
Asking “What?”, Automating the “How?”:
The Vision of Declarative Performance Engineering

Jürgen Walter
University of Würzburg

97074 Würzburg Germany

Andre van Hoorn
University of Stuttgart

70569 Stuttgart Germany

Heiko Koziolek
ABB Corporate Research

68526 Ladenburg Germany

Dušan Okanović
University of Stuttgart

70569 Stuttgart Germany

Samuel Kounev
University of Würzburg

97074 Würzburg Germany

ABSTRACT
Over the past decades, various methods, techniques, and
tools for modeling and evaluating performance properties
of software systems have been proposed covering the entire
software life cycle. However, the application of performance
engineering approaches to solve a given user concern is still
rather challenging and requires expert knowledge and ex-
perience. There are no recipes on how to select, configure,
and execute suitable methods, tools, and techniques allow-
ing to address the user concerns. In this paper, we describe
our vision of Declarative Performance Engineering (DPE),
which aims to decouple the description of the user concerns
to be solved (performance questions and goals) from the task
of selecting and applying a specific solution approach. The
strict separation of “what” versus “how” enables the develop-
ment of different techniques and algorithms to automatically
select and apply a suitable approach for a given scenario.
The goal is to hide complexity from the user by allowing
users to express their concerns and goals without requiring
any knowledge about performance engineering techniques.
Towards realizing the DPE vision, we discuss the different
requirements and propose a reference architecture for im-
plementing and integrating respective methods, algorithms,
and tooling.

1. INTRODUCTION
During the life cycle of a software system, performance

analysts continuously need to provide answers to and act
on performance-relevant questions about response times, re-
source utilization, bottlenecks, trends, anomalies, etc. Their
everyday work includes questions such as [7]: “What per-
formance would a new service or application deployed on
the infrastructure exhibit and how much resources should be
allocated to it?”, “What would be the performance impact of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16, March 12 - 18, 2016, Delft, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2858662

adding a new component or upgrading an existing component
as services and applications evolve?”, “If an application ex-
periences a load spike or a change of its workload profile, how
would this affect the system performance?”, “What would be
the effect of migrating a service or an application compo-
nent from one physical server to another?”. Despite ad-
vances in measurement-based and model-based performance
engineering (concerning compatibility, reuse, and modeling
convenience)[3, 5], it is still challenging to apply such tools
in practice without having extensive knowledge and experi-
ence in performance engineering. Additionally, the perfor-
mance of a software system may be evaluated with different
techniques over time, each having specific parameters and
capabilities. Searching for solutions, performance analysts
typically follow the process depicted in Figure 1 to find an
answer to a given performance query. Starting with a per-
formance query (specifying a specific question that needs to
be answered), the process consists of the choice of an anal-
ysis approach, its parametrization, processing, result filter-
ing and interpretation. The application of the process to
answer such queries is complex, time-consuming and error-
prone—even for performance experts. To illustrate this, we
consider a software service evolution example, focusing on
the response time of a single service. At system design-time,
predicting the response time of the service involves complex
decisions such as the selection of a suitable modeling formal-
ism (predictive formalisms, like layered queueing networks
or queueing Petri nets, or architecture-level modeling lan-
guages, such as UML MARTE, PCM [2], or DML [11], or

Performance Query

Query Results

Result Filtering and Interpretation

Processing

Choice of Analysis Approach

Parametrization

Figure 1: Performance Query Answering Process

91

http://dx.doi.org/10.1145/2851553.2858662

even intermediate approaches like CSM [16] or KLAPER
[8]), the choice of modeling granularity (e.g., black box,
coarse-grained, or fine-grained), solvers and solution tech-
nique (e.g., Markovian analytical solvers, product-form so-
lution or simulation-based solvers [4]), and the derivation of
model parameters. These decisions affect the modeling accu-
racy, as well as the speed and overhead of the analysis, and
require a lot of expert knowledge. At system testing and
deployment time, there is the opportunity to evaluate the
service response time by conducting performance measure-
ments on the real system. However, again complex decisions
about the measurement configuration have to be made, for
example regarding sufficient experiment run length, the con-
figuration of ramp-up time, and the choice of an appropriate
instrumentation granularity allowing to obtain the required
measurement data. During system operation, it is often also
required to predict the effects of possible system reconfigura-
tions or the expected impact of an increased or varied work-
load mix. This enables proactive resource management but
requires modeling techniques that support predicting future
system states. The response time query remains the same,
however, the analysis approach and parametrization have to
be tuned for a fast response. Another source for answer-
ing performance queries are historical monitoring logs. The
answering process then parameterizes a database request.

In this paper, we describe our vision of Declarative Per-
formance Engineering (DPE) aiming to provide a simplified
and unified performance engineering interface. The idea is to
use a declarative language allowing to specify performance
queries independent of the various approaches that can be
applied in the context of the considered system to obtain
the required information. The processing of a performance
query can be automated and optimized, while hiding com-
plexity from the user. Besides the setup challenges described
in the example, the filtering and interpretation of results
provided by applying performance engineering techniques
can be automated. Further, our approach enables a conver-
gence of model-based and measurement-based analysis as
demanded in [15]. Agile software development processes—
including the DevOps paradigm—have received increasing
attention in the last years [1]. Their implied shorter release
cycles raise the need for novel unified interfaces for apply-
ing performance engineering techniques that hide complex-
ity from the user and automate the performance analysis
process, such that performance engineering techniques can
be applied efficiently by developers throughout the software
engineering life cycle [5]. Our vision, described in this paper,
proposes an approach for addressing this need.

The remainder of this paper is organized as follows: At
first, Section 2 formulates the problem statement, which is
the basis for our DPE vision described in Section 3. After
discussing the vision, we propose a realization approach an-
alyzing the various requirements and proposing a possible
architecture for building DPE tools in Section 4. Section 5
reviews our previous work and related work that will serve as
foundation of DPE. Finally, Section 6 provides a conclusion
and an outlook.

2. PROBLEM STATEMENT
Existing performance engineering techniques require ex-

pert knowledge to apply them correctly. Different perfor-
mance analysis techniques are applicable at the various stages
of the software life cycle. For performance engineering, cur-
rently there is no generalized layer or a unified interface that
provides:

• A high-level language allowing to specify goals and
queries independent of the solution approach (e.g., us-
ing measurement-based or model-based techniques)

• Decision support for the selection of an appropriate
performance engineering technique and tool for an-
swering a performance query, considering functional
and non-functional requirements (e.g., system pertur-
bation) as part of the selection and parametrization of
performance engineering techniques

3. THE VISION OF DECLARATIVE PER-
FORMANCE ENGINEERING

The high-level objective of Declarative Performance Engi-
neering (DPE) is to support system developers and admin-
istrators in performance-relevant decision making. Perfor-
mance analysts formulate their concerns using a declarative
domain-specific language. We aim to reduce the currently
huge abstraction gap between the level on which performance-
relevant concerns are formulated and the level on which per-
formance engineering techniques are typically applied. The
goal of DPE is to enable the formulation and answering of
performance-relevant questions and goals for a software sys-
tem in a human-understandable manner by using a high-
level declarative language to interact with performance en-
gineering tools. The proposed language processing exploits
a high degree of automation through a corresponding in-
terpretation and execution infrastructure, which builds on
established low-level performance evaluation methods, tech-
niques, and tools. The core characteristics of the DPE vision
are:

• Enabling the performance analyst to declaratively spec-
ify what performance-relevant questions need to be
answered without being concerned about how they
should be answered. Particularly, the declarative lan-
guage is independent of the performance evaluation ap-
proach. This enables the integration of both,
measurement-based and model-based analysis.

• Hiding complexity from the user by automating the
selection and execution of a solution approach, which
may involve the application of multiple performance
engineering techniques. For maximum flexibility, it
should be possible to process the results from the var-
ious applied techniques manually, semi-automatically,
or by using full automation.

• Supporting the whole software system life cycle, in-
cluding design, operation, and evolution. In particular,
we consider modern software development paradigms,
where development and operation merge (DevOps) [1].

• Supporting extensibility of the declarative language
and the implementation platform and respective tools.

4. DPE APPROACH
The DPE vision requires an architecture for building frame-

works and tools that allow to reach the targeted goals. Fig-
ure 2 provides an overview of our envisioned DPE archi-

92

System

Established Methods,QTechniques,Qand Tools

Declarative
Language

Declarative Performance Engineering

LanguageQProcessingQ
and Adapters

Capability ModelQ
and Decision Engine

DPEQPlatform

Performance Engineering

Questions
and Goals

User
Concerns

Figure 2: Declarative Performance Engineering Architecture

tecture. It comprises a declarative performance evaluation
language, a capability model and a decision engine for so-
lution techniques, as well as language processing algorithms
all being part of the DPE platform. In the following, we
explain the specific objectives for these components in more
detail.

4.1 Declarative Language
The DPE language should be easy to adopt and under-

standable by software developers and administrators, as well
as by non-technicians. We aim to cover a wide range of per-
formance concerns. In particular, we plan to support the
following types of language statements:

• System element queries enable self-description of
the system concerning its elements, e.g., “What ser-
vices or resources are provided by the system?”.

• User-controlled queries enable asking questions
about the system performance.

1. Basic queries (e.g., “What is the response time of
service x [for workload y] [at time z]?”)

2. Degree-of-freedom queries or exploration space
queries (e.g., “What is the utilization of server x
for [100, 150 or 200] users?”)

3. Exploration space search queries (e.g., scalability
questions about the maximum number of users
without SLA violation or bottleneck detection)

• Temporal queries enable asking questions concern-
ing observations based on monitoring the system over
an extended period of time, e.g., trends, forecasting,
and anomaly detection.

• Sensitivity queries evaluate the effect/influence of a
service or resource, e.g., “influence of service x on the
utilization of resource y”.

• Goal definitions allow to describe user level goals.
They provide a basis to derive concrete actions in or-
der to achieve a specified goal. Goals can be in conflict
to each other. Hence, the optional specification of pri-
orities or criticality levels should be supported.

For some scenarios, it is not sufficient to solely specify the
desired result but also to constrain the way of how results
are obtained. This is important given that system perturba-
tion, solution time, and accuracy may differ significantly de-
pending on the applied performance engineering technique.
Measuring the performance of a system may have side effects
on the system operation. While for some scenarios, it may
be acceptable to generate additional load on the system for
better measurement precision, in others it may be required
to minimize overheads. Hence, the language should support
expressing such tradeoffs.

4.2 Language Processing and Adapters
To process performance queries expressed using the declar-

ative language, the DPE platform should support plugging
in adapters for different performance evaluation approaches.
The adapter interface shall be generic and centered around
the needs of the language. The adapters control any moni-
toring or processing required by the respective performance
evaluation approach. The requirements on the adapter de-
sign are:

• Automated processing: Experiment design, load
script generation, and experiment execution are car-
ried out automatically.

• Optimized processing: The performance query pro-
cessing shall be efficiently parameterized for the spe-
cific scenario. It should take into account user concerns
about accuracy, time-to-result, and system perturba-
tion.

• Light-weight design: The complexity of tool adapters
shall be minimized. Therefore, the generic composi-
tion of complex results out of sub-results should be
integrated into the language processing.

4.3 Capability Model and Decision Engine
The idea of DPE is to integrate multiple solution adapters.

At a first step, it has to be evaluated if an adapter is able to
deduce the requested metrics. In case multiple adapters are
capable to solve a given query, the choice should be based
on a matching of tool and query capabilities. For model-
based analysis, there exist many analysis approaches opti-
mized for certain model capabilities (e.g., independence of
model subparts, open or closed workload, applied queueing
strategies, etc.). Furthermore, the best solution technique
also depends on the requested metric. For example, if the
performance analyst is solely interested in aggregated val-
ues, faster approaches, like product-form solutions, can be
applied. Besides improving efficiency under the constraint
of preserving accuracy, there are approximation procedures,
like fluid analysis, which trade off analysis speed versus the
cost of accuracy.

We propose to introduce a decision engine that, for a given
language statement, automatically selects from the set of
plugged in tool adapters, an appropriate one to solve the
respective query. The aim of the decision engine is to decide
based on matching statement requirements against the tool
capabilities. This requires a capability model of each tool,
capturing its functional and non-functional properties. In
particular, capturing information relevant for the aforemen-
tioned tradeoffs between accuracy, time-to-result, and sys-
tem perturbation shall be supported. The capability model

93

will be designed using a hierarchical structure. We propose
the use of at least one abstract capability layer where a gen-
eral model, e.g., for monitoring tools, can be specified. Then,
a capability model for a concrete monitoring tool instance
can inherit from the abstract monitoring capability model.
This enables the reuse of capability specifications for other
monitoring tools. The abstract capability models can be
overwritten by a concrete tool capability model in case an
adapter is not yet implemented.

5. RELATED WORK
In our previous work, we proposed initial query languages

and frameworks to automate the application of performance
analysis techniques and to parameterize, execute, and filter
results accordingly. These are MAMBA [6] for measurement-
based analysis and DQL [7] for model-based analysis. How-
ever, they consider measurement and model-based analy-
sis separately, instead of, for example, using measurements
where available, while resorting to model predictions where
measurements are not feasible. Further, these languages
currently only support basic queries, no complex or com-
posite queries, e.g., for bottleneck analysis. Besides express-
ing performance queries, system goal specifications can be
declaratively described in the form of service level agree-
ments (SLAs), e.g., based on standards such as WSLA,
WSOL, WS-Agreement, SLA?, and SLAng [13]. Some of
the named approaches assess the SLA conformity of runtime
performance properties based on reactive approaches. How-
ever, these SLA languages are not yet connected to proactive
reconfiguration mechanisms that prevent SLA violations, as
done in our preliminary work in [10]. Further, we intend to
include several related approaches for implementing our vi-
sion, from which we want to name a few. To reduce the over-
head of creating model transformations in performance en-
gineering, intermediate models like CSM [16] and KLAPER
[8] address the N-to-M problem. Obviously, experiment au-
tomation like initialization bias detection [9] should be in-
cluded. Moreover, degrees-of-freedom exploration can be
optimized. Efficient experiment selection can reduce the to-
tal number of experimental setups to analyze as performed
in [14].

6. CONCLUSION AND NEXT STEPS
Throughout the past decades, various established meth-

ods, techniques, and tools for modeling and evaluating per-
formance properties have been proposed. However, the ap-
plication of performance engineering techniques to address a
given user concern is challenging and requires expert knowl-
edge. In this vision paper, we described the Declarative
Performance Engineering (DPE) paradigm aiming to decou-
ple the description of user concerns to be solved (perfor-
mance questions and goals) from the various possible tech-
niques and solution approaches. We envision an automated
selection and execution of a performance engineering ap-
proach tailored to address a given user concern. Towards
accomplishing the DPE vision, we discussed the major re-
quirements and proposed a possible architecture for build-
ing respective analysis tools and frameworks. We expect
DPE to impact all fields in computer science where per-
formance plays an important role, especially for real-time
systems and cloud computing. Our architecture enables to
already use sub parts, e.g., the decision support, the au-

tomated parametrization, or the result filtering. As next
steps, we will continue our joint work on DPE based on a
project funded by the German Research Foundation (DFG).
Further, we will continue pushing the DPE vision within the
SPEC DevOps community. In a long term perspective, the
tools to answer performance questions and to process con-
cerns can be used as a basis for self-aware computing systems
[12].

Acknowledgments: This work is supported by the Ger-
man Research Foundation (DFG) in the Priority Programme
“DFG-SPP 1593: Design For Future—Managed Software
Evolution” (HO 5721/1-1 and KO 3445/15-1) and by the
Research Group of the Standard Performance Evaluation
Corporation (SPEC).

7. REFERENCES
[1] L. Bass, I. Weber, and L. Zhu. DevOps: A Software

Architect’s Perspective. Addison-Wesley Professional, 2015.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance prediction.
Elsevier Journal of Systems and Software (JSS), 2009.

[3] A. B. Bondi. Foundations of Software and System
Performance Engineering: Process, Performance Modeling,
Requirements, Testing, Scalability, and Practice.
Addison-Wesley Professional, 2014.

[4] F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and
S. Kounev. Quantitative evaluation of model-driven
performance analysis and simulation of component-based
architectures. IEEE Transactions on Software Engineering
(TSE), 41(2):157–175, 2015.

[5] A. et al. Performance-oriented DevOps: A research agenda.
Technical Report SPEC-RG-2015-01, SPEC Research Group —
DevOps Performance Working Group, Standard Performance
Evaluation Corporation (SPEC), 2015.

[6] S. Frey, A. van Hoorn, R. Jung, W. Hasselbring, and B. Kiel.
MAMBA: A measurement architecture for model-based
analysis. Technical Report TR-1112, Department of Computer
Science, University of Kiel, Germany, 2011.

[7] F. Gorsler, F. Brosig, and S. Kounev. Performance queries for
architecture-level performance models. In Proceedings of the
5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014), pages 99–110. ACM, 2014.

[8] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap
between design and performance/reliability models of
component-based systems: A model-driven approach. Journal
of Systems and Software, 80(4):528–558, 2007.

[9] K. Hoad, S. Robinson, and R. Davies. Automating warm-up
length estimation. Journal of the Operational Research
Society, 61(9):1389–1403, 2010.

[10] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. Modeling run-time adaptation at the system
architecture level in dynamic service-oriented environments.
Service Oriented Computing and Applications Journal
(SOCA), 8(1):73–89, 2014.

[11] S. Kounev, F. Brosig, and N. Huber. The Descartes Modeling
Language. Technical report, Department of Computer Science,
University of Wuerzburg, 2014.

[12] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska.
Model-driven Algorithms and Architectures for Self-Aware
Computing Systems (Dagstuhl Seminar 15041). Dagstuhl
Reports, 5(1):164–196, 2015.

[13] K. Kritikos, B. Pernici, P. Plebani, C. Cappiello, M. Comuzzi,
S. Benrernou, I. Brandic, A. Kertész, M. Parkin, and M. Carro.
A survey on service quality description. ACM Comput. Surv.,
46(1):1:1–1:58, July 2013.

[14] D. Westermann, R. Krebs, and J. Happe. Efficient experiment
selection in automated software performance evaluations. In
Proceedings of the 8th European Conference on Computer
Performance Engineering, EPEW’11, pages 325–339, Berlin,
Heidelberg, 2011. Springer-Verlag.

[15] M. Woodside, G. Franks, and D. C. Petriu. The future of
software performance engineering. In 2007 Future of Software
Engineering (FOSE ’07), pages 171–187. IEEE, 2007.

[16] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and
J. Merseguer. Performance by unified model analysis (puma).
In Proceedings of the 5th International Workshop on Software
and Performance (WOSP ’05), pages 1–12. ACM, 2005.

94

	Introduction
	Problem Statement
	The Vision of Declarative Performance Engineering
	DPE Approach
	Declarative Language
	Language Processing and Adapters
	Capability Model and Decision Engine

	Related Work
	Conclusion and Next Steps
	References

