
organisational forms in the software development resource-
pool. For example, consider a scenario where several partner
organisations share in a software development project (e.g.,
through outsourcing or using a mix of open- and closed-
source software communities). An approach of DevOps per-
formance engineering may take said organisational scenario
in consideration, e.g., offering the possibility to adopt ad-hoc
scheduling schemes or rules for the scenario in question.

In summary, from the sketch we provided in this paper,
we could grasp that: (a) DevOps performance engineer-
ing shows the promise of possibly combining multiple well-
established notations at the same time and for the key pur-
pose of steering and governing software lifecycles in a De-
vOps fashion; (b) SPE notations may have non-trivial but
intriguing interactions and may yield valuable insights when
combined together (e.g., multi-view modelling and layered
queuing networks that reflect multiple community types,
multiple process models in the same DevOps product de-

2http://www.joelonsoftware.com/items/2007/10/26.html

velopment effort); (c) DevOps performance engineering may
even have the potential to lower considerably the organisa-
tional and socio-technical barriers [21] in DevOps.

6.2 Threats to Validity
Although offering a valuable lens of insight into DevOps

and the synergies it bears with SPE, the work reported in
this pages bears the threat to validity of any single-observation
case-study. Also, the quasi-ethnographical nature of our
study does not reflect a direct observation of the case-study
object but rather a second-hand report which is also rep-
resented in a novelised form and enriched with many cir-
cumstantial and factual aspects reflecting business, organi-
zational, social and socio-technical connotation. Although
this nature allowed us to observe the very processes that we
were originally looking for, this same nature cannot allow us
to generalise the contents and contributions reported in this
paper beyond the illustrative purpose we intended. That be-
ing said, the ideas and concepts we report serve the purpose
of laying foundations to more work and further investiga-
tion around the research roadmap we defined. In providing
these foundations, we hope that more researchers around
the world will pick up the study such as we left it, possibly
addressing some of the shortcomings we pointed out in this
section.

6.3 Research Roadmap
From the premises and ideas outlined in the previous pages,

there are several research directions for future work:

• First, more research shall be invested in the steps of
performance metrics matching and input infor-
mation matching described in Section 5. To this
end, besides using existing data on DevOps processes,
we plan to exploit our expertise both on SPE and on
its application to software processes [4].

• To facilitate the SPE adoption, another research line
we intend to investigate is the possibility of developing
a complete (semi-)automatic approach encom-
passing the previous steps. For example, we observed
that much of the required information concerning De-
vOps process practices is already existing in various
task-based repo’s widely used in industrial practice,
e.g., bug-trackers such as JIRA databases, boarding
tools such as Trello, or task-/issue-based repos such
JIRA or MyLyn. Our idea is that this approach may
be rigged to work in a proactive way by retrieving
this necessary data automatically. Moreover, several
Application Lifecycle Management solutions exist that
may work well from interfacing with our approach. For
example, tools such as TaskTop3 that offer harmonisa-
tion layers across software development pipelines may
feed task-based information into our approach and re-
ceive feedback in return.

• More research shall also be invested in multi-view
modelling. We plan to investigate the use of differ-
ent types of models according to (i) the global require-
ments, (ii) the development phase and (ii) the data
availability. These models can be used in a stand-
alone or in a combined way. For example, Petri nets

3http://tinyurl.com/j7mxxtg

131

and Queuing Networks models with the emphasis on
the competition for the resource usage can be used for
staffing purpose as well as for organizational issues.
Bayesian networks can be helpful as a decision making
tool helping the prioritization of tasks or module in
the software architecture;

• Another direction in which more research shall be in-
vested is uncertainty analysis. Several tasks at the
initial development phases cannot be precisely defined
so it is important including uncertainty management
analysis techniques to take these aspects into account[17].
Specifically, we can distinguish two main research di-
rections:

– model incompleteness: additional research will
focus on defining incremental approaches able to
include pieces of information in the available mod-
els as soon as they are available;

– model analysis: more research on our approach
will focus on defining techniques able to infer un-
defined properties about module/tasks based on
the overall requirements and the estimations ob-
tained by the analysis of the available models;

7. CONCLUSION
DevOps is recently gaining momentum as a corporate

software engineering culture and strategy that promises in-
creased efficiency and reduce time to market. In our indus-
trial practice and experience we observed several key syner-
gies between DevOps and software performance engineering
tenets and current challenges. In response to these syner-
gies, this paper explores a second-hand ethnomethodological
report over an industrial DevOps adoption campaign.

With this preliminary qualitative investigation in mind,
we made an attempt at meshing DevOps and Software Per-
formance Engineering featuring the (re-)use of available mod-
elling notations and technologies which are currently very
common in industrial practice (e.g., Petri-Nets).

The ideas proposed in this paper may lead to mechanisms
that aid the industrial adoption of DevOps approaches by
allowing intelligent steering of new software projects using a
strategy ever closer to DevOps. Even in a primordial stage,
the ideas reported in this paper show the great promise and
several key interesting research paths existing behind com-
bining software performance engineering with DevOps pro-
cesses and organizational scenarios. For example, our ap-
proach may function as a DevOps governance mechanism
rotating around previously existing modelling notations.

In the future, we plan to conduct more research in the gen-
eral directions pointed out in our tentative research roadmap,
with the key goal of further elaborating how and by means
of which combination of modelling notations and tools from
SPE may best support DevOps.

Acknowledgment
Some of the authors’ work is partially supported by the Eu-
ropean Commission no. 644869 (H2020 - Call 1), DICE.

8. REFERENCES
[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices

architecture enables devops: Migration to a cloud-native
architecture. IEEE Software, 33(3):42–52, 2016.

[2] L. J. Bass, I. M. Weber, and L. Zhu. DevOps - A Software
Architect’s Perspective. SEI series in software engineering.
Addison-Wesley, 2015.

[3] S. Bernardi, J. Merseguer, and D. C. Petriu. Model-Driven
Dependability Assessment of Software Systems. Springer,
2013.

[4] A. Bertolino, E. Marchetti, and R. Mirandola. Performance
measures for supporting project manager decisions.
Software Process: Improvement and Practice,
12(2):141–164, 2007.

[5] P. Bocciarelli and A. D’Ambrogio. Model-driven
performability analysis of composite web services. In
SIPEW, volume 5119 of Lecture Notes in Computer
Science, pages 228–246. Springer, 2008.

[6] F. P. Brooks. The Mythical Man-Month. Addison-Wesley,
Boston, MA, anniversary edition, 1995.

[7] B. M. Feeley. IDEAL: A User’s Guide for Software Process
Improvement. Software Engineering Institute (SEI), 1996.

[8] M. Fleck, L. Berardinelli, P. Langer, T. Mayerhofer, and
V. Cortellessa. Resource contention analysis of cloud-based
system through fuml-driven model execution. In
NiM-ALP@MoDELS, volume 1074 of CEUR Workshop
Proceedings, pages 6–15. CEUR-WS.org, 2013.

[9] R. B. France and B. Rumpe. Model-based lifecycle
management of software-intensive systems, applications,
and services. Software and System Modeling,
12(3):439–440, 2013.

[10] V. Grassi and R. Mirandola. Uml modelling and
performance analysis of mobile software architectures. In
M. Gogolla and C. Kobryn, editors, UML, volume 2185 of
Lecture Notes in Computer Science, pages 209–224.
Springer, 2001.

[11] M. Hammersley and P. Atkinson. Ethnography. Routledge,
London, 2003.

[12] H.-F. Hsieh and S. E. Shannon. Three approaches to
qualitative content analysis. Qualitative health research,
15(9):1277–1288, 2005.

[13] G. Kim, K. Behr, and G. Spafford. The Phoenix Project: A
Novel About IT, DevOps, and Helping Your Business Win.
IT Revolution Press, 1st edition, 2013.

[14] MG. Uml profile for marte: Modeling and analysis of
real-time embedded systems, 2009.

[15] M. Niazi, D. Wilson, and D. Zowghi. Critical success
factors for software process improvement implementation:
an empirical study. Software Process: Improvement and
Practice, 11(2):193–211, 2006.

[16] D. Perez-Palacin and J. Merseguer. Performance sensitive
self-adaptive service-oriented software using hidden markov
models. In ICPE, pages 201–206. ACM, 2011.

[17] D. Perez-Palacin and R. Mirandola. Uncertainties in the
modeling of self-adaptive systems: a taxonomy and an
example of availability evaluation. In ACM/SPEC
International Conference on Performance Engineering,
ICPE’14, pages 3–14, 2014.

[18] D. B. Petriu and C. M. Woodside. Software performance
models from system scenarios. Perform. Eval., 61(1):65–89,
2005.

[19] R. Reussner, S. Becker, J. Happe, H. Koziolek,
K. Krogmann, and M. Kuperberg. The Palladio component
model. Karlsruhe, 2007.

[20] C. U. Smith. Performance Engineering of Software
Systems. Addison-Wesley, Reading, MA, USA, 1990.

[21] D. A. Tamburri, R. Kazman, and H. Fahimi. The
architect’s role in community shepherding. IEEE Software,
33(6):70–79, 2016.

[22] D. A. Tamburri, P. Lago, and H. van Vliet. Organizational
social structures for software engineering. ACM Comput.
Surv., 46(1):3, 2013.

[23] K. S. Trivedi and R. A. Wagner. A decision model for
closed queuing networks. IEEE Trans. Software Eng.,
5(4):328–332, 1979.

132

