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Abstract
Large graph processing has attracted much renewed attention due
to its increased importance for a social network analysis. The effi-
cient parallel graph processing faces a set of software and hardware
issues, discussed in literature. The main cause of these challenges
is the “irregularity” of graph computations and related difficulties
in efficient parallelization of graph processing. Unbalanced com-
putations, caused by uneven data partitioning, can affect applica-
tion scalability. Moreover, the issue of poor data locality is an-
other major concern, that makes the graph processing applications
memory-bound. In this paper1, we aim to profile how large, paral-
lel graph applications (based on Galois framework) utilize modern
systems, in particular, memory subsystem. We found that modern
graph processing frameworks executed on the latest Intel multi-
core systems (a single node server) exhibit a good data locality
and achieve a good speedup with an increased number of cores,
contrary to traditional past stereotypes. The application process-
ing speedup is highly correlated with utilized memory bandwidth.
At the same time, our measurements show that the memory band-
width is not a bottleneck, and the analyzed graph applications are
memory-latency bound. These new insights can help us in match-
ing the resource demands of the graph processing applications to
future system design parameters.

Categories and Subject Descriptors: C.4 [Computer System
Organization] Performance of Systems, D.2.6.[Software] Program-
ming Environments.

General Terms: Measurement, Performance, Design.
Keywords: Parallel graph processing, benchmarking, profiling,

hardware performance counters.

1. INTRODUCTION
The interest to large graph processing has gained momentum

over last years due to the increased importance of efficient graph
processing for the analysis and problem solving in social networks,
data mining, and machine learning. The steep increase in volume
of data being produced led to a renewed interest in parallel graph

1This work was originated and largely completed during A. Eisenman’ internship at
Hewlett Packard Labs in summer 2015.
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processing. The rise of multi-core processors and their dominance
in modern Data Centers offers new challenges and opportunities for
efficient use of this platform for large graph processing. Unfortu-
nately, most of the graph algorithms have some inherent character-
istics that make them difficult to parallelize and execute efficiently.

The detailed survey paper [14] on challenges in parallel graph
processing lists a set of software and hardware issues that limit
graph processing performance. Among them the “irregularity”
of graph computations, which makes it difficult to parallelize graph
processing by either partitioning the algorithm computation or par-
titioning the graph data. Moreover, unbalanced computations,
caused by uneven data partitioning, can affect and limit the achiev-
able scalability. Finally, the issue of poor data locality during
graph processing is another major concern and challenge described
in [14]. All these challenges are side effects of the “irregular” algo-
rithms, which are typically data-driven, with dependencies between
tasks and computations defined at runtime.

To better understand the design points of the various future hard-
ware and software components, we have to analyze and investigate
a set of workloads that can drive the system design and implemen-
tation. In this paper, we aim to profile how large parallel graph ap-
plications utilize underlying resources in modern systems (a single
server, based on Intel Xeon Ivy Bridge processor). We are espe-
cially interested in performance analysis of the memory subsystem
and related system bottlenecks caused by parallel graph processing.
This understanding can help us in matching the resource demands
of the graph processing applications to future system design param-
eters.

For our study we have chosen the Galois system [18, 11], which
was specially designed for parallel processing of irregular algo-
rithms. The Galois framework was successfully applied for par-
allelizing graph algorithms, which exhibit similar properties. Our
profiling approach takes advantage of hardware performance coun-
ters implemented in the Ivy Bridge processor. It leverages perfor-
mance events from the processor Performance Monitoring Units
(PMUs), both inside the core (i.e., execution units, L1 and L2
caches) and outside the cores (i.e., L3 cache, Memory Controller).

We analyzed five popular graph algorithms executed on two large
datasets. We found that some of the traditional stereotypes por-
trayed in the literature do not hold, and that many irregular algo-
rithms processing issues have been successfully tackled by a novel
run-time support and task scheduling introduced in Galois. This
makes the Galois’ approach even more attractive and interesting
for parallel graph processing. The key findings are the following:

• The available memory bandwidth is not a bottleneck: it is not
fully utilized;

• Applications achieve a good processing speedup with an in-
creased number of cores in a socket;

• The speedup (scalability) of graph applications is highly cor-
related with utilized memory bandwidth;
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• The analysis of execution stall cycles in the system shows
that graph processing is memory-latency bound;

• Graph applications exhibit high L1 hit rates and significant
Last-Level Cache (LLC) hit rates. This reflects a good data
locality that could be efficiently exploited.

The remainder of the paper presents our results in more detail.

2. OUR PROFILING APPROACH
In this section, we motivate why we have chosen Galois graph

processing framework, outline a set of selected graph algorithms,
describe details of our experimental testbed, and introduce our pro-
filing approach based on hardware performance counters.

2.1 Parallel Graph Processing Framework

Why Galois?.
Out of many available graph processing frameworks (e.g.,

GraphChi[10], GraphLab [12], Apache Giraph [1], and Ligra [22],
just to name a few) we chose Galois [18], which was designed
as a system for automated parallelization of irregular algorithms.
Since graph processing highly resembles irregular algorithms Ga-
lois system can be efficiently applied for large graph processing
and diverse graph analytics. Galois is a task based parallelization
framework, with a graph computation expressed in either vertex
or edge based style. It implements coordinated and autonomous
execution of these tasks and allows application-specific control of
scheduling policies (application-specific task priorities). In the re-
cent study [21], conducted by independent researchers, graph al-
gorithms implemented in Galois have been shown as highly com-
petitive compared to a manually crafted and optimized code (only
1.1-2.5 times performance difference for a diverse set of popular
graph algorithms executed on a variety of large datasets).

Selected Graph Applications.
For our profiling study, we selected five popular graph algo-

rithms implemented in Galois [18] with different characteristics:
some of them are i) traversal, i.e., topology driven, or ii) data-
driven. Below is a short summary of these algorithms:

• PageRank: this algorithm is used by search engines to rank
websites for displaying the output results. PageRank offers a
way of measuring the importance and popularity of website
pages.

• Breadth First Search (BFS): this is a typical graph traversal
algorithm performed on an undirected, unweighted graph. A
goal is to compute a distance from a given source vertex s to
each vertex in the graph, i.e., finding all the vertices which
are “one hop” away, “two hops” away, etc.

• Betweenness Centrality (BC): this algorithm measures the
importance of a node in a graph. In social networks anal-
ysis, it is actively used for computing the user “influence”
index. The vertex index reflects the fraction of shortest paths
between all vertices that pass through a given vertex.

• Connected Components (CC): this algorithm identifies the
maximal sets of vertices reachable from each other in an
undirected graph.

• Approximate Diameter (DIA): the graph diameter is de-
fined as a maximum length of the shortest paths between any
pair of vertices in the graph. The precise (exact) computation
of a graph diameter can be prohibitively expensive for large
graphs, and this is why many implementations rather provide
a diameter approximation.

We chose these graph applications in Galois for a few reasons:
i) these problems represent popular graph kernels (they can be uti-
lized as modules for solving more complex graph problems), and

ii) the Galois implementation of these kernels was optimized and
tuned by the Galois team to produce an efficient code as shown
in [18, 21]. Using an optimized and tuned code in our study is
very important for profiling and understanding the real system bot-
tlenecks during large graph processing (rather than discovering the
bottlenecks related to an inefficiently written code).

2.2 Experimental hardware platform
In our profiling experiments, we use a dual-socket system repre-

senting one of the latest Intel Xeon-based processor families:

• Intel Xeon E5-2660 v2 with Ivy Bridge processor: each
socket supports 10 two-way hyper-threaded cores running
at 2.2 GHz and 25 MB of last level cache. The system
is equipped with 128 GB DDR3-1866 DRAM (i.e., with 4
DDR3 channels).

There are a few challenges in using hardware performance coun-
ters for accurately measuring the system hardware memory ac-
cess latencies and characterizing memory performance. Perfor-
mance counter measurements are provided in cycles, e.g., stall cy-
cles. However, for energy efficiency many processors are applying
DVFS (Dynamic Voltage and Frequency Scaling), where the pro-
cessor frequency can be increased or decreased dynamically during
workload processing depending on the system utilization. There-
fore, to preserve a fixed ratio of cycles per time unit we disable
Turbo Boost and DVFS feature.

We disable hyper-threading in our experiments in order to ana-
lyze application performance as a function of an increased number
of physical cores assigned to application processing. We are es-
pecially interested in understanding how these added compute re-
sources translate in the application speedup, and how it changes
utilized memory bandwidth in the system.

In this work, we are concentrating on the bottleneck analysis of
Galois applications executed on a single multi-core socket. In such
a way, we can see the best possible multi-threaded code execution
with its performance not being impacted by coherency traffic and
NUMA considerations2.

2.3 Profiling system resource usage with
hardware performance counters

As a part of our profiling approach we leverage the Performance
Monitoring Units (PMUs) implemented in Ivy Bridge processors.
We select a group of performance events for our analysis as shown
in Table 1, using PMUs located inside and outside the cores. Last
column provides an exact Intel event names, while the 2nd column
shows mnemonic, short names for these events used in the paper.

The first two counters in Table 1 refer to events found in the in-
tegrated Memory Controller (MC). These events are read for each
memory channel. DRAMreqs is used to count the number of out-
going MC requests issued to DRAM, while MCcycles are used for
measuring the run time.

Counter 3 measures the number of occupied Line Fill Buffers
(LFB) in each cycle, from which we deduce the average LFB occu-
pancy. LFBs accommodate outstanding memory references (which
missed in the L1 data cache) until the corresponding data is re-
trieved from the memory hierarchy (caches or memory). Hence
LFBs may limit the number of cache misses handled by the core.

Counters 4-5 are used to compute achievable Instructions per
Cycle (IPC).

Counters 6-11 are used for the analysis of hit/miss rates in data
caches L1,L2, and LLC.

Counter 12 provides the total number of execution stall cycles

2Evaluating an additional NUMA impact on the performance of graph pro-
cessing applications, analyzing bottlenecks and utilized memory bandwidth
in multi-socket configuration is a direction for our future work.
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incurred by the system. Counter 13 is used to measure the execu-
tion stall cycles caused by waiting for the memory system to return
data (including caches), while counters 14 and 15 are used to cat-
egorize them into stall cycles caused by misses in the data caches
L1 and L2, respectively.

Because stores typically do not delay other instructions directly,
counters 6-15 concentrate on loads.

1 DRAMreqs ivbep_unc_imc0::UNC_M_CAS_COUNT:ALL

2 MCcycles ivbep_unc_imc0::UNC_M_DCLOCKTICKS

3 FBoccupancy L1D_PEND_MISS:PENDING

4 Instructions ix86arch::INSTRUCTION_RETIRED

5 Cycles ix86arch::UNHALTED_CORE_CYCLES

6 L1loads perf::L1-DCACHE-LOADS

7 L1misses perf::L1-DCACHE-LOAD_MISSES

8 L2loads L2_RQSTS:ALL_DEMAND_DATA_RD

9 L2hits L2_RQSTS:DEMAND_DATA_RD_HIT

10 LLCloads perf::LLC-LOADS

11 LLCmisses perf::LLC-LOAD-MISSES

12 Stallstotal CYCLE_ACTIVITY:CYCLES_NO_EXECUTE

13 Stallsmem CYCLE_ACTIVITY:STALLS_LDM_PENDING

14 StallsL1 CYCLE_ACTIVITY:STALLS_L1D_PENDING

15 StallsL2 CYCLE_ACTIVITY:STALLS_L2_PENDING

Table 1: Selected performance events in Ivy Bridge processor
family and memory subsystem.

In order to read performance counters, we use the PAPI [3]
framework. PAPI provides a fully programmable, low level in-
terface for dealing with processor hardware counters. We instru-
mented PAPI into the algorithm’s source code in such a way that
it initializes the counters when the algorithm starts the compu-
tation part (after the setup period). Due to a limited number of
programmable PMU events per run, we execute these experiments
multiple times for collecting and profiling different event sets.

We use DRAMreqs to count the number of outgoing MC requests
issued to DRAM. Modern Intel processors have a memory line size
of 64 bytes, thus we multiply the sum of DRAMreqs over the 4 mem-
ory channels by 64 to get the byte traffic sent to DRAM. We then
calculate memory bandwidth with the following formula:

Memory_BW (bytes/s) =
MEM_LINE_SIZE ∗∑

3
i=0 DRAMreqs[i]

Time

For the memory-bound application characterization, we use sim-
ilar definitions to those described in the Intel Optimization Man-
ual [2]. We define the memory bound metric as the cycles where
the execution is stalled and there is at least one outstanding memory
demand load:

Memory_bound =
Stallsmem

Cycles

Because Ivy Bridge does not have a counter for the number of
execution stalls that happen due to LLC pending loads, we use the
following formula for defining DRAM_Bound metric. This formula
approximates the number of cycles where the execution is stalled
and there is at least one outstanding memory reference in DRAM:

DRAM_Bound =
StallsL2 ∗LLC_miss_ f raction

Cycles

We utilize LLCmisses to estimate LLC_miss_ f raction. We apply
a correction factor WEIGHT to reflect the latency ratios between
DRAM and LLC. For the Ivy Bridge processor, the empirical factor
value is 7 as defined in [2]:

LLC_miss_ f raction =
WEIGHT ∗LLCmisses

LLChits +WEIGHT ∗LLCmisses

3. SYSTEM PERFORMANCE CHARAC-
TERIZATION

In order to analyze system bottlenecks while executing graph ap-
plications, we need to set realistic expectations on achievable per-
formance (peak resource usage) of the system under study. In par-
ticular, we need to measure peak achievable memory bandwidth
and memory latency, as well as to characterize how the mem-
ory bandwidth and memory access latency change under increased
memory traffic issued by multiple cores.

In many traditional cases, peak memory bandwidth is measured
using the STREAM benchmark [5]. These measurements charac-
terize memory bandwidth achievable under the sequential access
pattern. However, real graph applications, processed by current
multi-core systems, exhibit a quite different access pattern, where
concurrent threads, executed on different cores, utilize the mem-
ory system by issuing a set of independent memory references. We
need to measure the ability of the memory system to serve a high
number of concurrent, random access memory operations present
in current multi-core systems and identify the related system bot-
tlenecks.

To achieve this goal, we utilize an open source pChase bench-
mark [4] which was originally introduced by Pase and Enckl [20]
to measure the memory latency and bandwidth of IBM systems.
The enhanced version of pChase benchmark was successfully used
for characterizing and modeling memory performance of modern
multi-core and multi-socket systems [15]. pChase benchmark en-
ables measuring both memory latency and throughput under con-
trolled degree of issued concurrent memory references.

pChase is a memory-latency bound pointer-chasing benchmark.
The benchmark creates a pointer chain, such that the content of
each element dictates which memory location is read next. This
ensures that the next memory reference cannot be issued until the
result of the previous one is returned. The benchmark can create
multiple independent chains per thread, with memory references
from different chains issued concurrently.

pChase allocates a pointer chain in a page by page manner: each
page is filled before proceeding to the next page. Using this pattern
helps in minimizing TLB misses, which is important for accurate
measurements of memory access latencies. Inside a page, it creates
a chain between all its cache lines (data blocks) in a semi-random
manner. However, this pattern is still partly prefetchable because
there are partial strides. Only after finishing the page, pChase goes
to the next page (it creates 64 pointers with size of 8 bytes in each
4 KB page). For accurate measurements of memory latency, we
need to guarantee that all issued pointers are served from memory.
To avoid prefetching and caching side effects it is important that
hardware prefetching is disabled during pChase experiments in
the system.

Figure 1 (a) shows achievable memory bandwidth (Y-axis) mea-
sured with hardware performance counters as described in Sec-
tion 2.3. Five different lines reflect measurement results of pChase
benchmark executed with a different number of threads (1, 2, 4, 8,
and 10), which are processed by available cores in a socket, i.e., 1,
2, 4, 8, and 10 cores. Each thread is executed with an increased
number of concurrent chains (X-axis).

The results show that a single pChase thread (executed by 1 core)
achieves maximum memory bandwidth of 5.5 GB/s with approxi-
mately 9-10 concurrent pointer chains. This result makes sense
because for each load miss in L1 cache a Line Fill Buffer (LFB)
should be allocated. Modern Intel processors (Sandy Bridge, Ivy
Bridge, Haswell) have 10 LFBs per core, and therefore, a single
core is limited to issuing 10 concurrent memory references.

Figure 1 (a) shows that with two pChase threads and two cores
achievable memory bandwidth increases perfectly to 11 GB/s, i.e.,
2 times higher. However, for four pChase threads and four cores
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Figure 1: Measured memory bandwidth and memory access latencies with pChase benchmark executed on 1, 2, 4, 8, and 10 cores, where each
thread is configured with increasing number of concurrent pointer chains.

Dataset Brief Description # Vertices # Edges Source Reference
Twitter Twitter Follower Graph 61.5 M 1,458 M http://an.kaist.ac.kr/traces/WWW2010.html [9]
PLD Web Hyperlink Graph 39 M 623 M http://webdatacommons.org/hyperlinkgraph/2012-08/download.html [16]

Table 2: Datasets: graphs used in the algorithm evaluation.

the peak memory bandwidth is 20 GB/s, and for 10 cores, it is
39 GB/s. This shows that when four cores are issuing memory ref-
erences at their “maximum speed” an additional system bottleneck
starts to form in the memory subsystem, most likely in the memory
controller. This bottleneck could be related to memory requests
queueing on existing 4 memory channels in DDR3.

Figure 1 (b) shows measured memory access latencies by pChase
threads (1, 2, 4, 8, and 10 threads) with concurrent pointer chains.
A line with a single pChase thread clearly shows the power of mem-
ory level parallelism (MLP): memory references from 9-10 con-
current chains could be processed with the same access latency of
86 ns by memory system. After all 10 LFBs are used, the core is
stalled until the issued memory references are served by DRAM
and the core’s LFBs are released and made available for processing
next outstanding memory references. Figure 1 (b) exhibits signifi-
cantly increased memory latencies for pChase configurations with
more than 4 concurrent threads. It is indicative of the increased
contention in the memory system when a high number of cores are
issuing concurrent memory loads. When 10 cores are issuing a
maximum number of concurrent requests (with 10 LFBs full) the
measured memory access latency is almost doubled. This increased
memory latency and contention in memory system explains lower
memory bandwidth scaling for higher number of cores in pChase
benchmark as shown in Figure 1 (a).

Now, we demonstrate the importance of understanding and eval-
uating the performance impact of hardware prefetching that
causes increased memory bandwidth usage as a result. Figure 1 (c)
shows the achievable memory bandwidth (Y-axis) measured by
pChase benchmark executed with a different number of threads
(1, 2, 4, 8, and 10), and a different number of concurrent chains
per thread (X-axis). It shows almost double memory bandwidth
for pChase executed with a single thread (on 1-core configuration)
compared to Figure 1 (a) with hardware prefetch disabled. For a
higher number of pChase threads (cores) the amount of additional
prefetch memory traffic decreases. Overall, hardware prefetching
increases the achievable socket memory bandwidth (when all 10
cores execute pChase threads) by 12.8% and it reaches 44 GB/s.

4. EVALUATION
Graph Datasets.

In this section, we analyze the profiling results of five selected
graph applications that are executed using two datasets described
in Table 2.

Performance of graph applications may significantly depend on
the structure and properties of the graphs used for processing. In

this study, we choose to concentrate on processing graphs that be-
long to a category of social networks. Social networks are difficult
to partition because they come from non-spatial sources. They are
often called “small-world” graphs due to a low diameter. In “small-
world” graphs, most nodes can be reached from each other by a
limited number of hops. Another property of “small-world” graphs
is that their degree distribution follows a power-law, at least asymp-
totically. Thus, there is a group of vertices with a very high number
of connections (edges), while majority of vertices are connected to
fewer neighbors. Both datasets Twitter and PLD, shown in Table 2
and used in the evaluation study, are small-world graphs.

Utilized Memory Bandwidth.
First, we analyze memory bandwidth used by applications under

study. We execute the selected graph applications with an increased
number of cores in the configuration and profile the utilized mem-
ory bandwidth in the system. Figures 2 (a)-(b) show four bars for
each profiled application. These bars represent average memory
bandwidth measured during the application processing in config-
urations with 1, 4, 8, and 10 cores on two datasets: Twitter and
PLD respectively. PageRank achieves highest memory bandwidth
on both datasets: 27-28 GB/s. BFS and Betweenness Centrality
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Figure 2: Average memory bandwidth (with prefetch enabled).
utilize 16-22 GB/s, followed by Connected Components and Ap-
proximate Diameter applications. Our memory characterization
with pChase benchmark in Section 3 demonstrates 44 GB/s peak
bandwidth on 10 cores with hardware prefetch enabled. Therefore,
apparently all five graph applications do not fully utilize available
memory bandwidth in the system.

While two datasets used in the study are quite different, the mea-
sured memory bandwidth scales in a similar way for selected graph
applications processed with an increased number of cores. For 10
cores, memory bandwidth is increased 7-8 times compared to 1-
core configuration.

Table 3 presents the average LFB occupancy (across configura-
tions with 1, 4, 8, and 10 cores and two processed datasets respec-
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tively). Clearly, this data shows that LFBs are not a system bot-
tleneck. Here, they do not cause the memory bandwidth not being
fully utilized.

Metrics PR BFS BC CC DIA
LFB occupancy 4.7-5.5 3.3-3.5 1.8 -2.2 1.4-1.6 0.2-1
IPC 0.5-0.6 0.5-0.8 0.6-0.9 0.7-1 0.7-1.2

Table 3: Average LFB occupancy and IPC across 1, 4, 8, and 10 cores
configurations and two datasets Twitter and PLD.

The IPC metric (Instructions per Cycle) is used to assess the
computation efficiency of a processor by the application. The
achieved IPC is low for all five applications. It is not-surprising:
memory-bound applications typically have lower IPC.

Data Locality.
Table 4 presents surprising and unexpected results on measured

cache hit rates for L1 and LLC. The measurements are performed
with hardware prefetch disabled in order to observe the cache hit
rates caused by application memory loads only. We can see that
graph applications exhibit high L1 and significant LLC hit rates that
indicates a good data locality that could be efficiently exploited 3.

Metrics PR BFS BC CC DIA
L1 hit rates 74-77% 89-90% 93-98% 95-96% 96-98%
LLC hit rates 35-39% 34-37% 30-33% 29-31% 10-22%

Table 4: Cache Hit Rates (L1 and LLC) across 1, 4, 8, and 10 cores
configurations and two datasets Twitter and PLD.

These are very interesting results reflecting that traditional
stereotypes about poor data locality do not hold for modern graph
processing frameworks executed on the latest Intel multi-core sys-
tems. 4.

Application Scalability.
Figures 3 (a)-(b) show the application speedup for processing in

configurations with 1, 4, 8, and 10 cores on two datasets: Twitter
and PLD respectively. All the applications (except DIA on Twitter)
show a very good speedup: 6-8 times is achieved on 10 cores com-
pared to 1 core performance. The analyzed applications do show a
good scalability as a function of increased compute resources.
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Figure 3: Application scalability: speedup compared to 1 core-
configuration performance (with prefetch enabled).

By comparing the memory bandwidth scaling trends in Figure 2
with application speedup shown in Figure 3, one can see that these
trends are correlated. Figures 4 (a)-(b) show memory bandwidth
scaling vs application speedup. X-axis reflect memory bandwidth
scaling with respect to 1 core-configuration, while Y-axis show the
corresponding application speedup under the same configuration.

The red line in Figures 4 (a)-(b) shows the ideal correlation be-
tween memory bandwidth scaling and application speedup. Note,
that all the points in these figures follow closely the diagonal line.

3L2 cache counters had some issues, and we omit reporting their results.
4In our experimental system, the size of LLC is 25 MB. Therefore, the
application working set for both graphs in Table 2 cannot be cached since
they significantly exceed available LLC size.
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Figure 4: Memory bandwidth scaling vs application speedup (with
prefetch enabled).

This shows a very strong (almost ideal) correlation between mem-
ory bandwidth scaling and application speedup.

This leads us to a natural question: does this mean that the ap-
plication performance is memory bandwidth-bound?

Memory bandwidth-bound or memory latency-bound.
In order to answer this question, we analyze the percentage of

execution stall cycles during the application computation, and pro-
vide stall cycles’ breakdown with respect to system functionality
that caused the observed stalls. Figures 5 (a)-(b) show three bars
for each profiled application. The red bar represents the total per-
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Figure 5: Execution Stall Cycles (10 cores, with prefetch enabled).
centage of execution stall cycles during the application processing,
i.e., cycles when the corresponding processor core executes noth-
ing. The percentage of stall cycles is high across all the applica-
tions: reaching 71% for PageRank and being above 60% for BFS
and CC. The next green bar shows that most execution stall cycles
are caused by the memory subsystem (except DIA execution on the
Twitter dataset). We refer the reader to Section 2.3 for definitions
of memory-bound and DRAM-bound metrics.

Note, that the memory hierarchy includes a set of caches (L1,
L2, and LLC) and DRAM. The last blue bar provides an additional
insight that execution stall cycles due to outstanding DRAM refer-
ences represent the majority of stall cycles in the memory hierarchy
(the DIA execution on the Twitter dataset suffers from the unbal-
anced processing across the cores, and the measured averages do
not convey the accurate story).

The earlier results (shown in Figures 2 (a)-(b)) indicate that all
five graph applications utilize memory bandwidth significantly less
than 60% of its peak. Combining these observations with the anal-
ysis of stall cycles breakdown, we can conclude that considered
graph applications are not memory bandwidth-bound (as often as-
sumed in literature) but are rather memory latency-bound.

5. RELATED WORK
In the past few years, graph algorithms have received much atten-

tion and have become increasingly important for meaningful analy-
sis of large datasets. A number of different graph processing frame-
works [1, 10, 12, 18, 22] were offered for optimized parallel and
distributed graph processing. This caused multiple efforts [18, 21,
8] in research community to compare the efficiency of these frame-
works in order to understand their benefits, applicability, and per-
formance optimization opportunities. For setting a reasonable base
for performance expectations, the authors in [21] provide a native,
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hand-optimized implementation of four algorithms and use them as
a reference point. According to the paper results, the Galois sys-
tem (which we chose for our study) shows very close to optimal
performance. In this study [21], the authors refer to either memory
system or network being a bottleneck for different frameworks and
their configurations. In related studies [13, 6], the authors strive to-
wards creating a benchmark for comparing graph-processing plat-
forms. While many evaluation studies hint on the memory system
being a bottleneck, they do not provide a detailed workload anal-
ysis of how a memory subsystem is used and what are the causes
of system inefficiencies during large graph processing. Our paper
aims to provide this missing analysis and insights.

In [17], the authors share a view that graph analytics algo-
rithms exhibit little locality and therefore present significant perfor-
mance challenges. They asssume that graph-processing algorithms
are memory-latency bound and the efficient system for processing
large graphs should be able to tolerate higher latencies with higher
concurrency. They outline a high-level system design, where multi-
ple nodes (based on commodity processors) communicate over an
InfiniBand network, manage high number of concurrent threads,
and may efficiently serve memory requests to the global memory
space shared across the nodes. The latest HP Labs project “The
Machine” [19] promotes a similar high-level system design. The
authors in [17] justify the proposed solution by evaluating achiev-
able performance with pointer chasing benchmark, which is similar
to pChase that we use in our study for assessing memory process-
ing capabilities. As we have shown in our paper, concurrent inde-
pendent memory chains generated by pChase could deliver much
higher memory bandwidth compared to real graph processing ap-
plications that have additional dependencies limiting the available
parallelism in the program.

The authors of the paper [7] follow a similar intuition that multi-
threading should help in hiding memory latency. At the same time,
by studying IBM Power7 and Sun Niagara2 they make observations
that the number of hardware threads in either platform is not suf-
ficient to fully mask memory latency. Our experiments with graph
processing on modern Ivy Bridge-based servers expose a similar
behavior that the available concurrency cannot efficiently hide the
incurred memory latency in the system.

6. CONCLUSION AND FUTURE WORK
In this paper, we discuss a set of software and hardware chal-

lenges accompanying the efficient parallel graph processing, which
were highlighted in earlier literature. The core of these issues is
the “irregularity” of graph computations which makes the efficient
parallelization of graph processing more difficult.

By careful profiling with hardware performance counters avail-
able in modern Intel processors, we analyzed how parallel imple-
mentation of graph applications use resources of modern multi-core
system, in particular a memory system.

We found that Galois graph processing framework executed on
latest Intel Ivy Bridge multi-core processor exhibits a good data lo-
cality and achieves a good application speedup with an increased
number of cores, contrary to traditional past stereotypes, and that
a memory bandwidth is not a bottleneck. In our current work, the
focus was on the multi-core processor performance and its mem-
ory subsystem. In our future work, we plan to analyze a multi-
socket configuration and its bottlenecks, as well as the impact of
non-unified memory access (NUMA) latencies on performance of
large graph processing applications,
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