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ABSTRACT

Today, a new technology is going to change the way plat-
forms for the internet of services are designed and managed.
This technology is called container (e.g. Docker and LXC).
The internet of service industry is adopting the container
technology both for internal usage and as commercial of-
fering. The use of container as base technology for large-
scale systems opens many challenges in the area of resource
management at run-time, for example: autoscaling, opti-
mal deployment and monitoring. Specifically, monitoring of
container based systems is at the ground of any resource
management solution, and it is the focus of this work. This
paper explores the tools available to measure the perfor-
mance of Docker from the perspective of the host operating
system and of the virtualization environment, and it pro-
vides a characterization of the CPU and disk I/O overhead
introduced by containers.
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1. INTRODUCTION

Operating system and application virtualization, also known
as container (e.g. Docker [12]) and LXC [8]), becames pop-
ular since 2013 with the launch of the Docker open source
project (docker.com) and with the growing interest of cloud
providers [5, 1] and Internet Service Providers (ISP) [14].
A container is a software environment where one can in-
stall an application or application component (the so called
microservice) and all the library dependencies, the bina-
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ries, and a basic configuration needed to run the applica-
tion. Containers provide a higher level of abstraction for
the process lifecycle management, with the ability not only
to start/stop but also to upgrade and release a new version
of a containerized service in a seamless way.

Containers became so popular because they potentially
may solve many Internet of Service challenges [4], for ex-
ample: the dependency hell problem, typical of complex dis-
tributed applications. The application portability problem,;
a microservice can be executed on any platform supporting
containers. The performance overhead problem; containers
are lightweight and introduce lower overhead compared to
Virtual Machines (VMs). For all these reasons, and more,
the Internet of Service industry adopted the container tech-
nology both for internal usage [3, 1, 17] and for offering
container-based services and container development plat-
forms [5]. Examples are: Google container engine [3], Ama-
zon ECS (Elastic Container Service), Alauda (alauda.io),
Seastar (seastar.io), Tutum (tutum.com), Azure Container
Service (azure.microsoft.com). Containers are also adopted
in HPC (e.g. [19]) and to deploy large scale big data ap-
plications, requiring high elasticity in managing a very large
amount of concurrent components (e.g. [7, 15, 18]).

The use of container as base technology for large-scale sys-
tems opens many challenges in the area of resource manage-
ment at run-time, for example: autoscaling, optimal deploy-
ment and monitoring. Specifically, monitoring of container
based systems is at the ground of any resource management
solution, and it is the focus of this paper.

In literature, the performance of container platforms has
been mainly investigated to benchmark containers versus
VMs and bare-metal (e.g. [6]) or in cloud environments
(e.g.  [9]). The main finding of those research results is
that the overhead of containers is much less than the over-
head of VMs. At the best of our knowledge, there is lack
of studies on the measurement methodology, measurement
tools and measurement best practices, and on the character-
ization of the container overhead. Addressing those issues
is a prerequisite for building run-time resource management
mechanisms for container-based systems.

The goal of this paper is to answer to the following re-
search questions:

e considering the many available alternatives, what are
the more appropriate tools to measure the workload
generated by a containerized application in terms of
CPU and disk I/O performances?

e What are the characteristics of the overhead intro-
duced by Docker containers in term of CPU load and



disk I/O throughput? The overhead is intended ver-
sus the native host operating system environment (c.f.
Figure 2). Is there any correlation between the induced
workload and the overhead?

A summary of the obtained results is reported in what fol-
lows. The available container monitoring methodologies and
tools generate etherogeneous results that are correct per-se
but must be duly interpreted. Besides, the specialized tools
for monitoring container platforms are weak in measuring
the disk I/O performances. In term of performance degra-
dation, when the CPU load requested by the application
is between the 65% and 75% the overhead of the container
can be roughly quantified as around the 10% with respect
the host operating system. Moreover we find a correlation
between the CPU quota of a container and the overhead.
Concerning the disk I/0, the overhead range from 10% to
30% but we have not found any pattern or dependency be-
tween the overhead and the size of the input.

The paper is organized as follows. Section 2 provides
the background on container technologies and Section 3 dis-
cusses the most important related works. The measurement
tools compared in the study, the monitoring architecture
we set up and the measurement methodology we used are
presented in Section 4. The experimental environment, the
performance metrics and the results are discussed in Section
5. Finally, in Section 6, we summarize the lesson learned and
we report our conclusions.

2. CONTAINER TECHNOLOGIES

The idea of containers dates back to 1992 [16] and have
matured over the years with the introduction of Linux names-
pace [2] and the LXC project [10], a solution designed to
execute full operating system images in containers. Appli-
cation containers [12] are an evolution of operating system
virtualization. Rather than packaging the whole system,
containers package application or even application compo-
nents (the so called microservices) which introduce a new
granularity level of virtualization and thus become appeal-
ing for PaaS providers [5]. The main idea behind containers
is the possibility of defining a container specific environment
where to install all the library dependencies, the binaries,
and a basic configuration needed to run an application.

There are several management tools for Linux contain-
ers: LXC, systemd-nspawn, Imctfy, Warden, and Docker [5,
12]. Furthermore, rkt is the container management tool for
CoreOS. The latter is a minimal operating system that sup-
ports popular container systems out of the box. The operat-
ing system is designed to be operated in clusters and can run
directly on bare metal or on virtual machines. CoreOS sup-
ports hybrid architectures (e.g., virtual machines plus bare
metal). This approach enables the Container-as-a-Service
solutions that are becoming widely available.

3. RELATED WORK

Performance profiling and performance evaluation is a topic
of increasing interest for the containers’ research community.
The first seminal work on the subject [6] provides an exten-
sive performance comparison among a native Linux envi-
ronment, Docker and KVM. In this work are compared the
three environments in presence of CPU intensive, I/O in-
tensive, Network intensive workload. Moreover, the authors
have compared the performances of the systems under study
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when running NoSQL and SQL workloads. The main inten-
tion of the work is to assess the performance improvement
of running workloads in containers rather then in VMs, that
is the authors want to give an estimation of the container
overhead. The comparison is based on the performance met-
rics collected by the benchmarking tools. A similar study,
aimed at comparing the performance of containers with hy-
pervisors is [13]. The authors use a set of benchmark, and
only the metrics evaluated by the benchmark tools, to assess
the performance of Docker, KVM and LXC.

In [9] the authors studied the performance of container
platforms running on top of a cloud infrastructure, the NeC-
TAR cloud. Specifically the authors compared the perfor-
mance of Docker, Flockport (LXC) and the "native” envi-
ronment, that is the VM, when running different types of
workloads. The comparison was intended to explore the
performance of CPU, memory, network and disk. For that
purpose, a set of benchmarks has been selected and, as in
[6], the results was based on the metrics measured by the
benchmarking tools.

In [11] the authors proposed a study on the interference
among multiple applications sharing the same resources and
running in Docker containers. The study focus on I/O and it
proposes also a modification of the Docker’s kernel to collect
the maximum I/O bandwidth of the machine it is running
on.

With respect to the literature our study is aimed at char-
acterizing the workload generated by the containerized ap-
plication and at quantifying the performance overhead intro-
duced by Docker versus the native environment. Moreover,
we analyze also the influence of the measurement method-
ology on the performance results.

4. PERFORMANCE MEASUREMENTS
4.1 Monitoring tools

To collect performance data we have used four open source
performance profilers: mpstat, iostat, docker stats and
cAdvisor. The first two are standard tools available for the
Linux OS platform. docker stats and cAdvisor are tools
specifically designed to monitor containers.

Figure 1 shows the monitoring architecture we set up. mp-
stat and iostat are part of the sysstat package and collect
information from the Linux /proc virtual file system. Per-
formance statistics for the Docker containers are stored in
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the /cgroups virtual file system. cAdvisor runs in a con-
tainer and it uses the Docker Remote API to obtain the
statistics. docker statsisa Docker command, it runs in the
Docker engine and it queries directly the /cgroups hierarchy.
Prometheus (prometheus.io) and Grafana (grafana.org) are
used to extract data from cAdvisor. The impact of those
tools on the CPU utilization is negligible.

In what follows we provide a brief description of the con-
tainer’s specific performance profilers. We omit the descrip-
tion for mpstat and iostat because widely known tools.

The docker stats command returns a live data stream
for running containers, that is: the CPU utilization, memory
used (and the maximum available for the container), the
network I/O (data generated and received). No file system
I/0 statistics are reported. It is possible to track all the
containers or a specific one.

cAdvisor (container Advisor) is a running daemon that,
for each container, keeps resource isolation parameters, his-
torical resource usage, histograms of complete historical re-
source usage and network statistics. We didn’t use cAd-
visor’s disk I/O metrics because, at the time we run the
experiments, a software bug was reported. To extract the
data sampled by cAdvisor each 1 second we use Prometheus,
an open-source systems monitoring and alerting toolkit that
scrapes metrics from instrumented jobs and store the result-
ing time series. Finally, Grafana query the data extracted
by Prometheus and enable the export and the visualization
of data.

4.2 Measurement methodology

For each performance test case:

e we did N runs to account for system uncertainty (N =
10 in our specific case);

e we sample performance data each Atsgmpie seconds
(Atsampie = 1 in our specific case);

e we store the time series of performance data and the
benchmark results in separated log files.

The procedure for the performance measurements in the
native environment (cf. Fig. 2) is the following (repeated
N times):

1. we start the benchmark
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2. after 5 X Atsampie seconds (warm-up interval) we start
collecting performance data with mpstat and iostat
(the warm-up interval is strictly dependent on the spe-
cific benchmark, hence this is not a general recommen-
dation, perhaps a more long warm-up period may be
required)

3. our script trigger the termination of the benchmark
and stop the monitoring tool.

The procedure for the performance measurements in the
virtualized environment (cf. Fig. 2) is the following:

1. we activate cAdvisor and we continuously collect mon-
itored data with Prometheus and Grafana;

2. we start the benchmark

3. after 5 X Atsampre sample intervals (warm-up interval)
we start collecting performance data with mpstat, io-
stat and docker stats

4. our script trigger the termination of the benchmark
and stop the monitoring tool.

5. we repeat steps 2 — 4 for N times.
cAdvisor, Prometheus and Grafana.

Than, we stop

Post processing of performance logs:

e we remove the cold-down phase by discarding the last
5 observations from the time series collected with mp-
stat, iostat and docker stats (this is appropriate
for the specific benchmark we use and it is not a general
recommendation, perhaps more long cold-down period
may be required)

we split the time series from Grafana in N different
periods representative for the N runs.

for all the performance data we compute the mean
value, the mean square error (MSE) and the perfor-
mance metrics presented in Section 5.1.

S. EXPERIMENTS

In our study we consider two use cases: CPU intensive
workload; and disk I/O intensive workload.

The workload is generated using sysbench (https://github.
com/akopytov/sysbench). The CPU intensive workload con-
sists of verifying prime numbers by doing standard division
of the input number by all numbers between 2 and the square
root of the number. The disk I/O intensive workload con-
sist in doing sequential reads, writes or random reads, writes,
or a combination on files of large dimension respect to the
RAM size, to avoid that caching could effect the benchmark
results.

The features of the experimental environment (cf. Fig. 2)
are described in Table 1. Docker is configured without any
quotas on the use of the resources, that means a container
can use as many resources are available.

5.1 Performance metrics

Because the purpose of this performance study is to quan-
tify the Docker’s overhead we have used a wide range of
system metrics:



Table 1: Experimental environment characteristics

Processor MD Turion(tm) II Neo
N40L Dual-Core @800MHz

# of CPU, cores/socket, | 2,2, 1

threads/core

RAM 2GB @1333MHz

Disk (file system type) ATA DISK HDD 250GB
(ext4)

Platforms Ubuntu  14.04  Trusty,

Docker v 1.12.3
Grafana 3.1.1, Prometheus
1.3.1, cAdvisor 0.24.1

Monitoring tools

e CPU utilization (%CPU). This metric is measured
using docker stats, cAdvisor and mpstat. The first
two tools provide the value of the % of CPU used
by the monitored application. mpstat provides the
percentage of CPU utilization (%user) that occurred

while executing at the user level (application) and %C PU

%user — e. While executing experiments in our con-
trolled environment we have empirically estimated € =
2.5%

e Execution Time (F) measures the time taken to exe-
cute the benchmark and is calculated by sysbench.

e itps indicates the number of transfers per second that
were issued to the device. A transfer is an I/O re-
quest to the device. Multiple logical requests can be
combined into a single I/O request to the device. A
transfer is of indeterminate size.

e kB,/s, kB, /s Indicate the amount of data read and
written to/from the disk drive expressed in kilobytes
per second. This metic is measured only with iostat.
As before mentioned docker stats and cAdvisor do
not provide enough and stable disk I/O metrics.

e C'PUyyp is the CPU overhead expressed as a fraction
of the %C PU in the native environment. It is defined
as

‘%CPUdocke'r - %OPUnati'ue‘

%CPUnative

CPUovh -

e 10,y is the disk I/O throughput overhead expressed
as a fraction of the kB, /s or kB, /s in the native en-
vironment. It is defined as

|(kBT/S)docke7‘ - (kB'r/S)nati'uel

(kBr/S)native

for the read throughput and as

|(ka/3)docker - (ka/S)native|
(ka/S)native

Ioovh,r -

IOovh,w -

for the write throughput.

e F,un is the execution time overhead expressed as a
fraction of the E in the native environment. It is de-
fined as

‘Edocker - Enative|
Eovh =

Enative
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5.2 CPU intensive workload
We run sysbench with input number={16000, 32000, 64000,

=~ 128000}. Following the approach used in literature (e.g. [6,

9]) we first analyze the execution time E and the overhead
(Eoun) for increasing input sizes and for increasing number
of threads (1, 2, 4 and 6) used to process the input (cf.
Figure 3). Increasing the number of threads has a significa-
tive impact on the CPU utilization. From these results it
emerges that Docker heavily penalizes the execution time
with an E,,; ranging between the 80% and the 270%. Un-
fortunately that measure is useless in the context of the re-
source management, for example to parameterize adaptation
models or to take auto-scaling decisions at run-time. Hence,
we have measured the CPU utilization %CPU (cf. Figures
4) and the CPU overhead CPU,y (cf. Figure 5).

When the benchmark works only with 1 thread the refer-
ence CPU load of the system, hereafter %C PU,qtive, is mod-
erate, it is around 60%. In that scenario, docker stats pro-
vides a measure of the CPU load that is near to %C PUyqtive
while mpstat and cAdvisor provide measures of the CPU
load that is about 30% higher (cf. Figure 4 and 5). When
the system is heavy loaded, e.g. for 4 or 6 threads, the refer-
ence load (%C PUpqtive) increases to about 80% — 90%. In
that case, all the measurement tools provide approximately
the same results (see Figure 4), and therefore the CPU over-
head goes below the 5% for the 4 threads case and below the
2.5% for the 6 threads scenario.

What does this mean? Does the overhead disappear? Is
there any bias in the measurement methodology and tools?

The most logical explanation of that behavior is the fol-
lowing. Docker, if configured without any quotas in the use
of resources, always "use” as much CPU as possible, that is
between the 80% and 90%, also if the threads running in-
side the container are not demanding the CPU for the same
amount of time. Therefore, docker stats allows to observe
the amount of CPU demanded by the threads running inside
the container, let us call that %C PU,cquested- Instead, mp-
stat and cAdvisor measure the effective CPU used by the
container and give an effective measure of the workload on
the system, that is %CPU.

5.3 Disk I/0 intensive workload

The purpose of these experiments is to understand the
container workload when running a I/O intensive applica-
tion. Specifically we use sysbench to do random read and
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write operations on files of the following sizes 16 GB, 32
GB, 64 GB and 128 GB. Considering that the RAM of the
server we used for the experiments is 2GB we have the cer-
tainty that the OS caching mechanisms will not affect the
measurements.

As before mentioned, the measurement are done only with
iostat because docker stats does not collect disk I/O re-
lated data and cAdvisor is unstable for monitoring I/0O.

Figure 6 reports the throughput in ¢ps, kB, /s and kB /s
measured for the benchmark running on the native system
and in the Docker container. As expected, the throughput in
the Docker environment is lower compared with the native
system, however there is not a clear dependency between
the size of the dataset and the IO,y

In terms of bytes read per seconds the overhead of Docker
is between the 18% and the 33% and for bytes write per
seconds the overhead of Docker is between the 10% and the
27% (c.f. Fig. 7). Moreover, it results that for larger datasets
(the 64GB and 128GB cases) the overhead for read and write
throughput is about the same.

We can conclude that for the disk I/O iostat (or na-
tive OS monitors) are the only available tool, and that the
Docker overhead range between 10% and 30%.
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6. CONCLUDING REMARKS

Measuring container performances with the goal of char-
acterizing overhead and workload is not an easy task, also
because there are not stable and dedicated tools that cover a
wide range of performance metrics. From our measurement
campaign, we have learned what follow:

1. the available container monitoring tools give different
results that are correct per-se but must be duly inter-
preted. Moreover setting-up a monitoring infrastruc-
ture for containers requires the interconnection of at
least three tools (cf. Fig. 1).

cAdvisor and mpstat measure the effective workload
generated by the container on the CPU, i.e. %CPU.

docker stats measures the amount of CPU requested
(CPU,cq) by the threads running inside the container
and that amount can be lower than the effective CPU
used by the container.

There is a correlation between the CPU quota set for
the container and the C'PU,,, In case no quota is set,
when the C'PU,¢q is between the 65% and 75% the
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iostat

overhead of the container is around the 10% with re-
spect the native CPU load. When the CPU,., is over
the 80% the overhead is less than the 5%.

There are no tools dedicated to the monitoring of disk
I/0O for dockerized environments.

The disk I/O overhead ranges from 10% to 30% but we
didn’t find any correlation between the overhead and
the size of the input or the composition of the disk
workload.

To conclude, we have not provided an exhaustive answer
to the proposed research questions, but with our study we
have contributed to tidying up the mess in Docker perfor-
mance evaluation. The correlation between quotas and over-
head need further analysis, and in general, the obtained re-
sult left space to further investigations that will be covered
by our future works.
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