
Interconnect Emulator for Aiding Performance Analysis of
Distributed Memory Applications

Qi Wang1,2, Ludmila Cherkasova1, Jun Li1, Haris Volos1

1Hewlett Packard Labs 2The George Washington University

interwq@gwu.edu, lucy.cherkasova@hpe.com, jun.li@hpe.com, haris.volos@hpe.com

ABSTRACT
Many modern large graph and Big Data processing applications
operate on datasets that do not fit into DRAM of a single ma-
chine. This leads to a design of scale-out applications, where the
application dataset is partitioned and processed by a cluster of ma-
chines. Typically, these applications rely on high speed intercon-
nects which employ Remote Direct Memory Access (RDMA) tech-
nology to provide fast and high bandwidth communications. Dis-
tributed memory applications exhibit complex behavior: they tend
to interleave computations and communications, use bursty trans-
fers, and utilize global synchronization primitives. This makes it
difficult to analyze the impact of communication layer on the ap-
plication performance and answer the questions: how interconnect
latency or bandwidth characteristics may change the application
performance? will the application performance scale when pro-
cessed by a larger system? In this work,1 we introduce a novel
emulation framework, called InterSense, which is implemented on
top of existing high-speed interconnect, such as InfiniBand, and
which provides two performance knobs for changing the (today’s)
interconnect bandwidth and latency. This approach offers an easy-
to-use framework for a sensitivity analysis of complex distributed
applications to communication layer performance instead of cre-
ating customized and time-consuming application models to an-
swer the same questions. We evaluate the emulator accuracy with
popular OSU MPI benchmark suite and two clusters with different
generation InfiniBand interconnects (DDR and FDR): InterSense
emulates the specified bandwidth and latency values with less than
2% error between the expected and measured values. InterSense
supports an efficient emulation of a wide range of interconnect la-
tencies and bandwidth characteristics for enabling performance and
scalability analysis of Big Data applications, deriving and inter-
polating their requirements for performance characteristics of the
underlying communication layer. To demonstrate the InterSense’s
ease of use, we present a case study, where we apply InterSense for

1This work was originated and largely completed during Qi Wang’ summer internship
at Hewlett Packard Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICPE 2016, March 12-18, 2016, Delft, Netherlands.
© 2016 ACM. ISBN 978-1-4503-4080-9/16/03 ...$15.00
DOI: http://dx.doi.org/10.1145//2851553.2851574.

sensitivity analysis of four applications and benchmarks for getting
non-trivial insights.

Keywords: Performance emulation; InfiniBand; MPI; dis-
tributed shared memory; benchmarking; profiling

1. INTRODUCTION
Exponential increase in online data and a corresponding prolif-

eration of data-centric applications (Big Data analytics) forces sys-
tem architects to revisit assumptions and requirements of the future
system design, and at the same time, it challenges the application
designers to tune and optimize their applications’ implementation
to efficiently utilize underlying hardware and its performance char-
acteristics.

As a working set size of modern applications grows, to hold the
entire dataset in main memory requires more than a single machine.
This leads to a scale-out, distributed application implementation
on a cluster of machines, where each server handles a portion of
the complete dataset, and needs to communicate with each other
to synchronize the main processing phases. Message passing in-
terface (MPI) is a popular and widely used programming paradigm
for scale-out, distributed memory applications. Performance of dis-
tributed memory applications inherently depends on performance
of communication layer in the cluster. One can execute MPI pro-
grams using a traditional TCP/IP based network. However, over
last decade, traditional networking often gets replaced by high-
speed interconnects with Remote Direct Memory Access (RDMA)
technology for optimizing performance of distributed memory ap-
plications. During last couple years, many Big Data applications,
such as Hadoop, Spark, Memcached, etc., were re-written to take
advantage of high-performance RDMA-capable interconnects [22,
23, 14, 13] which provide fast and high-bandwidth communica-
tions. The application analysis of potential performance improve-
ments due to faster and higher bandwidth interconnects is a chal-
lenging task. Does the existing application implementation take a
full advantage of the underlying interconnect or not? Will the appli-
cation performance get worse if the interconnect has X% increased
latency or Y% lower bandwidth?

With MPI, a distributed memory application runs on multiple
machines as separate computation processes. These processes are
also responsible for handling the communications, which can be a
significant portion of the execution. In a new, popular, large graph
processing benchmark Graph 500 [2], MPI communications could
easily consume more than 50% of the program execution time (for
larger graphs and smaller cluster sizes). Moreover, depending on
the performance characteristics of the underlying interconnect, dif-

75

ferent implementation decisions on communication style and size
of transfers are made as a part of program optimization [12, 11,
18]. Many other scale-out applications [7, 13, 4] are also reported
to be sensitive to either communication latency or communication
bandwidth.

Complex MPI-based programs might interleave communication
portions with computational ones in different patterns which makes
it difficult to perform an accurate analysis of a communication layer
impact on application performance and predict scaling properties
of these programs. Building an accurate application model for
predicting the application performance as a function of bandwidth
and latency of underlying interconnect could be a very challenging
and time-consuming task. Typically, such customized application
model requires deep understanding of application functionality and
its implementation, and could additionally necessitate detailed ap-
plication profiling. Currently, it is practically impossible to analyze
the application sensitivity to performance characteristics of the un-
derlying interconnect and to answer the question: what impact the
changed interconnect latency or/and bandwidth may have on per-
formance of these applications?

To enable the analysis of an application dependency on perfor-
mance characteristics of the underlying interconnect, we aim to of-
fer an emulation framework, called InterSense, with two perfor-
mance knobs for changing the interconnect perceived bandwidth
and latency. Our earlier short paper [21] sketches the initial design
of the interconnect performance emulator and provides preliminary
evidence of its effectiveness. Here, we provide a complete de-
scription of our implementation along with discussion of different
design alternatives and implementation challenges related to these
choices. In the paper, we discuss technical subtleties of implement-
ing the low-overhead emulation for high-speed interconnects and
for decoupling latency and bandwidth emulations. We evaluate the
emulator accuracy and the imposed overhead with popular OSU
MPI benchmark suite [6] and two cluster-testbeds deployed with
different generation InfiniBand interconnects (DDR and FDR): In-
terSense emulates the specified bandwidth and latency values with
less than 2% error between the expected and measured values. To
demonstrate the InterSense’s ease of use, we present a case study,
where we apply InterSense for sensitivity analysis of modern ap-
plications and popular benchmarks, such as Memcached applica-
tion [13], NAS Parallel Benchmarks suite [7], RandomAccess mem-
ory benchmark (GUPS) [4], and Graph 500 benchmark [2].

Forward-looking projects like Firebox [9] and HP’s The Ma-
chine [3] envision future scale-out computing architectures with
enormous amount of non-volatile memories (NVMs) and with
nodes connected via a high-speed interconnect. While the slowed-
down interconnect appears to emulate a slower communication
layer, InterSense can be used as a tool to predict the performance
of future higher-performance systems. Intuitively, these future sys-
tems will have a higher computation-to-communication ratio than
today’s systems. Our tool can assist system designers in useful as-
sessment of computation-to-communication ratio ranges that could
support expected (or desired) performance of popular applications.
We believe that the designed emulator can be used for conducting
application sensitivity analysis, interpolating the application scala-
bility, and projecting its performance on future interconnects with
different performance characteristics.

The remainder of the paper is organized as follows. Section 2
provides background on MPI programming, outlines our approach

to the emulator design, and discusses implementation challenges.
Section 3 introduces our approach to bandwidth emulation and sub-
tleties of its implementation. Section 4 outlines the latency control
in our emulator, possible implementation choices, and our solution.
Section 5 presents the evaluation study: assessment of emulator ac-
curacy and its ease of use. Section 6 describes a review of related
work. Finally, Section 7 provides summary and future work direc-
tions.

2. INTERCONNECT PERFORMANCE
EMULATOR: ITS DESIGN AND IMPLE-
MENTATION CHALLENGES

Message Passing Interface (MPI) offers a language-independent
communications protocol for implementing parallel and distributed
memory applications. The MPI paradigm is attractive due to its
wide portability: it can be used for communication by distributed-
memory and shared-memory multiprocessors, as well as by clusters
of servers. The MPI framework is applicable in different settings, it
is independent of network speed or memory architecture. Figure 1
shows the underlying communication methods available and used
in MPI libraries over different media (that utilize different proto-
cols). We use this diagram in order to explain the communication
layer addressed by our interconnect emulator.

Figure 1: MPI Communication Methods

One can execute MPI programs using a traditional TCP/IP based
network (the bottom branch). This communication style is based
on a traditional (slow) networking, and therefore, one can apply
some existing software-based networking emulators (e.g., Model-
Net, Netbed, or netem [20, 8, 24]) that were designed and actively
exploited for controlling network performance characteristics in the
analysis of their impact on the application performance.

There are two branches (top and middle ones) that rely on a much
faster and efficient media. The middle branch supports MPI pro-
gram implementation on shared memory machines. There are two
different sub-cases:

• different MPI processes are assigned and executed on the
same socket (e.g., executed by different cores of the same
processor). This communication style and its implementa-
tion relies on intra-socket cache coherence protocol for send-
ing messages across MPI processes;

• different MPI processes are assigned and executed by differ-
ent sockets (e.g., executed by different cores of different pro-
cessors). This communication style and its implementation
relies on inter-socket or cross-socket (NUMA) cache coher-
ence protocol and QPI (Quick Path Interconnect between the
processors) for sending messages across MPI processes.

The top branch is related to a cluster of machines connected
via InfiniBand. This configuration allows implementing large dis-
tributed memory (combined across all the machines) and commu-

76

nications between the machines (i.e., between MPI processes resid-
ing on different machines) is done by using Remote Direct Memory
Access over InfiniBand (RDMA over InfiniBand). The MPI com-
munications performed over InfiniBand is the target of our work.

InfiniBand is the state of the art approach for high-speed inter-
connect between multiple machines. Different from QPI intercon-
nect which requires CPU involvement in transmission, InfiniBand
adapter is RDMA enabled and accepts requests actively. This en-
ables the transmission to be asynchronous and without consuming
CPU processing power. Based on the performance/features of In-
finiBand, we choose it to study performance of future RDMA-like
devices.

The large-scale Internet environment and high-speed intercon-
nects have substantially different characteristics. For example, In-
finiBand achieves bandwidth above 100 Gb/s and latency lower
than 1 microsecond. These performance characteristics differences
prevent the use of existing networking emulators for the intercon-
nect emulation due to their high overhead. The high-speed inter-
connect emulation poses a number of challenges:

• Because of the high-speed nature of interconnect, the emu-
lation overhead needs to be minimized. Imposing an addi-
tional software layer (e.g., TCP/IP protocol) or extra hard-
ware (e.g., ModelNet core node) is not acceptable for inter-
connect emulation because of the overhead.

• Latency and bandwidth characteristics of the interconnect
emulation need to be orthogonal to each other, i.e., the em-
ulation mechanism of one characteristic should not interfere
with the other. Therefore, separate latency and bandwidth
emulation mechanisms are required.

• There is no bandwidth or latency control support in existing
hardware, e.g., there are no hardware knobs in InfiniBand
adapters/switches that can be used for emulation of different
performance characteristics. By the way, the QPI situation is
similar.

To implement the low-overhead emulation and to decouple la-
tency and bandwidth emulations, we designed the following soft-
ware techniques for a bandwidth and latency control as summarized
in Figure 2:

Figure 2: Emulation Mechanism Overview.

• For bandwidth emulation, we add padding packets to reduce
an effective bandwidth for applications.

• For latency emulation, we insert a software emulated delay
before sending the application’s messages.

One additional interesting point to note here is that the latency
emulation approach described later in Section 4 can be also applied
to control the latency via shared memory (middle branch shown in
Figure 1).

3. BANDWIDTH EMULATION
For emulating interconnect with different bandwidth characteris-

tics, we impact effective bandwidth of the interconnect by sending
extra padding packets. The ratio between padding packets and data
packets determines the effective bandwidth for applications. It is
defined in a software emulation layer so that we can achieve a fine-
grained control over effective bandwidth. There are multiple layers
in software, where bandwidth can be impacted:

1. an application,
2. the communication library, i.e., MPI library, and
3. a device driver.

Figure 3 summarizes advantages and disadvantages of each layer
for bandwidth throttling.

Figure 3: Bandwidth Control Layer.

If we implement an interconnect bandwidth emulation in the ap-
plication layer this requires only modification to the application
itself. However, this may cause many lines of changes to the appli-
cation code (and in many cases, the application source code might
not be available). Also, for some MPI operations that perform
both computation and communication, e.g., MPI_Allreduce, it is
not possible to impact the interconnect bandwidth accurately be-
cause the communication pattern, implemented in the underlying
MPI library, is transparent to the application.

On the other end, in the device driver layer (e.g., driver library of
InfiniBand adapters), we would communicate with devices directly.
However, at this layer, we are losing a higher level operation view,
and have no information from MPI library. In addition, the driver
library is device specific, and the process of setting up and sending
of padding packets are two rather complex operations. This means
that if the bandwidth control is done in the driver layer, migrating
(re-implementing) the emulation platform to a different hardware
would be difficult.

We believe the MPI library layer offers the best trade-off
among portability, accuracy and complexity: it works for all MPI-
based applications, it is close to hardware (right above the driver
layer), and it provides additional flexibility of seeing the MPI op-
erators used by the program. This information can be used in the

77

emulator for exploiting different bandwidth values across the inter-
connect links to mimic special interconnect topologies or resources
available to the program.

To emulate correct bandwidth impact on packet latencies, a
padding packet is sent before the corresponding data packet. Band-
width does have a natural impact on the latency of larger pack-
ets. By sending the padding packets before the actual data packets
we aim to correctly capture the bandwidth characteristic (i.e., la-
tency of the large packets will increase with lower bandwidth). To
avoid impacting the latency of small packets, their padding pack-
ets are batched (combined together) until the total size reaches a
pre-defined threshold (64 KB in our experiments). The threshold
parameter should be large enough to amortize software overhead,
while not too large that bandwidth is not controlled in time. We
found that for InfiniBand FDR interconnect with 56 Gbits/sec, 64
KB threshold is sufficient to ensure both no latency interference for
small packets and the accurate bandwidth control.

We implement bandwidth control in a widely-used MPI imple-
mentation: MVAPICH2 [5]. To send padding packets, memory
buffer needs to be allocated as for sending and receiving padding
packets.

There are a few padding buffer allocation options:
• Naive approach: allocate a buffer with a size equal to the

largest application message multiplied by a padding ratio.
However, this may result in a very high memory requirement
for padding buffers: the maximum application message size
could be very large and its size is unknown to the MPI library.

• Buffer-reusable approach: allocate a buffer with a size equal
to the largest MPI packet segmentation size. Since MPI li-
brary does packet segmentation internally (with a fixed max-
imum segmentation size: 4MB in our case), the size of pack-
ets at the interconnect level will not be greater than the seg-
mentation size. Based on this, we can point all the padding
packets to the same memory region. This requires the mini-
mal amount of memory for padding buffer. We use this ap-
proach in our emulator.

Moreover, inside the MPI library, there are a few implementation
choices, where adding of padding packets can be done: high-level
interface layer (closer to MPI’s user API) or low-level device API
layer (closer to hardware, e.g., InfiniBand Verbs API). We proto-
typed and compared these two implementation alternatives for the
interconnect bandwidth control:

• High-level MPI interface layer approach – it requires no deep
modification of MPI library. A new padding_send operation
is attached to each send-based MPI operation to consume de-
sired bandwidth. For example, MPI_Send() will send a sep-
arate padding packet along with the data packet. To avoid
unnecessary receiving calls for padding packets, which add
overhead and prevent batching for small packets, one-sided
communication is used to send padding packets.
However, the considered MPI’s user API level imposes
the following implementation requirement: the described
“padding” modification should be introduced for all API
functions. Unfortunately, there are MPI functions with a high
complexity (e.g., MPI_Allreduce) that cannot be easily mod-
ified to impact bandwidth accurately. This makes the high-
level API approach less promising for achieving an accurate
interconnect bandwidth throttling outcome.

• Low-level MPI Verbs-based layer – it needs modifications
at a deeper level inside the MPI library, such as InfiniBand
Verbs layer. For InfiniBand, the padding_send operation is
attached to each ibv_post_send() invocation. The operating
level here is closer to hardware, i.e., right before communi-
cating with hardware driver. In such a way, this low-level ap-
proach is much more compact and provides a unified method
for handling bandwidth characteristics across all high-level
MPI operations.

Therefore, for implementing the interconnect bandwidth control,
we add padding packets at a low-level Verbs layer of MPI library.
For emulating the correct bandwidth impact on large packet la-
tencies, the padding packet is sent before the corresponding data
packet.

4. LATENCY EMULATION
Since high-speed interconnects have an ultra low native latency

(e.g., 1 µs for InfiniBand), the emulation overhead needs to be very
low as well. This means that expensive operations like context
switches cannot be involved. Our approach for emulating the in-
terconnect latency is to generate an additional delay by spinning,
i.e., by introducing an extra idle time for desired latency. A spin-
ning approach has the following advantages:

1. a high accuracy (close to 10ns),
2. a low implementation complexity, and
3. a low overhead (no other operations are needed).

The only disadvantage is that a spinning process results in addi-
tional consumption of CPU computation cycles 2. However, we
believe that the computation cycles spent on spin is acceptable be-
cause the desirable emulation targets of the interconnect latency
emulation are at nanosecond or microsecond level (depending on
the interconnect).

Similar to the bandwidth control implementation, multiple layers
in the software stack can be used for impacting the interconnect la-
tency. Figure 4 summarizes advantages and disadvantages of each
layer.

For latency control of InfiniBand, because of the spin implemen-
tation simplicity, we choose the driver library layer. In addition,
this approach aims to maximize the emulation accuracy (despite
the driver’s portability limitation). When migrating the emulation
to a different hardware platform, the effort of re-implementing the
spin-based latency control in a different driver library is minimal –
it is approximately 20 lines of code in our case.

When a driver specific modification is not preferred, the latency
control can also be done in a low-level MPI library layer (i.e., be-
fore calling ib_verb API) to achieve an MPI-portable implemen-
tation. However, there is a limitation of this approach: the de-
lay inserted in the MPI library layer could be invalid when multi-
threading is enabled in the MPI library because multiple threads
could be contending for locks in a driver after inserting their de-
lays.

For latency control over shared memory (a middle branch in

2One can use dedicated resources for spinning (e.g., spinning cores) to alleviate com-
peting with application for the same CPU cycles. However, it has a different compli-
cation: in order to inform the spin cores about the packet, message passing is required,
e.g., using lock-free ring buffers. A message between cores itself has a rather high
overhead (approx. 100ns per message within a socket), and it goes up dramatically
when there is a contention. So, this approach will reduce the spin cycle consumption
(minus the message overhead), but will cause an extra cache coherency traffic.

78

Figure 4: Latency Control Layer.

Figure 1) a similar approach can be applied. The communication
latency over shared memory and/or QPI can be controlled in the
MPI library layer: right before writing to shared memory (since
no driver is needed for QPI communication due to direct mem-
ory operations using a shared memory protocol). When using this
approach one needs to remember a granularity of introduced addi-
tional delay relative to a basic latency.

5. EVALUATION
In this section, we evaluate the emulator accuracy and demon-

strate its ease of use for application sensitivity analysis by pre-
senting a case study with four distributed-memory applications and
benchmarks.

5.1 Experimental Testbeds and Workloads
We evaluate the effectiveness and accuracy of our emulator by

using a popular OSU MPI benchmark suite [6] and two clusters
with different generation interconnects: DDR InfiniBand (20 Gbit-
s/s) and FDR InfiniBand (56 Gbits/s):

• Cluster_1 with 4 nodes, where each node is based on HP
DL380 servers (two sockets Xeon E5-2697 with 12 cores per
socket), and connected with FDR InfiniBand (56 Gbits/s);

• Cluster_2 with 8 nodes, where each node is based on HP
Proliant BL460c servers (two sockets Xeon E5345 with 12
cores per socket), and connected with DDR InfiniBand (20
Gbits/s).

The Ohio MPI Microbenchmark suite [6] is a collection of indepen-
dent MPI message passing performance microbenchmarks devel-
oped and provided as an open source by the Network-Based Com-
puting Laboratory of the Ohio State University. In particular, it
includes some simple benchmarks for performance measurements
of latency and bandwidth for basic MPI communications.

5.2 Emulator Accuracy
OSU MPI bandwidth test is implemented by having a sender

sending out a fixed number (equal to a window size) of back-to-
back messages to a receiver and then waiting for a reply from the
receiver. The receiver sends the reply only after receiving all the
messages. This process is repeated for several iterations and the
bandwidth is calculated based on the elapsed time (from the time
sender sends the first message until the time it receives the re-

ply back from the receiver) and the number of bytes sent by the
sender. The objective of this bandwidth test is to determine the
maximum sustained data rate that can be achieved at the network
level. Thus, non-blocking version of MPI functions (MPI_Isend
and MPI_Irecv) are used in the test.

Figure 5 (a) shows the bandwidth emulation results measured
with OSU MPI benchmark executed on the FDR InfiniBand-based
Cluster_1 (with 56 Gbits/s links). The X-axis shows the target, em-
ulated bandwidth (aimed between the sender and receiver), while
Y-axis reports on the measured bandwidth. We have executed
benchmark runs with default parameters of the bandwidth test pro-
gram: each configuration is run for 20× 64 iterations. From the

(a) Expected vs Measured Bandwidth.

(b) Bandwidth Control for Packets with Different Sizes.

Figure 5: OSU benchmark: Evaluating Accuracy of Intercon-
nect Bandwidth Emulation.

experimental results, we observe that the interconnect bandwidth
emulation is supported with a high accuracy: less than 2% error
between the expected, emulated interconnect bandwidth and the
measured interconnect bandwidth in the experiments (packet size
= 1 MB).

Moreover, the bandwidth control works correctly for packets
with different sizes as shown in Figure 5 (b): large packets are im-
pacted by bandwidth control, while small packets are not impacted
because they are not limited by bandwidth.

• The large packets (i.e., packets ≥ 128 KB) are capable of
fully utilizing the available interconnect bandwidth. We can

79

Figure 6: Bandwidth Impact on Packet Latency.

see that when 100% of bandwidth is available, the large pack-
ets are able to saturate and utilize 100% of interconnect band-
width (top line). If only 80% of bandwidth is available, the
large packets are utilizing 80% of bandwidth, etc. Therefore
transfers of large packets are impacted correctly by band-
width control.

• The small size packet transfers (less than 256 bytes) are not
impacted by bandwidth emulation. Their transfers are not
limited by the interconnect bandwidth (small packets are not
capable of utilizing the available bandwidth). Small size
transfers are limited by the interconnect message rate. There-
fore, the achievable bandwidth for small size packets is prac-
tically the same under different emulation values of intercon-
nect bandwidth as shown in the left side of Figure 5 (b).

We also measure the latency of different size packets under differ-
ent emulated interconnect bandwidth. We find that these packets
are controlled accurately in the emulator, and the bandwidth em-
ulation is orthogonal to latency emulation. Figure 6 shows that
small packets (not limited by bandwidth) have no latency change
under different emulated interconnect bandwidth control, while the
latency of large packets (limited by bandwidth) is impacted cor-
rectly.

OSU MPI latency test is carried out in a ping-pong fashion.
A sender sends a message with a certain data size to a receiver
and waits for a reply from the receiver. The receiver receives the
message from the sender and sends back a reply with the same
data size. Many iterations of this ping-pong test are carried out
and average one-way latency numbers are obtained. Synchronous
version of MPI functions (MPI_Send and MPI_Recv) are used in
the tests.

Figure 7 shows the latency emulation results measured with
OSU MPI benchmark executed on the FDR InfiniBand-based Clus-
ter_1 (with 56 Gbits/s links).

The latency emulation results, measured with OSU MPI bench-
mark, again show high accuracy: ≤ 2% error between expected
(emulated) latency and measured one as shown in Figure 7 (a).
Moreover, the designed mechanism works effectively for packets
with different sizes as demonstrated in Figure 7 (b). The bot-
tom line on this graph shows the measured latency of different size
packets. As we can see, when we emulate the increased intercon-

nect latency (i.e., latency+2µs, latency+4µs, etc.) the measured
packet latency closely follows the original latency pattern. It means
that the designed latency emulation mechanism does not impact the
interconnect bandwidth, and therefore the emulation mechanisms
for latency and bandwidth do not interfere with each other.

(a) Expected (Emulated) vs Measured Latency.

(b) Latency Emulation with Different Packet Sizes.

Figure 7: OSU benchmark: Evaluating Accuracy of Intercon-
nect Latency Emulation.

The results obtained in the DDR InfiniBand-based Cluster_2
(with 20 Gbits/s links) show similar accuracy results. We omit them
due to a paper space limitation.

5.3 Application Sensitivity Analysis with In-
terSense

Complex MPI-based programs might interleave communication
portions with computational ones in different patterns which makes
it difficult to analyze the communication layer impact on applica-
tion performance and predict scaling properties of the program.
Currently, it is extremely challenging to analyze the application
sensitivity to performance characteristics of the underlying inter-
connect and to answer the question: what impact the changed in-
terconnect latency or/and bandwidth may have on performance of
these applications?

To demonstrate the InterSense’s ease of use, we present a case
study, where we apply InterSense for a sensitivity analysis of mod-
ern applications and popular benchmarks, such as Memcached ap-

80

plication [13], RandomAccess memory benchmark (GUPS) [4],
NAS Parallel Benchmarks suite [7], and Graph 500 benchmark [2].
Note, that the only other way to get the results below is to build
customized performance models of these benchmarks and applica-
tions as a function of interconnect latency and bandwidth, which
is a difficult and challenging task even for a skilled performance
analysts.

Figure 8 shows performance of Memcached application [13]
as a function of emulated (increased) interconnect latency. Mem-
cached is a key-value distributed memory application used in the
data-center environment for caching results of database calls, API
calls, etc. This application is redesigned for RDMA capable net-
works instead of traditional BSD Sockets implementation. It shows
an extremely low response time for small requests, and therefore,
it is very sensitive to any increase in the interconnect latency,
which directly impacts the application performance as shown in
Figure 8 (a).

 0

 5

 10

 15

 20

 25

 30

 35

 40

1B 4B 16B 64B 256B 1K 4K

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(u
s)

Request Size (Bytes)

Latency + 10 us
Latency + 8 us
Latency + 6 us
Latency + 4 us
Latency + 2 us

Orig. Latency

(a) Memcached Response Time under Different Emulated Latency
and Small Request Sizes.

 0

 20

 40

 60

 80

 100

 120

 140

16K 32K 64K 128K 256K 512K

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(u
s)

Request Size (Bytes)

Latency + 10 us
Latency + 8 us
Latency + 6 us
Latency + 4 us
Latency + 2 us

Orig. Latency

(b) Memcached Response Time under Different Emulated Latency
and Large Request Sizes.

Figure 8: Memcached Response Time under Different Emu-
lated Latency and Larger Request Sizes.

For example, an additional latency of 2µs via interconnect in-
creases the response time of small requests (≤ 4KB) almost twice.
For larger requests the relative impact of increased latency dimin-
ishes as shown in Figure 8 (b).

Another interesting point is that for small requests (≤ 4 KB),
when interconnect latency is increased by N µs, the response time
increases by 2×N µs as we can see in Figure 8 (a) because of a

single round-trip communication that is required to serve this re-
quest. While for large requests (≥ 16 KB) shown in Figure 8 (b),
the response time increases by 4×N µs, because two round-trip
communications are required for large requests: first one for setting
up the memory buffer and the second one for actual data transfer.
For small requests the data is embedded in the first packet. These
differences are not obvious without understanding application im-
plementation. However, our tool can discover this easily without
having a deep knowledge of the application.

Figure 9 shows a sensitivity of RandomAccess memory bench-
mark (GUPS) to the interconnect latency. GUPS is a new bench-
mark proposed by IBM Research [19] a few years ago for mea-
suring how frequently a computer can issue updates to randomly
generated RAM locations. Giga-updates per second (GUPS) is a
measure of random memory access capability of multicores plat-
forms. GUPS is latency sensitive, but in a very special way. Its
sensitivity is defined by the number of outstanding concurrent re-
quests. If the number of outstanding requests is limited (≤ 1K)
then GUPS performance is 30-100% worse with increased inter-
connect latency. However, for outstanding requests ≥ 4K there is
no difference in performance: the pipeline of processed requests is
constantly full, and it hides the increased interconnect latency.

Figure 9: GUPS: Emulated Latency.

Both Memcached and GUPS are not bandwidth sensitive in our
experiments: they operate with very small size requests and can-
not utilize the available interconnect bandwidth in our Cluster_1
testbed. Small size transfers are limited by the interconnect mes-
sage rate.

Figure 10 shows performance of a popular NAS Parallel Bench-
marks suite [7] as a function of emulated bandwidth. NAS Parallel
Benchmarks are used for the evaluation and comparison of paral-
lel supercomputers. This suite includes seven diverse applications
with different computation and communication patterns. The band-
width sensitivity among benchmarks is very different: LU, MG, SP,
and BT show 20-40% increase in the execution time at 2.8 Gb/s
available bandwidth (i.e., at 5% of the original interconnect band-
width). However, CG and FT react to diminished bandwidth in a
more extreme way: their execution time increases by more than
300%. These applications are extremely bandwidth sensitive for
delivering good performance and this dependency impacts the ap-
plications’ scalability on a larger cluster. Finally, EP application

81

(Embarrassingly Parallel) is not sensitive to bandwidth at all. None
of the NAS studied benchmarks is sensitive to the increased inter-
connect latency (up to 10x latency in our experiments) because they
use extensively the asynchronous communications which hide the
impact of communication latency.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

2.8 8.4 14 19.6 25.2 30.8 36.4 42 47.6 53.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(%
)

Emulated Bandwidth (Gbits/sec)

FT
CG
BT
SP
MG
LU
EP

Figure 10: NAS parallel Benchmarks: Emulated Bandwidth.

Figure 11 shows performance of Graph 500 benchmark [2] with
emulated interconnect bandwidth. Graph 500 is a benchmark im-
plementing a Breadth First Search algorithm on large graphs and
used for assessing system performance based on processing effi-
ciency of their memory and interconnect. Producing winning re-
sults is a goal for many companies with leading hardware and sys-
tem design.

Figure 11: Graph500: Emulated Bandwidth.

Figure 11 shows that only 30% of FDR InfiniBand bandwidth is
effectively used (for selected graph and cluster sizes). With 10% of
interconnect bandwidth, the execution time (red line) is increased
by 30%, and a fraction of communication time (blue line) is dou-
bled. This type of sensitivity analysis is very useful for understand-
ing the cost/performance trade-offs. InterSense can help answering
capacity planning questions which require careful estimates of the
available “remaining” interconnect capacity for supporting a higher
load/volume service without compromising its performance.

Graph 500 was not sensitive to a higher (10x) interconnect la-
tency in our experiments (due to using asynchronous communica-
tion and high messaging volume).

This concludes our case study with InterSense. The goal of this
study was to show the ease of tool use and the appeal of the de-
signed interconnect emulator for performing the sensitivity analysis
of emerging benchmarks and modern applications instead of creat-
ing customized and time-consuming application models to answer
the same questions.

6. RELATED WORK
Many previous efforts explored emulation environments for eval-

uating the networking impact on their applications [10, 15, 17, 25].
However, the initial attempts were targeting static and relatively
small scale systems. Later, more advanced efforts [20, 24, 16, 8]
offered a variety of flexible TCP/IP-based emulation approaches to
support a broad range of research efforts for evaluating the Internet
and data center environments.

ModelNet [20] is a large-scale network emulator that allows
users to evaluate distributed networked systems and analyze per-
formance of their applications in the Internet-like environments.
It employs virtualization and routes packets through control nodes
(ModelNet core) to emulate desired delay, bandwidth and loss rate.
It further performs full hop-by-hop network emulation, allowing it
to capture the effects of contention and bursts in the middle of the
network.

Another closely related to this approach is Netbed [24] (a descen-
dant of Emulab [1]). This tool allows users to configure and access
integrated network resources composed of emulated, simulated and
wide-area nodes and links for distributed systems and networking
experiments.

However, large-scale Internet environment and high-speed inter-
connect have substantially different characteristics: for Internet in-
frastructure, bandwidth and latency performance is hundred times
worse than the InfiniBand ones. In addition, the scale, security,
reliability issues are often of concern as well. These performance
characteristics differences prevent the ModelNet approach from be-
ing applied for high-speed interconnect emulation. For example,
the high overhead coming from virtualization and re-routing is not
suitable for the interconnect emulation.

Another effort [16] applies the emulation for evaluating a variety
of effects in wide-area network on web server performance. The
authors advocate emulating network performance characteristics at
end hosts rather than in the network core for improved and simpli-
fied scalability. While this approach requires appropriate emulation
software on the edge nodes and must share each host CPU between
the emulation and the target application, this approach is attrac-
tive due to its flexibility and simplicity. Our InterSense emulator
follows a similar approach that offers performance knobs for con-
trolling the interconnect latency and bandwidth at the end points.

netem [8] is an open source network emulation tool that is en-
abled in the Linux kernel. However, it also focuses on wide area
networks like Internet, which makes it unfit for the interconnect
emulation. Other related tools are available for QoS management
over TCP/IP based network. But they all suffer from high protocol
overhead, when running on a high-speed interconnect, such as IP
over IB (IPoIB).

The network-related emulation tools are traditionally designed
around TCP/IP protocol, which functionality is significantly dif-

82

ferent compared to RDMA over InfiniBand. The designed Inter-
Sense emulator offers unique capabilities for analysis of scale-out
distributed memory applications.

7. CONCLUSION AND FUTURE WORK
In this work, we introduce novel bandwidth and latency control

mechanisms for performance emulation of the high-speed inter-
connects. We built a prototype of a new emulator and carefully
evaluated its performance, efficiency, and accuracy. InterSense can
assist researchers and engineers in emulating a variety of perfor-
mance characteristics of future large-scale interconnects and con-
ducting the application sensitivity and scalability analysis depen-
dent on these characteristics.

We are working on augmenting the proposed approach with ad-
ditional profiling, modeling, and prediction technique. By perform-
ing the emulation in small deployments with increased interconnect
latency and decreased bandwidth we aim to derive the predictive
models for application performance when processing larger data
amounts in large-scale distributed environments. We believe that
the InterSense ability to accurately indicate the needed interconnect
bandwidth for achieving the user-defined application performance
objectives and to reflect the application sensitivity to the increased
interconnect latency will help in applications’ optimization and re-
design.

8. REFERENCES
[1] Emulab - Network Emulation Testbed,

http://www.emulab.net/ .
[2] Graph 500 Benchmark. www.graph500.org/ .
[3] HP Labs. The Machine: A new kind of computer. http:

//www.hpl.hp.com/research/systems-research/ .
[4] HPCC RandomAccess (GUPS) Benchmark. http://icl.

cs.utk.edu/projectsfiles/hpcc/RandomAccess/ .
[5] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and

RoCE. http://mvapich.cse.ohio-state.edu/.
[6] MVAPICH Ohio State University Micro benchmark.

http://mvapich.cse.ohio-state.edu/benchmarks/.
[7] NAS Parallel Benchmarks.

http://www.nas.nasa.gov/publications/npb.html .
[8] netem, http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem .
[9] K. Asanovic. FireBox: A Hardware Building Block for 2020

Warehouse-Scale Computers. In Proc. of FAST, 2014.
[10] G. Banga, J. C. Mogul, and P. Druschel. A scalable and

Explicit Event Delivery Mechanism for UNIX. In Proc. of
the USENIX Annual Technical Conference, 1999.

[11] F. Checconi and F. Petrini. Traversing Trillions of Edges in
Real Time: Graph Exploration on Large-Scale Parallel
Machines. In Proc. of Intl. Parallel and Distributed
Processing Symposium, IPDPS’14, 2014.

[12] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R.
Choudhury, and Y. Sabharwal. Breaking the Speed and
Scalability Barriers for Graph Exploration on
Distributed-Memory Machines. In Proc. of Conference on
High Performance Computing Networking, Storage and
Analysis, SC’12,, 2012.

[13] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur Rahman, N. S. Islam, X. Ouyang, H. Wang,

S. Sur, and D. K. Panda. Memcached Design on High
Performance RDMA Capable Interconnects. In Proc. of the
2011 International Conference on Parallel Processing, ICPP
’11, 2011.

[14] X. Lu, M. Wasi-ur Rahman, N. S. Islam, D. Shankar, , and
D. K. D. Panda. Accelerating Spark with RDMA for Big
Data Processing: Early Experiences. In Proc. of Hot
Interconnects, 2014.

[15] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of Communication Latency, Overhead, and
Bandwidth in a Cluster Architecture. In Proc. of the 24th
Annual International Symposium on Computer Architecture,
ISCA ’97, 1997.

[16] E. M. Nahum, M.-C. Rosu, S. Seshan, and J. Almeida. The
Effects of Wide-area Conditions on WWW Server
Performance. In Proc. of the 2001 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’01, 2001.

[17] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H.
Katz. Trace-Based Mobile Network Emulation. In Proc. of
SIGCOMM, 1997.

[18] X. Que, F. Checconi, and F. Petrini. Performance Analysis of
Graph Algorithms on P7IH. In Proc. of the 29th Intl.
Conference on Supercomputing, ISC’14, 2014.

[19] V. Saxena, Y. Sabharwal, and P. Bhatotia. Performance
evaluation and optimization of random memory access on
multicores with high productivity. In Proc. of Intl.
Conference on High Performance Computing (HiPC), 2010.

[20] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. SIGOPS Oper. Syst. Rev.,
36(SI), Dec. 2002.

[21] Q. Wang, L. Cherkasova, J. Li, and H. Volos. InterSense:
Interconnect Performance Emulator for Future Scale-out
Distributed Memory Applications. In Intl. Symposium on
Modelling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2015.

[22] M. Wasi-ur Rahman, N. S. Islam, X. Lu, J. Jose,
H. Subramoni, H. Wang, and D. K. D. Panda.
High-Performance RDMA-based Design of Hadoop
MapReduce over InfiniBand. In Proc. of the 2013 IEEE 27th
International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, IPDPSW ’13, 2013.

[23] M. Wasi-ur-Rahman, X. Lu, N. S. Islam,
R. Rajachandrasekar, and D. K. Panda. MapReduce over
Lustre: Can RDMA-Based Approach Benefit? In Proc. of
the 20th International Conference EuroPar, 2014.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. SIGOPS Oper. Syst. Rev., 36(SI),
Dec. 2002.

[25] H. Yu and A. Vahdat. The Costs and Limits of Availability
for Replicated Services. In Proc. of the 18th ACM
Symposium on Operating Systems Principles (SOSP), 2001.

83

