
Time of Use Tariff parameter Estimation: A Data Analysis
Approach on Multicore Systems

Amit Kalele
Center of Excellence for High

Performance Computing
Tata Consultancy Services,

Pune
kalele.amit@tcs.com

Kiran Narkhede
Center of Excellence for High

Performance Computing
Tata Consultancy Services,

Pune
narkhede.kiran@tcs.com

Mayank Bakshi
Center of Excellence for High

Performance Computing
Tata Consultancy Services,

Pune
mayank.bakshi@tcs.com

ABSTRACT
Increased use of solar energy is forcing energy companies to
devise new time of use (ToU) tariff scheme to counter rev-
enue losses. Designing ToU tariff scheme is a complex multi-
stage problem. The adoption of smart meters and avail-
ability of high performance multicore systems has opened
up newer and better ways of tariff design. The design of
ToU tariff schemes typically involves identifying various de-
mand periods which is accomplished by analyzing the intra-
day consumption patterns across various geographies. The
optimal tariff parameters for all the demand periods is then
computed by solving a constrained optimization problem.
In this paper, we present a present multi dimensional grid
search approach to compute the optimal tariff parameters
for a ToU scheme. The grid search method was then effi-
ciently implemented on Nvidia GPUs with dynamic paral-
lelism. The annual energy consumption data processing for
nearly 0.3 million consumers and computation of consump-
tion pattern and demand periods was carried out using MPI
based parallel processing on an Intel Haswell system.

Keywords
Time of use tariff Modeling; HPC; GPU; Quadratic Opti-
mization; Parallel Computing; Big Data Analytics

1. INTRODUCTION
With the advent of efficient and cost effective conversion

of solar energy, its domestic usage is rapidly increasing. The
traditional energy companies are facing erosion in revenues
due to increasing usage of solar energy. Even though the de-
mand for conventional energy is reduced, the companies have
to maintain full capacity distribution network and equip-
ment. Simply increasing the tariff is not an option for the
energy companies as it is regulated by authorities and it
also has negative impact with more consumers opting for
solar options. This takes its toll on revenues. To counter
these financial losses, energy companies are devising new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053623

tariff schemes, which has bearing in variable charges based
on energy demand.

Energy companies can apply new tariff rates for differ-
ent time of the usage by analyzing consumption patterns
[7, 11], [5] and [3], while consumers can benefit by actively
changing their energy usage time. For example, users can
maximize consumption during off peak times and can reduce
their energy bills. In the ToU tariff, the usage of energy or
electricity for different periods of a day is charged at differ-
ent rates. Typically, periods which observe higher demand
are termed as peak periods and are charged at higher rates.
Similarly, periods with low demand are termed as off peak
periods and are charged at lower rate. Depending on the tar-
iff scheme, the intermediate hours can further have multiple
periods and their respective changes.

Computing optimal tariff parameters for peak, off-peak
or intermediate hours such that revenue deficit can be min-
imized while adhering to the regulatory guidelines is a com-
plex computational problem. This problem involves opti-
mization and computing consumption pattern of the entire
consumer base [10, 9, 2].

Computing consumption pattern requires processing and
analyzing years of consumption data (metered readings) of
entire consumer base. Several consumer categories, different
geographical locations and respective regulatory constraints
further add to the computational complexity. These prob-
lems naturally fall in the realms of high performance com-
puting and data analytics and can be effectively solved using
available technologies, like Hadoop map-reduce or spark or
MPI based cluster processing etc.

In this paper, we consider nearly 0.3 million consumers,
each with one year of consumption data with half hourly
readings. And a ToU tariff scheme which has four different
periods of energy demand. We also present a two phased
approach to compute optimal tariff parameter for the each
demand period. The first phase involves filtering and analy-
sis of the entire data for computing the over all consumption
pattern and the demand periods. The second phase com-
putes the optimal tariff parameters for each energy demand
period.

We now enumerate key features of the work and provide
a brief outline of the paper.

1 A quadratic optimization problem for computing op-
timal parameters for the considered ToU tariff scheme
is formulated. This optimization problem is further
translated into a 5-dimensional grid search problem.

2 A randomized adaptive n-dimensional grid search al-

113

gorithm is presented and efficiently implemented on
Nvidia GPUs exploiting dynamic parallelism technol-
ogy. This algorithm starts with a coarse search grid
and iteratively performs finer searches only in specific
regions of the search space. The regions are formed
dynamically.

3 One year of consumption data for 0.3 million con-
sumers with daily readings with an interval of 30 min-
utes was provided in CSV files. We present a MPI
based approach to filter the data and calculate annual
consumption of each consumer and total annual con-
sumption of all consumers. This data was further pro-
cessed to calculate four distinct demand periods.

The following table presents the glossary of terms and
variables used in the paper.

Terms Definition

ToU Time of Use tariff
αfix, αo, αs, αp, αc Tariff rate for fixed, off peak,

shoulder, peak and critical
peak demands

Eo, Es, Ep, Ec Energy consumption for
fixed, off peak, shoulder,
peak and critical peak
periods

R̂, R and ∆t Revenue under ToU, Refer-
ence revenue and time pe-
riod in days respectively

∗ General notation to repre-
sent the {fix, o, s, p, c}

l∗, u∗ and τ∗ Lower and upper bound on
values of α∗ and discretiza-
tion step size

Table 1: Glossary of Terms

2. TARIFF SCHEME
Traditionally, domestic consumer tariffs have only two

components namely daily fixed charge ($/day) and a flat
tariff rate ($/kWh). The revenue computation based on
this scheme can be described as follows. Let ∆t denote the
time period under consideration expressed in days, αfix de-
note the fixed per day charge, αflat denote the flat tariff
rate and E(∆t) denote the energy consumption for the time
period ∆t. The revenue R for the time period ∆t can given
as:

R(∆t) = {∆t · nuser · αfix}+ {αflat × E(∆t)} (1)

But with the cheap solar energy, this model is not effective
and to mitigate the financial losses, new tariff schemes are
being devised and experimented. These schemes introduce
variable tariffs ($/KWh) based on the intra-day demand for
the energy along with the fixed tariff ($/day) [16]. A typical
energy demand in a 24 hour cycle can be described by the
figure (1) below:

Based on the above representative energy demand pat-
tern, a ToU model or scheme can be defined. Instead of a
flat tariff rate for the entire day, we consider four demand
periods namely off-peak, shoulder, peak and critical peak.

Figure 1: Energy Demand in a day

Under this model, each demand period is charged at differ-
ent rate and a fixed per day charge is also levied. The time
of use tariff pricing is well research area and more details
can be found in [1, 6].

The off-peak, shoulder and peak demand periods are com-
puted from the consumption pattern, but the critical peak
period is calculated as follows. From the previous yearâĂŹs
consumption data, twelve maximum consumption days are
selected and aggregate consumption in these twelve days is
considered and charged with critical peak rate.

Let α∗ and E∗ denote the tariff rate or parameter and the
energy consumption for the (∗) demand period respectively.

Then the revenue R̂ under this model for a time period ∆t

can be given as follows:

R̂(∆t) = {∆t · nuser · αfix}+ Cvar(∆t) (2)

Where αfix is the fixed per day charge and Cvar is defined
as:

Cvar = αo ·
∑
nuser

Eo(∆t) + αs ·
∑
nuser

Es(∆t)

+αp ·
∑
nuser

Ep(∆t) + αc · {
12∑
j=1

Ejc}
(3)

The above equations defines the revenue calculation under
the ToU scheme. To calculate the revenue R̂ it is required to
know the α∗ and E∗. We consider the problem of computing
α∗ and E∗ in the following sections.

3. TARIFF RATE OPTIMIZATION
The ToU model discussed in the previous section levy

charges as per the severity of the demand. It can be seen
from the equation 3 that the revenue R̂ directly depends on
the the tariff rate parameters α∗. The energy companies
cannot choose these parameters arbitrarily. The choice of
these parameters is governed by the following constraints.

• The resulting revenue under ToU model R̂ and the
reference revenue R should be approximately equal
R̂ ≈ R. If the choice of α∗ results in very high rev-
enue i.e. R̂ � R, then it will be a violation of regu-
latory guidelines. On the other hand if rate parame-
ters are such that the resulting revenue is too low i.e.
R̂� R, then it is a financial loss to the company which
of course is not acceptable.

• The value of each parameter α∗ must satisfy their re-
spective range.

114

• The critical demand days should be charged at higher
rate than peak demand.

The desired tariff rate parameters satisfying above constraints
can be computed by solving the following standard optimiza-
tion.

Problem 3.1. Let R̂ be the revenue under considered ToU
model and is defined by equations 2 and 3 then

minimize
α∗

abs{R̂(α∗)− R}

subject to 0.9 ≤ αfix ≤ 1.0

0.166 ≤ αo ≤ 0.199

0.2 ≤ αs ≤ 0.3

0.3 ≤ αp ≤ 1.0

0.5 ≤ αc ≤ 5.0

αc ≥ αp

Since the absolute difference is of interest for minimiza-
tion rather than the simple difference, the problem can be
formulated in multiple ways. One such way would be to
consider square of the difference {R̂(α∗)−R}2 which results
in a modified cost function:

minimize
α∗

{R̂2 + R2 − 2R̂R}

The gradient based methods like GRG algorithm are well
suited for solving such problems [4]. But the parameter
computed from GRG were suboptimal and resulted in loss
of ≈ $19K.

3.1 Grid search Approach
The cost function abs(R̂(α∗)−R) minimization would re-

sult in best approximation of original revenue R. But in
practice, especially when revenue is in order of hundreds of
million dollars, it would be sufficient to have absolute rev-
enue difference below some threshold δ, where δ could be of
order of few tens of dollars rather than the global minimum.

Under this practical scenario, the objective of finding the
global minimum can be relaxed and the optimization prob-
lem can be formulated as a search problem with a threshold.
In what follows, we present the grid search problem and an
approach to on GPUs.

The traditional way of performing parameter optimization
has been grid search, or a parameter sweep, which is simply
an exhaustive searching through a manually specified subset
of the parameter space bounded by the range of parameters.

Since the parameters are real-valued, it would be neces-
sary to discretize the parameter space (with some finite step
size) before applying grid search. We present the mathe-
matical formulation of the search problem below.

As defined earlier, let (αfix, αo, αs, αp, αc) be the five tar-
iff parameters. Let (l∗, · · · , u∗) denote the lower and up-
per bound on the each parameter and τ∗ be the respec-
tive discretization step size. The space of search points S
can be defined as the Cartesian product of the {lfix, lfix +
τfix · · · , ufix}×{lo, lo + τo, · · · , uo}×{ls, ls + τs, · · · , us}×
{lp, lp + τp, · · · , up} × {lc, lc + τc, · · · , uc}. The cardinality
of the search space S depends on each of the τ∗ and is given
as:

|S| =
∏
∗

(u∗ − l∗
τ∗

)
(4)

An arbitrary point s in the search space S is given as
a five tuple representing each of the five search parameter
α∗ respectively. The optimization problem defined in the
section 3 can be re formulated as a 5-dimensional grid search
problem as follows.

Problem 3.2. Find one or more tuple {si, δ} where si ∈
S and δ ∈ R such that the abs(R̂(∆t) − R) ≤ δ for some
sufficiently small δ and given time period ∆t.

The success of the search depends mainly on the two pa-
rameters (τ∗, δ). The discretization step τ∗ defines the size
of the overall search space. Larger values of τ∗ would result
in very few search points and may not yield a solution for
the chosen δ. On the other hand, very small values would
result in huge number of search points and the searching
would become time consuming process.

Similarly a large value of δ would result in too many so-
lutions which may not be of much interest as it is desired
that R̂ ≈ R. On the other side, very small value of δ would
become too stringent and may not result in any solution.

Typically, randomized and adaptive search approaches works
best in such situations, which refines these parameters in re-
cursive fashion. These methods are well known in computer
science literature [8] and further details can be found in [18].

In the following sections, we present a multi stage adaptive
search approach which based on the outcome, refines these
parameters in successive stages for better results.

3.2 Recursive grid search
The recursive approach initiates search with a moder-

ate size grid and threshold on the whole space. Algorithm
then recursively defines newer search regions around the grid
points which satisfy the initial bounds. The newer regions
are discretized with smaller steps and search is initiated with
lower threshold in these new regions.

We now present the mathematical algorithm for the re-
cursive grid search. For the sake of clarity, we describe the
different function of the algorithm and then detail out the
final algorithm using these functions.

Algorithm 1 computeS(), Computes search points

Read values of p, τ∗, l∗, u∗, threshold δ
Initialize S = ∅
if p = NULL then

Set upper and lower range for α∗ to default
else

Set l∗ = (l∗ + r∗) and u∗ = (u∗ − r∗) for some r∗
end if
for αfix = lfix to ufix − 1: τfix do

for αo = lo to uo − 1: τo do
for αs = ls to us − 1: τs do

for αp = lp to up − 1: τp do
for αc = αp to uc − 1: τfix do

s = {αfix, αo, αs, αp, αc}
S ← S ∪ s

end for
end for

end for
end for

end for
return S

115

The algorithm computeS() generates all the grid points to
be searched either on entire space or around a point p. The
values of r∗ could be different for each parameter α∗.

Algorithm 2 computeP(), Computes solution points

Load consumption data Eo, Es, Ep, Ec
Load the values of time period ∆t, threshold δ
Load the set of search points S
while S 6= ∅ do

Choose a point s ∈ S
Compute R̂(∆t) at s

if |R̂(∆t)−R| ≤ δ then
P ← P ∪ {s, δ}

end if
S ← S \ {s}

end while
return P

The algorithm 2 computes the solution to the search prob-
lem within the set of search points S. The revenue R̂ is
computed using equations 2 and 3. The reference revenue R
is an input parameter to the algorithm.

Algorithm 3 Recursive Grid Search

Read parameter δ, Set number of stages Ns
Initialize set of points P = {{p, δ} | p = NULL}
while Ns 6= 0 do

for Each p ∈ P do
Sp=computeS(p, τ∗, l∗, u∗, r∗)
Pp = computeP(Sp, δ,∆t)

end for
P ← ∪Pp
update(δ, τ∗, r∗)
Ns ← (Ns − 1)

end while
Sort P w.r.t δ
return {s, δ} ∈ P for smallest δ

The algorithm 3 computes the desired solution. The algo-
rithm terminates after executing Ns stages. At each stage,
the threshold δ is reduced to a lower value. New search
grids are formed around all the points obtained in the pre-
vious stage (∪Pp) with smaller discretization steps τ∗. The
function update(), simply scales down the values of δ, τ∗, r∗
such that the range constraints on α∗ are not violated.

Instead of having fixed number of stages Ns it is possible
to describe the algorithm with dynamic number of stages.
This can be achieved by simply replacing the loop while
Ns 6= 0 do with while δ > c do. If a solution is found then
the algorithm at least achieves δ = c.

There is no way one can guarantee a solution, however
with a suitable choice of δ and τ∗ an acceptable solution can
be obtained. In the next section, we present our GPU im-
plementation of the above algorithm. The implementation
is specific to Nvidia GPUs and carried out in CUDA C [12].

4. IMPLEMENTATION DETAILS
In principle, the recursive grid search algorithm described

in section 3 is embarrassingly parallel. Each point in the
search space can be evaluated independently. The modern
GPUs, with large number of cores, are best suited for such

problems. The Kepler series GPUs from Nvidia offers sev-
eral highly desired features such as HyperQ and Dynamic
parallelism [13].

The Dynamic parallelism enables launching kernels from
a already executing kernel based on some conditions. This
feature is best suited for the above presented grid search
algorithm. To exploit the dynamic parallelism feature, the
above described algorithm was implemented in slightly dif-
ferent manner.

The computations begins with a kernel for some moderate
size δ and τ∗ and instead of the search points, the search
ranges were distributed equally among all the threads. Each
thread computes and evaluates the points in its range and
if the point is found to satisfy the condition, the thread
creates a new search grid around that point with finer τ∗
and launches next stage search kernel with smaller δ.

In this arrangement, at any instance, different threads
may execute different stages of the computation. If no solu-
tion is found for the current stage, the thread returns to the
next search point from the previous stage. This can be best
seen as depth first search, where the algorithm gives pref-
erence to the next stage before finishing the existing stage.
The following steps broadly describe the GPU implementa-
tion.

1. Initialize the threshold δ and step size τ∗ for each pa-
rameter. Also initialize number of stages Ns.

2. Let Nt0 be the number of initial threads. Divide each
range (l∗, . . . , u∗) into Nt0 equal parts.

3. Initiate a CUDA kernel with Nt0 threads. Each thread

computes |R̂−R| for all the points in its range.

4. If |R̂ − R| ≤ δ for some point p point then the corre-
sponding thread does following:

(a) Update Ns, δ, τ∗ and r∗ and compute new l∗ and
u∗. If Ns 6= 0 then

(b) Let Nt1 be the number of threads. Divide each
range (l∗, . . . , u∗) into Nt1 equal parts.

(c) Initiate a CUDA kernel with Nt1 threads. Each

thread computes |R̂ − R| for all the points in its
range.

(d) If |R̂ − R| ≤ δ for some point p point then goto
step 4a and launch next stage kernel. Else goto
step 3 and resume computation with next point.

The performance of the above implementation in terms of
speed and the accuracy is presented in later section.

To compute the optimal tariff parameters α∗ either by
solving the optimization problem or by grid search, it is
required to compute the energy consumptions E∗ for the
respective periods. In the following section, we present our
approach for processing the annual consumption data and
computation of consumption pattern.

5. DATA PROCESSING
The figure 1 shows the representative consumption pat-

tern. To identify various demand periods and the respective
consumption, it is required to know the actual consump-
tion pattern of the entire consumer base on the 24 hour
cycle from the available data. In this section we discuss

116

simple algorithms and their implementation for computing
consumptions for the different demand periods.

The metered readings were available for 30 minutes inter-
val, which translates to 48 readings per day per consumer.
The annual data for nearly 0.3 million consumers was pro-
vided in 12 CSV files (one for each month) and each file
contained data for consumers in unsorted fashion.

The task of computing annual consumption for the entire
consumer base could be achieved by simply adding all the
rows. However it was also required to calculate per consumer
revenue under new and old tariff. This task requires sorting
data with respect to consumers IDs, which was carried out
in parallel due to large volume of data.

Following steps were carried out to sort and validate the
required data. All the steps were implemented using MPI

[15] and C++ with Standard Template Library (STL) [19].

1. A typical single day record contains one row with con-
sumer ID, date, category of consumer, region and 48
consumption readings for that particular date. Input
data (.CSV files) is equally partitioned among n ranks.
Each rank then sorts the input data using consumer
number as key and all records for that customer is ac-
cumulated into a unique file consumerID.csv.

2. The part files for each consumer were merged into sin-
gle file. Since there were large number of files, this
task was also equally divided among all ranks. This
merging leads to new refined data base with one file
per consumer containing yearly consumption record.

3. The per consumer data was again sorted as per dates.
Each processed consumer file (consumerID.csv) con-
tains 365 rows and each row containing 48 consump-
tion readings.

Several data queries were implemented on the processed
data. For the sake of brevity, we present one such algorithm
in the following. To compute the critical peak consumption
Ec, it is required to compute the 12 maximum consumptions
days from the entire data. It can be seen that the last col-
umn in the data stores the sum of the 48 readings for the
respective rows. Following algorithm was implemented to
compute the 12 maximum consumption days.

The function sumRow simply sums all rows from consumer(i).csv
file into a single row of 48 reading. The function merge-

Sort12 merges data from two files and sorts it based on the
entries in the last column, which represents the total con-
sumption for that day or date. Depending on the available
memory, the practical implementation of the above algo-
rithm loads multiple files, rather than processing them one
by one. The function sort12 sorts list12 data from all the
ranks in descending order.

To compute the consumption E∗ for different demand pe-
riods, following steps were executed:

• All the outputs of sumRow (which are vectors of length
48) were added to get a single vector of 48 readings
denoted as e[i] where, i = 0 to 47. The vector e[i]
represents the annual consumption of the entire con-
sumer base. The vector e[i] is plotted in figure 2 on 24
hour scale. The graph depicts the actual consumption
pattern.

• The consumption for each demand period E∗ is com-
puted by adding the indices of consumption vector e
corresponding to each demand period.

Algorithm 4 Compute critical & per user consumption

Let there are r ranks and NT total files. Each rank pro-
cesses n = NT

n
files

Each rank does the following
Initialize a file list12.csv with 12 rows with all the read-
ings set to 0
for i = 0, n− 1 do

Load the file consumer(i).csv
Ei = sumRows(consumer(i).csv)
mergerSort12(list12.csv, consumer(i).csv)
update(list12.csv)
// The update function simply picks up the 12 max-

imum entries from the merged data and over writes into
list12.csv
end for
if rank = 0 then

Gather all list12.csv from other ranks into data.csv
sort12(data.csv)

end if
return Ei, Ec as 12 maximum readings with dates

Figure 2: Computed Annual Consumption Pattern

The computation of Ec was described in algorithm 4. With
the knowledge of all the E∗ it is possible to execute the grid
search and compute the optimal tariff parameters α∗.

6. EXPERIMENTAL SETUP AND RESULTS
We now describe our setup in terms of the type of hard-

ware and software used and present results obtained for the
tariff parameters computation. We begin with the summary
on the type of hardware used.

6.1 Hardware and Software used

• Hardware

– Host Intel Ivy Bridge 2.1 GHz, dual socket, 6
cores/socket, 16GB RAM.

– Device Nvidia’s Kepler K20X GPU with 796
MHz 2496 cores, 5GB RAM.

– Intel Xeon E5 2697 v3, 2.6 GHz, 14 cores/socket,
Dual socket, 64GB RAM, 2 threads per core with
HT.

• Software: Intel and GNU C / C++ Compilers, CUDA
for GPU Programming, STL for generic algorithms

117

and classes, OpenMPI and OpenMP for parallel com-
putations

6.2 Results
We begin by noting that all the computations were carried

out with double precision and the numerical accuracy of the
computations were not compromised in any hardware setup.

It is desired that the data processing and the grid search
both should be completed in reasonable time if not in the
real time. The most compute intensive step 1 and 2 in sec-
tion 5 is to sort and create per user data. These steps are
carried out in parallel. Apart from the compute time it is
required that the absolute difference |R̂ − R| i.e. δ should
be very small. For the reference, the original revenue R is of
order of $400 million. In this case any δ ≤ $100 would suf-
fice for the purpose. Following are the various performance
results obtained.

• Data processing: The sorting of the data and creating
the per user data took nearly 1 hour on Haswell sys-
tem. To sort and create per user data (the step 1 in
section 5) from the original data took 45 minutes. The
step 2 took another 11 minutes. The original CSV files
were partitioned among all the cores.

• Grid search: The grid search was executed on GPU
system. The number of stages were set to 4. It took
382 milliseconds to complete the search with all 4 stages.
The threshold δ was initially set to $10 and in the fi-
nal stage it was reduced to $0.001. The total 4 solu-
tions were obtained in the final stage. Nearly 2.5 bil-
lion grid points were searched on the GPU. The grid
search was also implemented on Intel Haswell system
on the similar lines of the GPU implementation but
the details were omitted for the sake of brevity. The
parallelization was carried out with OpenMP Parallel

For pragma [14]. The number of stages were set to 4.
The result obtained on GPU were reproduced on this
system in 3.08 seconds.

7. CONCLUSIONS AND FUTURE SCOPE
The objective of the work was to effectively solve problem

of computing desired tariff parameter rather than any qual-
itative analysis of the considered ToU model or to define a
new ToU model or scheme.

The recursive grid search was effective and fast because
lot of unproductive computations were cut down by the ap-
proach. Instead of searching with very fine grid resulting
in too many points, it searches adaptively. Only potential
regions were searched with details.

In this paper we presented how GPUs can be leveraged
to address the tariff parameter optimization problem. A
revenue loss of approximately $19K was reduced to only ≤
$0.001 with the results obtained by the grid search method.
Also the algorithms work fast enough to take several runs
with different settings.

We conclude this paper on the note that smart brute force
methods and multicore systems can be used to effectively
solve complex computational and data analysis problems.

8. REFERENCES
[1] H. S. A. Hatami and M. K. Sheikh-El-Eslami. A

stochastic-based decision-making framework for an

electricity retailer: Time-of-use pricing and
electricityportfolio optimization. IEEE Transactions
On Power System, 26 No 4:1808–1816, 2011.

[2] J. Andruszkiewicz. Time of use tariff design for
domestic customers integrating the management goals
of efficient energy purchase and delivery. In In
Proceedings of the 12-th International Conference on
European Energy Market, EEM.

[3] D. S. K. B. D. Pitt. Application of data mining
techniques to load profiling. In In Proceedings of the
21-st International Conference on Power Industry
Computer Applications, PICA, pages 131–136, 1999.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2009.

[5] D. W. Caves and L. Christensen. Econometric
Analysis of Residential Time-Of-Use Electricity
Pricing Experiments. The Journal of Econometrics,
14:287–307, 1980.

[6] E. Celebi and J. D. Fuller. Time-of-use pricing in
electricitymarkets under different market structures.
IEEE Transactions On Power System, 27 No
3:1170–1181, 2012.

[7] S. I. G. F. Gerbec D., Gasperic S. An approach to
customers daily load profile determination. In In
Proceedings of the IEEE Power Engineering Society
Summer Meeting, pages 587–591, 2002.

[8] J. Hart and A. Shogan. Semi-greedy heuristics: An
empirical study. Operations Research Letters,
6:107–114, 1987.

[9] S. Kauser and M. Shaikh. Time of use pricing - india,
a case study. In In Proceedings of the International
Conference on Power Systems, ICPS ’09.

[10] R. Li and et al. The effect of a mandatory time-of-use
pricing reform on residential electricity use. Applied
Energy, Elsevier, 162(15):1530–1536, January 2016.

[11] R. S. J. P. Mutanen A, Ruska M. Customer
Classification and Load Profiling Method for
Distribution Systems. IEEE Transactions On Power
Delivery, 26 No 3:1755–1763, 2011.

[12] NVIDIA. Cuda.
https://developer.nvidia.com/about-cuda/.

[13] NVIDIA. Dynamic parallelism. http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#cuda-dynamic-parallelism.

[14] OpenMP. Openmp library. http://openmp.org/.

[15] OpenMPI. Open message passing interface.
http://www.openmpi.org/.

[16] G. T. P. Yang and M. Nehorai. A Game-Theoretic
Approach for Optimal Time-of-Use Electricity Pricing.
IEEE Transactions On Power Systems, 28 No 2, 2013.

[17] P. G. Panapakidis IP. Alexiadis M.C. An approach to
customers daily load profile determination. In In
Proceedings of the IEEE Power Engineering Society
Summer Meeting, pages 587–591, 2002.

[18] L. Pitsoulis and M. Resende. Greedy randomized
adaptive search procedures. Oxford University Press,
2002.

[19] STL. Standard template library. https://isocpp.org/.

118

