
On the State of NoSQL Benchmarks

Vincent Reniers, Dimitri Van Landuyt,
Ansar Rafique and Wouter Joosen

imec-DistriNet-KU Leuven
Celestijnenlaan 200A, Leuven, Belgium

firstname.lastname@cs.kuleuven.be

ABSTRACT
The proliferation of Big Data systems and namely NoSQL
databases has resulted in a tremendous heterogeneity in
its offerings. It has become increasingly difficult to com-
pare and select the most optimal NoSQL storage technol-
ogy. Current benchmark efforts, such as the Yahoo! Cloud
Serving Benchmark (YCSB), evaluate simple read and write
operations on a primary key. However, while YCSB has be-
come the de-facto benchmark solution for practitioners and
NoSQL vendors, it is lacking in capabilities to extensively
evaluate specific NoSQL solutions.

In this paper, we present a systematic survey of current
NoSQL benchmarks, in which we identify a clear gap in
benchmarking more advanced workloads (e.g. nested docu-
ment search) for features specific to NoSQL database fam-
ilies (e.g. document stores). Secondly, based on our sur-
vey, we discuss the strengths and weaknesses of the different
benchmark design approaches, and argue in favor of a bench-
mark suite that targets specific families of NoSQL databases
yet still allows overall comparison of databases in terms of
their commonalities.

CCS Concepts
•Information systems→Database performance eval-
uation; Database utilities and tools;

Keywords
NoSQL benchmarks; YCSB; performance benchmarks

1. INTRODUCTION
Databases store and process increasingly large data sets

generated from various online and offline sources. Tradition-
ally, applications are supported by relational database man-
agement systems (RDBMSs) which show key limitations in
horizontal scalability and elasticity [12, 3, 14]. Large Inter-
net companies such as Amazon, Facebook and LinkedIn have
identified these limitations and developed in-house storage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053622

alternatives such as DynamoDB and Cassandra [3, 17, 12].
Today, we know such databases as NoSQL, or “not only”
SQL databases. NoSQL databases relax the strict ACID
properties of RDBMSs in favor of horizontal and elastic scal-
ability. Although NoSQL is an umbrella term for a wide vari-
ety of databases, these databases can be categorised accord-
ing to the supported data model and four main broad sub-
categories are commonly defined: document stores, graph
stores, column stores and key-value stores [8, 6, 14]. Each
database is aimed at a data model (ranging from structured,
to semi-structured to unstructured data) [8, 27]), and of-
fers a corresponding set of functionality. For example, Mon-
goDB is a document-based database which provides storage
for JSON data and supports search on the nested structure.
Cassandra is a column-family store for structured data with
fast write performance. A plethora of NoSQL technologies
has emerged as currently over 200 NoSQL technologies are
in existence [21].

However, due to the sheer heterogeneity in database
API’s, terminology, and data models, it has become in-
creasingly difficult to compare these technologies in terms of
their features, database functionality, and especially perfor-
mance. The Yahoo! Cloud Serving Benchmark (YCSB) [8]
has emerged as the most-widely used NoSQL benchmark for
comparing NoSQL databases on create, read, update, delete
(CRUD) and scan operations.

However, application requirements exceed such simple op-
erations, and some NoSQL databases do offer more advanced
support, for example traversing relations in graph trees,
applying aggregation functions and text search on nested
structures. In this paper, we present our survey of existing
NoSQL benchmark efforts taking into account: (i) their sup-
ported database technologies, (ii) data models, and (iii) the
supported workload types. Based on our assessment, we dis-
cuss different design strategies and argue in favor of bench-
mark suites that encompass several specific application do-
mains from graph stores to document stores, while still al-
lowing for a general comparison between NoSQL databases
in terms of common functionality.

The contributions of the paper are twofold: (i) we provide
a survey of the current state in NoSQL benchmarks, and
(ii) from this perspective, we discuss strategies towards an
encompassing NoSQL benchmark suite and the challenges
in data model and workload generation.

The remainder of this paper is structured as follows. First,
Section 2 provides the background on NoSQL databases.
Then, Section 3 discusses the assessment criteria used in our
benchmark survey, which is then presented in Section 4. Sec-

107

NoSQL

MiscColumns

HBaseBigTableCassandra

Key-values

RiakRedis

Documents

DocumentDBCouchDBMongoDB

Graphs

AllegroGraphNeo4j

Figure 1: NoSQL databases categorised according to the supported data model

tion 5 presents a general discussion on aspects of improved
benchmark design. Finally, Section 6 discusses related work
and Section 7 concludes the paper.

2. NOSQL DATABASES
Traditional relational database systems (RDBMSs) are

“one-size-fits-all” storage solutions, in the sense that their
main aim is to provide general-purpose storage solu-
tions [20], applicable to a wide variety of applications. These
database systems however have been shown to inadequately
deal with the challenges inherent to the domain of Big Data,
which can be summarized as the 4V’s: Volume, Veracity, Va-
riety and Velocity [15]. In essence, RDBMSs fall short when
a tremendous volume of data of large variety has to be pro-
cessed at a fast velocity due to limitations in scalability and
flexibility.

Contrary to RDBMS, NoSQL databases relax the strict
ACID properties (Atomicity, Consistency, Isolation and
Durability [27]), and adhere to the BASE acronym instead,
meaning Basically Available, Soft-state and Eventually con-
sistent [24, 6]. As such, NoSQL databases favor horizontal
and elastic scalability over strong consistency. Horizontal
scalability allows the database to increase in size while main-
taining consistent performance. In addition, nodes can be
added or removed to ensure elasticity, as to cope with for
example peak loads.

In dealing with the variety of data, NoSQL databases sup-
port simplified and flexible data models, often schemaless,
meaning that the data in each record does not necessar-
ily have to adhere to pre-defined database schemas. How-
ever, NoSQL databases represent specialized solutions, tai-
lored to specific use cases, and a categorisation of NoSQL
databases is often made according to the supported data
model. As depicted in Figure 1, four major categories ex-
ist: document stores, column-family stores for structured
data, graph stores and key-value stores [6]. A consequence
of this degree of specialization increased fragmentation: the
query languages and API’s of have become highly hetero-
geneous and technology- or database-specific. The general
functionality of a NoSQL database is however determined by
its data model. Graph stores will for example provide func-
tionality for traversing graphs. While, document databases
can store nested JSON files with the possibility for search
and nested querying.

The next section determines some of the desired proper-
ties for a NoSQL benchmark, which are then applied in our
assessment of the current state of the art.

3. BENCHMARK PROPERTIES
Considering the wide variety in database systems, use

cases and data models that are associated to the NoSQL

technology, we have defined three properties for a relevant
and widely applicable NoSQL benchmark namely:

P1. Database support and applicability How
widely applicable is the benchmark? Is the bench-
mark focused on a specific family of NoSQL databases
(e.g. wide-column stores, graph stores), multiple
families, or to any NoSQL database? Does the
benchmark remain relevant for specific application
scenarios (e.g. document search)?

P2. Data models Considering the large variety of
data in Big Data applications and categories of data
models in NoSQL, the benchmark has to generate var-
ious data sets that are aimed at testing the supported
data models: graphs, regular key-value pairs, and even
relational or connected and nested data. The gener-
ated data should be tailored for the purpose of eval-
uating the database and its model-associated func-
tionality: e.g., by systematically varying the number
of edges between nodes, varying the level of nesting
depth in a JSON document, and the type of data used.
In the ideal case, the user can supply the benchmark
with sample data from a production environment, af-
ter which similar data is generated to allow relevant
benchmarks for specific application scenarios. This
property takes into account which data models are sup-
ported in the data generation step of the benchmark.

P3. Workloads Closely tied to P2 are the workloads
which can be executed on the inserted data set. When
no support is provided for e.g. graph generation, no
graph traversing workloads will be possible either. The
workloads should be able to fully exploit the capabili-
ties of each NoSQL database, while allowing compar-
ison on a subset of mutually supported functionality
between a certain set of NoSQL databases. For ex-
ample, the user provides a workload description of its
search queries and applies this workload to its data
modelled as a graph, and as a document, to iden-
tify which database and data model can potentially
be faster for search. This property takes into account
which types of workloads are supported in the bench-
mark.

The next section presents our analysis of the current state
of the art in NoSQL benchmarks in terms of the aforemen-
tioned properties.

4. THE STATE OF NOSQL BENCHMARKS
In the early 80’s no standardized benchmarks for compar-

ing databases existed [10, 1]. At that time mainly database-
specific benchmarks were self developed by database ven-
dors. A similar observation is made for NoSQL, namely

108

Redis, Aerospike, LevelDB, MarkLogic and EnterpriseDB
all provide implementations of self-defined benchmarks com-
paring their respective offerings to competitors. The results
from such benchmarks are often hard to understand, apply
to other scenarios and induce comparison bias.

Nowadays, standardised organisations such as the Trans-
action Processing Council (TPC) and the Standard Perfor-
mance Evaluation Corporation (SPEC) release standardised
benchmarks according to strict guidelines and review pro-
cesses. Unfortunately, as of yet none of these organisations
provide benchmarks for NoSQL databases. However, TPC
does provide benchmarks for Big Data technologies such as
TPC-DS, TPCx-HS for Hadoop or TPCx-BB for Hive and
Spark with the possibility for structured, semi-structured
and unstructured data generation [29].

Despite the absence of a standardised NoSQL bench-
mark, several benchmark initiatives are presented in Ta-
ble 1. Most NoSQL benchmarks are focused on a specific
family of NoSQL storage systems (e.g. column, document
stores). Most notably is the Yahoo! Cloud Serving Bench-
mark (YCSB), which has become the de-facto standard for
cross-family comparison of NoSQL databases [8].

In the remainder of this section we compare benchmark
initiatives per NoSQL category, starting with key-value
benchmarks and YCSB. From this section we (i) iden-
tify gaps in specific family benchmarks, and (ii) determine
whether or not cross-family benchmarks are in existence.

Key-value store benchmarks
When looking at the NoSQL categories in Figure 1, the com-
monality is that regardless of the specific data model, each
database provides storage of a key-value pair. The value
however varies as a collection of columns, a node with edges,
a document or blob. To some degree, these databases can
all be classified as key-value stores. Although generally key-
value stores provide much more simplistic functionality such
as get and put on ID.

The Yahoo! Cloud Serving Benchmark (YCSB)
works on this very assumption. YCSB is able to execute
workloads on read, write, update and scan operations on
a primary key for various NoSQL databases such as Cas-
sandra, MongoDB and HBase. A database interface layer is
implemented for each database, which executes the intended
(e.g. read, write) operation in the database’s native query
language. Data is generated consisting of synthetic strings
with one string serving as the primary key. The workload
executes the operation on a primary key with the associated
fields.

Another key-value store benchmark KVZone [13] evalu-
ates BerkeleyDB, Tokyo Cabinet, SQLite and Alphard. In
contrast to YCSB, it has barely gained traction, while YCSB
has seen wide-spread adoption. However, YCSB’s workload
and data generation is very simple and lacks capabilities to
extensively evaluate the full database’s capabilities.

Similar observations have been made and gave rise to sev-
eral extensions by researchers in the shape of YCSB+T,
YCSB++ and XGDBench [11, 28, 9]. YCSB+T is an ex-
tension which aims to evaluate the transactional overhead
of database operations [11]. Although, not many NoSQL
databases provide support for transactions and are limited
to e.g. atomicity on single documents. YCSB++ is aimed
at column stores, while XGDBench focuses on extensions for
graph stores.

We discuss these and similar benchmarking initiatives per
NoSQL category in the next sections.

Document store benchmarks
Similarly to YCSB is a workload generator called NoWog,
however it allows user-specified workload descriptions on the
basis of a generic grammar. The workload descriptions in
an abstract grammer are then translated to database-specific
operations, which results in CRUD operations executed on a
set of supported database through mapping [22]. However,
the functionality is limited to CRUD operations.

In [18] by Lungu et al. a simple benchmark tool was
implemented with a small data generation component and
read, write operations for MongoDB and MySQL.

The authors in [19] present SSB+, an extension on a de-
cision support benchmark for relational databases, namely
Star Schema Benchmark (SSB), and allow for the gener-
ated tables to be stored in a document and column-oriented
databases. In addition, the OLAP SQL queries are trans-
lated to the respective NoSQL database. However, the pro-
cess explained first generates normalized data and then de-
normalizes it to fit to the NoSQL paradigm. In addition a
relational database benchmark is used as the starting point,
which may not fully exploit the full capabilities of a NoSQL
database.

Column store benchmarks
YCSB++ [28] is an extension on YCSB for benchmarking
advanced features of scalable table stores (i.e. column-family
stores) such as Apache HBase and Accumulo. The bench-
mark provides distributed synchronization between multi-
ple benchmark clients and is able to measure eventual con-
sistency, bulk loading, and the effect of optimizations for
batch writing such as table pre-splitting. In addition, the
benchmark can also measure the performance overhead of
additional features such as access control and collects moni-
toring information on resource metrics at each cluster node.

The work by Pirzadesh et al. [23] is also similar to YCSB
however focuses more on extensive range queries and con-
ducts evaluations for Cassandra, HBase and Voldemort. A
small component of YCSB is even used to create zipfian
workload distributions.

Graph store benchmarks
Graph trees are commonly stored in-memory as the work-
load is characterised by random data access, for which per-
sistent hard disks would incur a serious overhead [7]. How-
ever, to identify links between data in a distributed setting,
techniques such as clustering have to be applied to reduce
cross-node communication. Beis. et al [4] present a bench-
mark on the problem of community detection for Neo4j, Ori-
entDB and Titan. Four workloads are provided on: massive
insertion, single insertion, query workloads (graph traver-
sal) and identifying communities in large networks through
clustering.

Ciglan et al. [7] present a benchmark which evaluates
graph traversal over graph databases, an implementation
is provided for five graph databases. In [16] the authors
present GDB, a distributed graph database benchmarking
framework on operations such as exploring a node’s neigh-
borhood and finding the shortest path. XGDBench is an ex-
tension to YCSB for benchmarking graph stores by adding
a graph data model and workload generator [9].

109

Table 1: NoSQL benchmarks and the capabilities in data set generation and workloads.

Applicability (P1) Benchmarks Data sets (P2) Workloads (P3)

Key-value stores YCSB [8], KVZone [13] Key-value pairs of synthetic
strings

CRUD + Range queries

Document stores NoWog[22], Lungu et al.[18],
SSB+[19]

Nested documents, limited
generation options

Generic workload descrip-
tions, CRUD, limited docu-
ment queries

Column stores YCSB++[28], Pirzadesh et
al.[23], SSB+[19]

Structured data in tables
with e.g. column families,
limited generation options

CRUD, bulk loading, con-
sistency evaluation, extensive
range queries, limited table
queries

Graph stores Beis et al.[4], Ciglan et al.[7],
GDB[16], XGDBench[9],
LinkBench [2]

Multiple synthetic graph gen-
erators with e.g. varying
clustering coefficients an edge
connectivity preferences

Node and edge storage and
retrieval, graph traversal,
neighborhood discovery,
clustering algorithms, ...

LinkBench is a database benchmark based on social graph
data from Facebook which mimicks similar access patterns
and operations [2]. It has seen evaluation for MySQL and
HBase, however no NoSQL graph stores.

Various synthetic graph data generators are in existence
for these benchmarks, which allow to generate graphs on
properties of: e.g. clustering coefficient, diameter, and fol-
lowing e.g. a power-law degree distribution [7].

Conclusion.
From Table 1, we observe that benchmarking efforts for

document and column-oriented stores are lacking in capabil-
ities for workload and data generation. Graph store bench-
marks show very diverse workloads (in e.g. cluster, graph
traversal) and several data generators. Secondly, benchmark
efforts that are tailored at measuring capabilities across
NoSQL families are sporadic. As such, it is increasingly
difficult to compare and facilitate the selection of a NoSQL
technology regardless of a specific family.

5. TOWARDS A NOSQL BENCHMARK
SUITE

In our ongoing research we require such a cross-family
NoSQL benchmark to decide the location of data placement
across various heterogeneous NoSQL databases on the ba-
sis of performance. However, such decision-making is cur-
rently very difficult due to the lack of cross-family NoSQL
benchmarks. A case is also presented in LinkBench [2] by
Facebook, which evaluates MySQL and HBase for deciding
the best candidate for storing a social network. In addition,
such an evaluation can potentially be extended with support
for graph stores.

Currently, deciding upon a NoSQL technology regardless
of the family is difficult, as cross-family benchmarks are lack-
ing, with YCSB being the most prominent with solely sup-
port for CRUD operations and the generation of synthetic
string data.

Therefore, in this section we outline our vision towards
the creation of a more full-fledged benchmark suite, allow-
ing cross-family comparison (Section 5.3), based on (i) our
earlier experiences of extending the YCSB with search sup-
port [25] (Section 5.1) and (ii) our in-depth analysis of dif-
ferent suitable benchmark design approaches (Section 5.2).

5.1 Lessons learned from our own YCSB
query benchmark

In previous research [25], the need arose to evaluate Mon-
goDB’s document query language. As evident from Sec-
tion 4, no benchmarks are available which extensively eval-
uate MongoDB’s query language, except for YCSB’s simple
operations on a primary key. In previous research we com-
pared MongoDB’s query language to MongoDB with SQL
access facilitated through frameworks.

In facilitating a MongoDB query benchmark we adopted
YCSB, since it first allowed comparison on simple CRUD
metrics and allows for consistent generation of synthetic
strings and operation calls according to various distribu-
tions. However, for search queries it lacked in data set gener-
ation on other values than strings, and connected structures.
Secondly, there is no support for defining complex query op-
erations.

We extended YCSB with a data generator generating
names, birth dates, personnel numbers and other values. In
terms of workload, we implemented a predefined set of read
queries in SQL and MongoDB QL. However, this extension
in YCSB quickly reached its limits in terms of extensibility
on the workload generation (varying queries) and data gen-
eration, which kept repeating certain values after a while.

From this prototype we quickly realized the importance
of P2 (data models) and P3 (workloads). First, data sets
should be flexible enough to fully evaluate the specific ca-
pabilities of each database (graph connectivity, document
nesting depth, relations, etc.). When no support is provided
for e.g. graph generation, no graph traversing workloads will
be possible either.

In addition for P3, the workloads should be able to fully
exploit the capabilities of each NoSQL database, while al-
lowing comparison on a subset of mutually supported func-
tionality between a certain set of NoSQL databases, despite
potentially originating from different NoSQL families. The
limitation in functionality should be varied according to the
selected databases for comparison, and should be as exten-
sive as possible given the overlap in functionality.

5.2 Benchmark design strategies
Based on our survey of benchmarks, we clearly ob-

serve two different approaches to establishing a NoSQL
benchmark, which differ in the dimension of property P1,

110

Figure 2: Data model and workload from a gen-
eralistic approach, to specialized and application-
specific approaches

i.e. database support and applicability:

Generalistic approach In a generalistic approach, a
broad set of NoSQL databases can be compared in
terms of the common functionality between all NoSQL
databases. As a result, performance benchmarks that
are designed in such an approach are broadly appli-
cable, since the generic data model and generic work-
loads can relatively easily be applied to a wide va-
riety of databases. A key downside however is that
these benchmarks do not assess the more specialized
database functionality or more sophisticated work-
loads and as a result, may not yield informative or re-
alistic benchmark results (low relevance). The YCSB
benchmark is a prime example of this approach.

Specialized approach Specialized benchmarks focus
on specific NoSQL data models, and may involve
application-specific workloads that only make sense
in specific NoSQL technologies. Examples bench-
marks are XDGBench [9], focused on graph stores;
YCSB++ [28], focused on column-family databases;
TCP-DS [29], a MapReduce benchmark, etc. When
the workloads and technologies tested in these bench-
marks correspond to those of the technology adopter,
these benchmarks are highly relevant and represen-
tative. However, comparison across DB families be-
comes impossible: these benchmarks are not suited for
a broader search in the NoSQL space.

Integrated benchmark suite As depicted in Fig-
ure 2, the design approaches outlined above repre-
sent two extremes in the spectrum between applica-
bility and relevance. We envision a third alternative,
which is a fully encompassing NoSQL benchmark suite
that supports combinations of generalistic and special-
ized comparisons. One the one hand, a broader set
of NoSQL databases can be compared on a subset of
common database functionality and in terms of gener-
alistic workloads. In extension, an integrated bench-
mark suite also includes NoSQL-technology specific
data models and workload generators. Thirdly, the
user of the benchmark can configure the benchmark for
application-specific workloads by providing workload
and data descriptions simulating concrete use cases
(e.g. representing a social network with graph traver-
sal operations).

Figure 3: Benchmark suite

5.3 High-level design
Figure 3 showcases the high-level design of an integrated

NoSQL benchmark suite. The benchmark supports a wide
diversity in NoSQL databases and families according to P1.
We elaborate on the three main components of data gener-
ation, workload generation and database interface.

The Data Generator generates various data from graph
trees, nested documents to relational tables and simple key-
value pairs. Attribute-level descriptions can be provided by
the user to determine the selected data type and properties
of e.g. node connectivity. The choice can be made to create
a generator which acts upon a sample set of data or a prede-
fined model similarly to the TCP benchmarks which modu-
late business and warehouse queries (OLTP and OLAP) on
a predefined relational schema. BigDataBench provides in
this regard an extension to a data generator which acts on
sample data [1]. Pluggable support for existing generators
should be a given as to integrate the numerous benchmark-
ing efforts in a cohesive framework.

Secondly, the Workload Generator applies a multitude of
workloads ranging from simple CRUD operations on a pri-
mary key, to graph traversals, node neighborhood queries,
text searches, and from document retrievals to column up-
dates. The workloads should be diverse and configurable
enough to fully evaluate the selected database’s their ca-
pabilities. To avoid conflicts, a specific compatible sub-
set of functionality should be applied according to the set
of targeted databases for evaluation. This subset should
preferably be the maximum overlap in functionality theoreti-
cally possible, given the selected subset of NoSQL databases,
while remaining fair and reproducible.

Finally, the DB Interface provides an interface for nu-
merous workload operations. Each database implements
this generic interface and maps the functionality to its native
query language. Similarly, conversions should be applied for
the generic data sets to the native data model. For exam-
ple, a table may be provided which will have to be mapped
to e.g. a document or graph. In essence this is a mapping
component for the data sets and workload operations.

While the aforementioned components are the key compo-
nents, the main goal of the framework should be to provide
pluggability for existing workload and data generators as to
combine existing efforts in this domain and further innova-
tion.

6. RELATED WORK
Apart from the related NoSQL benchmarks discussed in

Section 4, benchmarking efforts in the closely related do-

111

main of Big Data Analytics are of relevance as well. Han
et al. [26] provide a survey on the current state of the art
for Big Data Benchmarks. For such systems, various bench-
marks have come into existence and specifically in the space
of Big Data Analytics. Benchmarking this functionality is
possible with TCP or other efforts by academia and indus-
try such as BigDataBench. BigDataBench is a benchmark
suite aimed at five different application domains of: search
engine, social networks, e-commerce, multimedia analytics,
and bioinformatics [1, 5]. In dealing with the heterogene-
ity of the supported database or more specifically Big Data
Analytic platforms, the workloads are sometimes only ap-
plicable to a subset of the platforms. This is a trade-off
which allows to properly evaluate each platform’s individual
capabilities.

In terms of data model, the suite comes with an extensive
data model generator for structured, semi-structured and
unstructured data and can even use sample data as a starting
point. From this context, there is a lot to learn from this
benchmark suite towards a benchmark for NoSQL storage
systems.

7. CONCLUSION
The majority of benchmarks are complementary initia-

tives that are aimed at specific NoSQL technologies or tech-
nology families, concrete data models or specific application
workloads. We identified that such efforts have seen the
largest development in graph stores concerning the gener-
ation of synthetic graphs and various workloads. However,
document and column-store benchmarks are specifically still
lacking in these capabilities.

We conclude that cross-family NoSQL benchmark initia-
tives are currently limited to YCSB, although the question
of storing graph data in a document store, RDBMs or graph
store can be a relevant question. However, the tools and
means to evaluate and aid in this decision making are cur-
rently non-existent.

We argue that there is a current lack of, and thus a
strong potential for better integration of NoSQL perfor-
mance benchmarking efforts, and we outline our vision
and initial ideas on the design of such a benchmark suite.
In future work, we will further develop and refine these
ideas, leading to the development of an open and exten-
sible, technology-aware collection of NoSQL-family-specific
data generators, benchmark workloads, and in the longer
run, benchmark efforts that are better suited for assessing
the performance in the context of NoSQL and the database
characteristics that set them apart.

8. ACKNOWLEDGMENTS
This research is partially funded by the Research Fund KU

Leuven (project GOA/14/003 - ADDIS), the strategic ba-
sic research (SBO) project DeCoMAdS, and the imec-ICON
SEClosed project.

9. REFERENCES
[1] Ahmad Ghazal et al. BigBench: towards an industry standard

benchmark for big data analytics. In Proceedings of the 2013
ACM SIGMOD international conference on Management of
data. ACM, 2013.

[2] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. LinkBench: a database benchmark based on the
Facebook social graph. In ACM SIGMOD ’13. ACM, 2013.

[3] C. Băzăr, C. S. Iosif, et al. The Transition from RDBMS to
NoSQL. A Comparative Analysis of Three Popular
Non-Relational Solutions: Cassandra, MongoDB and
Couchbase. Database Systems Journal, 5(2):49–59, 2014.

[4] S. Beis, S. Papadopoulos, and Y. Kompatsiaris. Benchmarking
graph databases on the problem of community detection. In
New Trends in Database and Information Systems II.
Springer, 2015.

[5] BigDataBench. Bigdatabench.
http://prof.ict.ac.cn/BigDataBench/.

[6] R. Cattell. Scalable SQL and NoSQL data stores. ACM
SIGMOD Record, 39(4):12–27, 2011.

[7] M. Ciglan, A. Averbuch, and L. Hluchy. Benchmarking
traversal operations over graph databases. In Data Engineering
Workshops (ICDEW). IEEE, 2012.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 2010.

[9] M. Dayarathna and T. Suzumura. XGDBench: A benchmarking
platform for graph stores in exascale clouds. In Cloud
Computing Technology and Science (CloudCom). IEEE, 2012.

[10] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and
Future., 1993.

[11] A. Dey, A. Fekete, R. Nambiar, and U. Röhm. YCSB+T:
Benchmarking web-scale transactional databases. In ICDEW
’14. IEEE, 2014.

[12] Giuseppe DeCandia et al. Dynamo: amazon’s highly available
key-value store. ACM SIGOPS Operating Systems Review,
41(6):205–220, 2007.

[13] S. Gokhale, N. Agrawal, S. Noonan, and C. Ungureanu. Kvzone
and the search for a write-optimized key-value store. In
HotStorage, 2010.

[14] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz.
Data management in cloud environments: Nosql and newsql
data stores. Journal of Cloud Computing: Advances, Systems
and Applications, 2(1):1, 2013.

[15] IBM. IBM: The FOUR V’s of Big Data.
http://www-01.ibm.com/software/data/bigdata/.

[16] S. Jouili and V. Vansteenberghe. An empirical comparison of
graph databases. In Social Computing (SocialCom). IEEE,
2013.

[17] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems
Review, 44(2):35–40, 2010.

[18] I. Lungu, B. G. Tudorica, et al. The Development of a
Benchmark Tool for NoSQL Databases. Database Systems
Journal BOARD, 13, 2013.

[19] Max Chevalier et al. Benchmark for OLAP on NoSQL
technologies. In RCIS ’15. IEEE, 2015.

[20] Michael Stonebraker et al. The End of an Architectural Era:
(It’s Time for a Complete Rewrite). VLDB ’07. VLDB
Endowment, 2007.

[21] NoSQL databases. NoSQL databases.
http://www.nosql-database.org.

[22] Parinaz Ameri et al. NoWog: A Workload Generator for
Database Performance Benchmarking. In
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2016.

[23] Pouria Pirzadeh et al. Performance evaluation of range queries
in key value stores. Journal of Grid Computing, 10(1):109–132,
2012.

[24] D. Pritchett. BASE: An Acid Alternative. Queue, 6(3):48–55,
2008.

[25] V. Reniers, A. Rafique, D. Van Landuyt, and W. Joosen.
Object-NoSQL Database Mappers: a benchmark study on the
performance overhead. Journal of Internet Services and
Applications, 8(1):1, 2017.

[26] Rui Han et al. Benchmarking big data systems: State-of-the-art
and future directions. arXiv preprint arXiv:1506.01494, 2015.

[27] M. Stonebraker. Sql databases v. nosql databases.
Communications of the ACM, 53(4):10–11, 2010.

[28] Swapnil Patil et al. YCSB++: benchmarking and performance
debugging advanced features in scalable table stores. In
Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011.

[29] TPC. Transaction Processing Performance Council.
http://www.tpc.org/.

112

