
Automatic Performance Modelling from Application
Performance Management (APM) Data:

An Experience Report

 Paul Brebner
CTO, Performance Assurance Pty Ltd
www.performance–assurance.com.au

Canberra, Australia

paul@performance-assurance.com.au

ABSTRACT
Traditional testing approaches for enterprise systems are no longer
possible, agile enough, affordable, or accurate in many cases.
This is due to ongoing changes, reduced time between production
updates and the inability to test all system components because of
third party services and the expense of maintaining a test
environment. One alternative approach has been to manually
build predictive performance models to mitigate performance risk.
Even this has become impractical and cannot keep pace with
changes in complex enterprise systems.

In response to these challenges we have developed a way to
automatically build and parameterize performance models for
large scale enterprise systems from Application Performance
Management (APM) data. This industry experience report
summaries our experiences with automatically building
performance models for commercial customers over the last two
years. For each project we summarize the problem context, the
performance risks to be addressed, the automatic modelling
process, the range in complexity of the resulting models, the
accuracy of the predictions, and the benefits and limitations of the
models in practice.

Keywords
Modelling; measurement; performance; scalability; automatic;
APM

1. Introduction
Since 2007 we have developed a software performance modelling
tool and applied it to a variety of different enterprise technologies
and performance problems [15-27]. For the last 2 years we have
been delivering performance modelling in a purely commercial
context which has necessitated a change from manually built
performance models to automatically built models. We have
found that manually built models cannot be built with sufficient
speed, reliability, accuracy or complexity, to satisfy the business

and technical constraints of commercial performance model
delivery. However, many customers now have increasingly
sophisticated APM tools installed, from a decreasing number of
vendors, which provide a valuable source of data for automatic
model building, particularly if the investment in building tools for
conversion from APM tools to a modelling platform can be
maximized by reuse for multiple customers.

Previous work in automated performance modelling explores a
variety of approaches for data capture (including modelling from
architecture and design artefacts, source code, code
instrumentation, JVM, logs, and monitoring data), and application
domains (e.g. enterprise software, HPC) [1-10].

Because we are working in a commercial enterprise application
context we have focused on a few APM vendors who provide
monitoring solutions which include: Large-scale monitoring of
heterogeneous software stacks; End-to-end transaction flow data
for every transaction and every sub-system called; a rich variety
of per transaction metrics; and means of obtaining the data from
the APM system (e.g. export facilities or REST APIs).

Our performance modelling tool is model driven and supports a
meta-model of software performance based around SOA concepts
of workloads, composite and simple services, and servers. These
can be used to model business processes, workflows, and internal
software processes and services to an arbitrary level of detail. Our
tool provides a graphical user interface to build, parameterize and
visualize performance models. The performance models are
solved with a discrete event simulation engine and performance
metrics computed and displayed graphically for analysis. Models
can be changed and predictions easily compared. The tool is
currently hosted as a SaaS to reduce costs and increase ease of use
by customers. Previously we parameterized models from a variety
of data sources depending on availability such as SLAs, sub-
system time budgets, benchmarks, experimental in-house test-bed
results, log files, custom monitoring solutions, and older APM
products. Such data was often substandard in terms of quality and
quantity and coverage of the target systems.

We have developed an automatic model building pipeline for one
main APM vendor, and experimented with variation of it for
several others. The pipeline can ingest data from files obtained
from customer copies of the APM tool, or it can use REST API
calls to obtain data remotely or from a local copy of the APM
tool. Once the raw APM data is read it, several processing steps
occur including parsing, format/structure/semantic conversion and
transformation steps into our internal normalized APM data
format, error checking, statistics calculations, initial internal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE'16, March 12 - 18, 2016, Delft, Netherlands
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4080-9/16/03…$15.00
DOI: http://dx.doi.org/10.1145/2851553.2851560

55

model building and analytical simulation (for more sophisticated
validation), and finally generation of the performance model and
upload to the SaaS tool where simulations can be run and changes
made to the models. Depending on the amount and type of APM
data available, and the purpose of modelling, different models
types can be automatically generated. Typically the tradeoff is
between model simplicity and complexity, modelling for capacity
vs. performance predictions, and availability of detailed
transactional data from the APM tools. Being able to build
different model types from the same data is also valuable for
research purposes and we easily investigate the pros/cons of
different model types and the impact on accuracy, power of the
models, and ease of use and understandability. Changes
(additions, deletions, modifications, aggregation) can also be
introduced at different phases of the pipeline with different
pros/cons including in the APM tool before data is imported into
our system, in the data itself before or during processing, in the
pre-processing tool either before, during or after internal model
generation, in the outputted model, or in the SaaS modelling tool.

The bulk of the paper will focus on our experiences with
automatic model building for three projects. However, two aspects
of modelling that are discussed in the project summaries are first
introduced in more detail to provide sufficient background. These
are: Model Calibration, and Model Complexity.

1.1 Model calibration
By default our performance models are parameterized with
measured data (metric time distributions). They are more accurate
at loads closer to the average load that the APM data was
collected at, but tend to produce optimistic predictions for
response times, capacity and resource requirements at
significantly higher loads. For more accurate predictions models
can be calibrated with load test results, however, such calibrations
are dependent on the availability, correctness, and interpretability
of load test data, and are context specific as they depend on the
actual load and specific server resources available. Moreover, if
part of the system saturates first (which is inevitable for real world
systems) then the calibrations are likely to be inaccurate for the as
yet unsaturated sub-systems. In theory it is be possible to obtain
0% model error using calibration data, however, in practice we
have found that this is unachievable for commercial systems due
to factors such as: problems running and interpreting load test
result; differences in transactions and transaction mixes in load
tests and models; and ambiguity around the modelling, allocation
and setting resource limits for servers for detailed time breakdown
metrics available from some APM tools, e.g. CPU (user/system),
I/O, suspension, wait, and synchronization times. Introducing
load dependent scaling (e.g. using linear or non-linear regression
analysis) to model times under varying loads is a typical solution
used to increase the predictive accuracy. However, it depends on
having a sufficiently large sample of data from a large enough
range of loads to be significant, extrapolation beyond the
measured load range is risky, and it is difficult to apply to
complex models which are parameterized with response time
distributions, as in many cases load dependency is specific to each
transaction, service and server combination. Hence, for the
reported projects most of the models could not be calibrated to 0%
error.

1.2 Model complexity
Model complexity is a simplified estimate of the upper number of
components in a model and is computed as complexity =
(transactions * services) + services + servers. Transactions are
the number of transaction types (not individual transactions).
Services appear twice as there is one model component per
transaction type per service for the probability of the service being
called and the time distribution, and another component per
service per model representing the deployment of that service on a
server. Servers is the number of physical or virtual servers the
services are deployed to. Actual models may be simpler as not all
services are called for each transaction, but more complex in that
this formula does not take account into account relationships
between components. Automatically built models can also
include other system aspects such as Entry points (where a
transaction enters the system), APIs, Classes and even method
calls, which all have the potential for dramatically increasing the
complexity but also the utility of models. Our previously
manually constructed and parameterized models were practically
limited to a maximum complexity of around 100, but
automatically built models can have orders of magnitude higher
complexity. We summarize the automatically built models for the
projects below in terms of minimum (aggregated transactions) and
maximum (all transaction types represented) complexities.

2. Projects
2.1 Project 1
The context of project 1 was the migration of multiple different
applications from a legacy physical infrastructure that was soon to
be retired, to a new virtualized infrastructure. There were a large
number of poorly understood legacy applications, with different
performance characteristics, and the client wanted to be able to
assure their customers (who owned and used these applications)
that they would still perform on the new infrastructure well in
advance of migration. They also wanted to know if the sizing of
the new infrastructure was sufficient and also efficient from a cost
perspective. The plan was to take an example application (the first
application to be migrated), install an APM tool on the physical
infrastructure, deploy the application on both platforms, and run
load tests on each application and platform to determine the
maximum capacity. The next step was to build models from the
APM data on the physical platform, and then demonstrate that
given the APM data and model for the application on the physical
platform, the performance, capacity and resource requirements for
the application on the new virtualized platform could be predicted,
and that this was a repeatable process for other applications to be
migrated in the future.

Our methodology was to run a load test multiple times for each
application/platform, and ramp up the load gradually until
maximum throughput was observed. Load test and APM data was
captured for each test and the results used to build a model and
validate the predictions. The high level results are as follows. For
the old physical platform, the maximum measured capacity was
14TPS. Models were built for the lowest and the highest loads.
The lowest and highest load models predicted an optimistic
maximum theoretical capacity of 92TPS and 63TPS respectively,
both obviously higher than the actual measured capacity.

For the new virtualized platform, the maximum measured
capacity was higher at 38TPS. The low load model from the

56

physical platform was calibrated for the lowest and the highest
loads on the virtualized platform, and predicted a closer maximum
theoretical capacity of 45TPS and 49TPS respectively, with an
error of 21% and 33% respectively.

The uncertainty in these predictions is due to a combination of
factors including using only load independent models which don’t
take into account increasing times with increasing load,
uncertainty over how to allocate and accurately model capacity of
time metric breakdowns (User and system CPU/IO, and other
times), and simplifications made in calibrating the models (using
scaling factors computed using average times for each server at
the maximum load divided by the average times for the same
components at the minimum load. To be more accurate,
calibration is ideally done per transaction type/service).

Another metric was also computed which we call “efficiency”. It
is computed as efficiency = TP/RT/cores. Higher efficiency is
better. The old physical platform was actually faster than the new
virtualized platform, although the new virtualized platform had
higher concurrency (16 cores c.f. 12). The efficiency of the old
physical platform was better (7.8) than the efficiency of the new
virtualized platform (5.8). The metric TP/RT is referred to in the
literature as “power” [11, 12].

The business goal of this project was to reuse the methodology to
assist with migrating multiple applications. However, there was a
problem with repeatability with our approach, as in theory the
calibration factors used to scale the model of the application on
the legacy platform to make accurate capacity predictions for the
new platform first needs to be obtained from load tests of the
application on the new virtualized platform – but the application
has to be first deployed on the new platform. The calibration
factors are likely to be specific to application, hardware,
virtualization technology, cores per VM, load, etc. However, a
few more complete iterations with multiple application examples
would produce more calibration examples. It may then be possible
to calibrate models with a range and average values obtained from
previous examples, to provide sufficient assurance before
decisions are made to migrate the applications to the new
virtualized platform.

The project 1 application was relatively simple, having 40
transaction types, 2-3 services, and 3-4 servers. The model
complexity for the application on the physical platform was 85
and for the virtualized platform the model complexity was 127.
We used 24k transactions from the APM tool to build the model
on the physical platform, and 67k on the virtualized platform. On
the physical platform the average metric breakdown percentages
were 44% for DB time, 2% user CPU, and 53% system CPU/IO.
On the virtualized platform the average metric percentages were
11% for DB time, 1% user CPU, 87% system CPU/IO. In absolute
terms both DB time and system CPU/IO times were greater on the
virtualized platform, probably due to the overhead of
virtualization.

2.2 Project 2
The context of project 2 was the migration of a large scale mission
critical application to a web-based system, and migration to new
infrastructure to support it. There was a hard deadline for the
migration to occur by, and the client wanted assistance in assuring
that the migrated application had adequate performance and
scalability, and that the new infrastructure was sufficient but not

substantially over resourced, as there was a significant cost
overhead and time delay for server provisioning. The
development and testing and user acceptance testing of the new
system was conducted on different platforms to the new
production infrastructure, and the focus of testing was functional
rather than performance or load testing. However, all the systems
were monitored by a commercial APM tool which provided
detailed per transaction metrics per service/sub-system, including
a breakdown of metric times (user and system CPU, I/O, wait,
synchronization and suspension) and server metrics including
CPU utilization and number of cores. Due to the timetable of the
migration and when data from the various testing activities was
available, we had a very limited amount of time to obtain the
APM data, build models, and make capacity and resource
predictions.

The earliest APM data available was from functional testing in an
Amazon Web Services (AWS) Cloud environment. The tests
were performed in a planned order, exercising a subset of
transaction types at a time over a period of weeks. We therefore
needed to obtain the APM data for a significant range of the test
period to obtain as many transaction types as possible. This gave
us 104k transaction samples to work with. Once we had the data
we analyzed it to check for quality prior to modelling, revealing
that there were a large number of errors and unhandled
exceptions, and the majority of time was spent in synchronization
and I/O+System CPU (50% synchronization, 25% I/O+System
CPU, 20% User CPU). There were 2114 transaction types in the
test data, significantly less than expected, leading us to suspect
that the data was not giving us complete coverage of the
application. It was also unlikely that the transaction ratios from
test were representative of a production mixture. After filtering
out some of the worst transactions, we automatically built and
parameterized a performance model from the remaining data. The
most complex model that we built from this data (including all
2214 transaction types, 27 services, and 46 hosts) had a
complexity of 59k, and the simplest (using a single aggregated
transaction, which is adequate for capacity prediction) had a
complexity of only 100. Using only the CPU time breakdowns the
model predicted a total minimum number of cores at the target
load of 240.

Given the potentially problematic results from the AWS
environment, the client decided to accelerate production
deployment, and deployed a subset of the final functionality onto
a smaller production environment earlier than planned. We
obtained 80k transactions over 5 days of APM data from this
environment. We noticed that the percentage of User CPU time
had gone up to 50% (but absolutely was a lot less), I/O+system
CPU time was 20%, synchronization time had dropped below
1%). There was also a substantial reduction in errors and
unhandled exceptions. The number of transactions types had
increased to 7771 so more functionality was being measured. The
model automatically built from this data predicted a total
minimum number of cores at the target load of 74, significantly
less than the original prediction. The client had meanwhile
arranged for a cheaper/more flexible provisioning option and
proceeded to fully deploy the application in production with 152
cores (approximately double the minimum predicted cores) to
reduce the risk of performance and scalability issues. Once the
production system had been deployed and running for several
weeks we obtained a final 220k transaction sample. The final
number of transaction types was 13k, with 30 servers and 46

57

servers. The most complex model had 402k components, but the
simplest had 106 components. The final model predicted a
minimum of 72 cores at the target load, close to the 2nd prediction.
However, we noticed that the percentage of user CPU time had
dropped to 13%, synchronization and suspension times had risen
to 3%, but I/O+system CPU had risen to 74%. Given that the
application was consuming significant non-user CPU resources,
and that as the load increased some of these times would increase
due to load dependence, we redid the prediction including these
times, giving a more pessimistic minimum number of cores at the
target load of 134, closer to the number the client had used in
production (15% error).

This project exposed some difficulties of building performance
models from APM data which was skewed in multiple ways (e.g.
exceptions, incomplete functionality, un-representative transaction
ratios, from different infrastructures, at low load compared to the
target load). The main challenge was calibrating the model for
accurate capacity predictions at significantly higher target loads
than measured. The average measured load from the three samples
of APM data was 12k, 8k and 30 times less than the target load, so
the potential calibration error was substantial. Even though it was
possible to rapidly build performance models to assist with
capacity prediction, project 2 suggests that having high quality
representative APM data is desirable for improved accuracy of
results. In practice it is also becoming common practice to have a
more flexible and dynamic provisioning approach (in terms of
costs, initial and ongoing billing periods, VM sizes, provisioning
times, elastic spin up of VMs, etc), and this will better manage
unknowns, variations, and spikes in loads.

Note that as this project was focused on capacity prediction the
simplest possible models (a single aggregated transaction) were
used. The more complex models mentioned were built as a proof
of concept to show that it was possible to build models that could
also be useful for predicting response times for each transaction
type.

2.3 Project 3
The business goals for project 3 were to demonstrate that we
could build performance models automatically from a proprietary
APM solution. The models had to be accurate for the baseline
systems, and we had to demonstrate that we could model a
number of alternatives of relevance to the customer. The system
was a mission critical distributed system with many types of
online users (employees and users, in different locations, on
different platforms), it had well defined SLAs for the internal
processing time for the system (excluding network time), and
performed risk assessment processing in real-time. Risk
assessment was performed by a sub-system which supported
multiple types of assessment services, consuming different
amounts of resources, and called with a large range of different
frequencies per day. The challenges for the client were: to support
a growing number of users over time; different peaks per day
depending on the time of year; to develop, test, and put into
production increasing numbers of risk assessment services at a
faster rate than before; to explore alternative deployment options,
all while understanding the impact of changes on performance,
scalability and resources.

We have previously had experience of automatically building
performance models from an APM product which provided
detailed application independent per transaction metrics in a

variety of data formats including XML and CSV, for which we
developed a pre-processor (Projects 1 and 2). However, the
semantics, structure and format of the data from this clients’ APM
tool were different. We developed a solution in Apache Hive [28]
to pre-process the client APM data and transform it into the
semantics, structure and format that could be consumed by our
automatic model building pipeline. The main challenge was that
the times from the APM tool were provided for “profile points”
(times which were captured by developers in their code using the
APM tool harness, basically a way of registering the time between
two arbitrary points in the code). These times were developed for
assurance, testing and business purposes rather than performance
modelling, and therefore sometimes crossed sub-system and
server boundaries, requiring extra processing to determine the
breakdown of times for each sub-system and server.

Once the new enhanced APM modelling pipeline was developed
and tested we were able to repeatably build baseline models from
a day or more of production or test data. The baseline model
response time performance predictions were accurate to less than
10% error for the baseline average daily load giving us and the
client confidence that modelling alternatives would be useful. We
have a number of different ways of modelling alternatives with
this type of automatic model building pipeline including: deleting,
changing or adding to the input APM performance data (e.g. by
increasing the number of some type of transactions, by
introducing new transactions and times, etc); by introducing
transformations into the model building phase (e.g. categorizing
or aggregating transactions differently, scaling times, or changing
the service to server deployment mappings, or by changing the
number or CPU on servers); or by manually or semi-automatically
changing the resulting models. For this project all of these
approaches were trialed. Some simple alternative models
produced included: Calling the risk-assessment services either
synchronously or asynchronously, calling some sub-systems
sequentially or concurrently (if allowed by the business logic),
adding new risk-assessment services (given the expected
frequency of calls per day and average response time).

A more complex alternative scenario was to model the impact of
splitting the risk assessment services across multiple different
servers. The default deployment was for each service to be
deployed on multiple servers, but the number and type of services
was close to the upper limit that could be supported with the
existing infrastructure due mainly to RAM consumption. The
client was interested in modelling the impact of deploying a
subset of the services on different numbers of servers. This is
actually an optimization problem, comparable to the box packing
problem with multiple variables (number of services, number of
servers, CPUs per server, memory use per service, response time
distribution per service, and frequency of calls per service -
average and peak). The client had determined a possible split of
services to servers, but it was apparent from the initial base model
that we had built that some services were substantially more
demanding than others (in terms of Service Demand), which they
had not taken into account.

As an aside, we recently noticed [personal email to Samuel
Kounev and Andreas Brunnert, 1/9/2015] that (based on upwards
of five client examples of APM data) the service demand of
components, sub-systems, services, etc of large scale distributed
systems typically approximates Zipf’s law. That is, a few
components are more demanding that all the others put together.
A graph of log10 of rank of service demand for each component

58

vs. log10 of service demand for each component gives a straight
line with a gradient close to -1.0. Zipf’s law has been explored
for word frequency, city sizes, animal species, the internet, and
performance evaluation, etc [13, 14]. This relationship has
potentially interesting/useful implications for software
performance and modelling. For example, the scalability and
resource usage of a system may be critically dependent on the
very few most demanding components. Also, if you can measure
the demand on the most demanding component, and estimate the
total number of components, Zipf’s law can be used to estimate
the total service demand of the system (e.g. in the same way that
given the weight of just the largest animal and the number of
species on Noah’s Ark, you can estimate the total mass of animals
on the Ark).

We modelled the impact of locating only the most demanding four
risk assessment services on one server, and all others
(approximately thirty) on another server. This resulted in a
predicted 50:50 resource split so was optimal in terms of resource
load balancing. Even though it doesn’t measure the impact for all
the variables, it does demonstrate the possibility of significant
problems with performance and scalability if the wrong subsets of
assessment services are deployed on the same server. For
example, scalability and therefore response times under higher
loads will be impacted if too many high demand services are
deployed to one server only. Response times (potentially even at
lower loads) may be impacted if services with very long and very
short response times are deployed on the same server. We have
therefore proposed a future work plan to the client to address this
risk. They will provide us with: details of service performance
metrics (including number, memory use, response times, and
frequency of use), and possible deployment scenarios. We will
optimize the deployment of the services for 1-n servers with
different numbers of CPUs, and model the most promising
deployments and predict response time distributions and resource
usage/scalability and tell them which ones pass/fail SLAs.

There were a couple of challenges to producing an accurate
capacity model for this project. The 1st was that the APM tool did
not give us a breakdown of time metrics, just response time. If
breakdown times are available we have previously found that it is
possible to calibrate models for best and worst case capacity
predictions, and at least for simple (e.g. linear) load dependence.
However, the APM data did give us explicit Garbage Collection
times (because GC was one of the profile points), which revealed
that GC was a significant overhead for the system (33% of the
total service demand). Consequently a simple tactic to improve
resource usage was to explore more efficient GC strategies, such
as the use of multiple object pools to enable objects used in only a
single transactional context to be efficiently deleted.

The 2nd problem related to the limited range of load data. The
baseline model was built from a typical day’s production data.
The peak load of the day was close to the expected absolute peak
load for the application, there was not much variation in load
across the day, and there was still substantial headroom available
on the servers. It was therefore difficult to calibrate the model for
load dependent behavior to accurately predict response times and
resource demands at significantly higher loads using techniques
such as regression. Instead we relied on the client conducting a

stress to break load test. However, the test itself had problems
with performance and resource problems (increased response
time, increased CPU utilization, increased errors) well before the
final eventual stable measured maximum capacity was reached.
Nevertheless, using the final measured maximum throughput we
calibrated our baseline model to predict the maximum throughput
accurately, resulting in a reduction in error margin from 60% to
10%.

One of the unexpected difficulties with the APM data for this
project was that for some likely modelling alternatives a model
will be needed which accurately captures the different transaction
types. We have successfully built detailed transaction type
models from other APM data, however it was unavailable for this
application and APM combination. Instead we attempted to infer
the transaction types from the available APM data, using a
combination of parameter values visible in the data and services
called. We were able to automatically produce multiple possible
transaction categories, however producing the exact required
category was unachievable as in practice the resulting categories
were either too few or too many.

The baseline model was finally built from several days of data
(170k transactions), with half of the data used to build the model,
and half to validate it. The simplest model had 1 transaction type,
44 services and 7 servers, giving a model complexity of 95, and
the most complex had 183 inferred transaction types giving a
much higher model complexity of 8k. The initial APM data size
was 2GB, so the size of each transaction was 11.8KB on average.
The output from Hive pre-processing was 34MB, and the model
size (XML size before upload to our SaaS modelling tool) was
235KB, giving an overall size reduction of 8,510 times. This
shows quantitatively the power of abstraction due to modelling,
even simply at the level of the data compression ratio from raw
APM data to a model.

As part of proposal for providing ongoing modelling services for
this client we estimated the likely ROI of using a hybrid testing
and modelling approach. We assumed that each load test takes 1
week and costs $10,000, and that the initial performance model
also takes 1 week and costs $10,000. Evaluating alternatives using
the performance model are much faster and cheaper, taking only 1
day and costing $2,000. A testing only approach can only
complete 4 tests per month at a cost of $40,000. A hybrid
testing/modelling approach, allowing for 1 initial model build, 4
alternatives modelled and evaluated, and 1 load test to confirm the
most promising alternative, would cost $28,000 and take 2 weeks
and 4 days. Better cost and time savings can be achieved as the
effort to build initial and updated models decreases over time
(potentially reducing to a single day), and with increasing
numbers of alternatives modelled. This increased efficiency is
likely to have agility benefits as decisions can be made earlier
based on modelling results, even in the business and development
phases.

3. Conclusions
Table 1 shows a summary of the projects including minimum and
maximum model complexity, and the smallest error % for each.

59

Table 1 Summary of model complexity and smallest error

 Minimum
Complexity

Maximum
Complexity

Smallest
Error %

Manual
models

3 100 <= 100%

Project 1 85 127 21%

Project 2 100 60k 15%

Project 3 95 8k 10%

Some issues we discovered include: lack of standards for APM
data resulting in differences in metrics available, different metric
semantics and names, differences in metric structure and
availability of transactional metrics. Accurate and automatic
calibration of models for load dependency and maximum capacity
is an outstanding problem. Some of the models quickly become
very complex, making it difficult to visualize them and make
manual changes. The benefits of automatic model building are
significant. We demonstrated that we can build models
automatically for a variety of application types and from several
APM tools. The use of detailed transaction metrics including
response time distributions rather than just averages results in
models with accurate response time distribution predictions.
Models are useful, accurate enough in practice, and can be built
fast and reliably enough to solve real business problems on a
commercial basis.

3.1 Future work
We discovered that some APM tools and applications capture a
very large amount of data per transaction. Consequently one of
the significant issues we encountered was the long time taken to
obtain data for large numbers of transactions from the APM tool.
In the worst case we could only extract 10 transactions per second
from the APM REST API. We did not need all the data captured
about each transaction to build performance models, but there was
no way to request only the required data, which may have
increased the throughput. However, once the data was obtained
from the APM tool our automatic model building program worked
very quickly (in the order of seconds, rather than hours to get the
data in the first place). Apart from obvious potential
improvements to the APM APIs to improve throughput, another
solution we have considered is sampling. For some APMs it may
be possible to obtain summary data for all the transactions of
interest very quickly (including transaction type, start and end
time of transaction, total response time, and transaction id). In
this case it is often possible to obtain detailed transaction data for
specific transactions by request. Some sampling strategies we
have either experimented with or are considering for the future
include: model building from a small fixed or percentage random
sample of transactions (using complete data), and testing against
the remainder (using summary data only); incrementally building
models starting from very small sizes and then increasingly the
sample size until there is no observed benefit from including more
samples; filtering transactions to remove problematic samples
with errors or exceptions; filtering transactions based on load
ranges or thresholds, e.g. to remove samples with long response
times, or when server or thread resources are saturated; and
requesting samples of specific transaction types to ensure that
each transaction type has sufficient representation to be
statistically significant. Note that some APM tools provide ways

of filtering the transactions in advance of (or as part of) the
external service calls to obtain the data.

Some of these approaches will also be applicable for use in
DevOps when there is a continuous stream of APM data available.
Models could be built periodically, incrementally or even
continuously. Full or incremental or continuous model building,
or partial updates to models, could be triggered by changes to
components in the monitored environment (e.g. transaction types,
services or servers coming or going) and once significant
differences between model predictions and APM measurements
are detected. Models could be quickly rebuilt once a potential
problem is detected using the most recent data only, and then used
to compare with previous model results.

We are also investigating the use of automatic decisions about
possible model types based on analysis of the APM data and
model purpose. This could also result in automatic retrieval of
more, better or selected data on demand to achieve modelling
purposes with the least effort and most agility.

We also suggest that it would be valuable to the wider
performance engineering community to conduct more in-depth
experiments and comparisons of different APM tools on the same
application, with the purpose of evaluating what types and
accuracy of models can be built from each, what data is essential
or optional, and overall what the pros and cons of each APM tool
are for automatic model building. To facilitate this we have
developed a draft evaluation framework based on knowledge of
four APM tools which begins to capture important similarities and
differences.

4. REFERENCES
[1] Torsten Hoefler, “Towards fully automated interpretable

performance models”, PASAC16, June 2016,
http://icl.cs.utk.edu/newsletter/presentations/2015/Hoefler-
Towards-Fully-Automated-Interpretable-Performance-Models-
2015-07-01.pdf

[2] Michael Hauck, “Automated Experiments for Deriving
Performance-relevant Properties of Software Execution
Environments”, KIT Scientific Publishing, February 2014.

[3] A Mizan, G Franks, “Automated Performance Model
Construction through Event Log Analysis”, ICST2012,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=620
0164

[4] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie
Symons, and Evgenia Smirni. 2009. Automated anomaly
detection and performance modeling of enterprise
applications. ACM Trans. Comput. Syst. 27, 3, Article 6
(November 2009), 32 pages. DOI=10.1145/1629087.1629089
http://doi.acm.org/10.1145/1629087.1629089

[5] Andreas Brunnert, Christian Vögele, Helmut Krcmar:
“Automatic Performance Model Generation for Java
Enterprise Edition (EE) Applications”, EPEW 2013: 74-88

[6] Felix Willnecker, Andreas Brunnert, Wolfgang Gottesheim,
and Helmut Krcmar. 2015. Using Dynatrace Monitoring Data
for Generating Performance Models of Java EE Applications.
In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering (ICPE '15). ACM,
New York, NY, USA, 103-104.

60

DOI=10.1145/2668930.2688061
http://doi.acm.org/10.1145/2668930.2688061

[7] Markus Dlugi, Andreas Brunnert, and Helmut Krcmar. 2015.
Model-based performance evaluations in continuous delivery
pipelines. In Proceedings of the 1st International Workshop on
Quality-Aware DevOps (QUDOS 2015). ACM, New York,
NY, USA, 25-26. DOI=10.1145/2804371.2804376
http://doi.acm.org/10.1145/2804371.2804376

[8] Wu, Xingfu, Valerie Taylor, and Joseph Paris. "A web-based
prophesy automated performance modeling system." the
International Conference on Web Technologies, Applications
and Services (WTAS2006). 2006.

[9] Tauseef A. Israr, Danny H. Lau, Greg Franks, and Murray
Woodside. 2005. Automatic generation of layered queuing
software performance models from commonly available traces.
In Proceedings of the 5th international workshop on Software
and performance (WOSP '05). ACM, New York, NY, USA,
147-158. DOI=http://doi.acm.org/10.1145/1071021.1071037

[10] Murray Woodside, “Performance Data and Performance
Models”, Keynote, First SPEC Int. Performance Evaluation
Workshop, 2008,
http://www.sipew2008.org/presentations/SIPEW08-Keynote-
Woodside.pdf

[11] Dror G. Feitelson and Larry Rudolph. 1998. Metrics and
Benchmarking for Parallel Job Scheduling. In Proceedings of
the Workshop on Job Scheduling Strategies for Parallel
Processing (IPPS/SPDP '98), Dror G. Feitelson and Larry
Rudolph (Eds.). Springer-Verlag, London, UK, UK, 1-24.
http://www.cs.huji.ac.il/~feit/parsched/jsspp98/p-98-1.pdf

[12] L. Kleinrock, “Power and deterministic rules of thumb for
probabilistic problems in computer communications". In Intl.
Conf. Communications, vol. 3, pp. 43.1.1-43.1.10, Jun 1979.

[13] Zipf’s law, references:
http://ccl.pku.edu.cn/doubtfire/NLP/Statistical_Approach/Zip_
law/references%20on%20zipf's%20law.htm

[14] Mark Crovella. 2000. Performance Evaluation with Heavy
Tailed Distributions. In Proceedings of the 11th International
Conference on Computer Performance Evaluation: Modelling
Techniques and Tools (TOOLS '00), Boudewijn R. Haverkort,
Henrik C. Bohnenkamp, and Connie U. Smith (Eds.).
Springer-Verlag, London, UK, UK, 1-9.

[15] Brebner, P. C. 2012. Experiences with early life-cycle
performance modeling for architecture assessment.
In Proceedings of the 8th international ACM SIGSOFT
Conference on Quality of Software Architectures (Bertinoro,
Italy, June 25 - 28, 2012). QoSA '12. ACM, New York, NY,
149-154. DOI= http://doi.acm.org/10.1145/2304696.2304721

[16] Brebner, P. C. 2012. A performance modeling "blending"
approach for early life-cycle risk mitigation. In Proceedings of
the 3rd ACM/SPEC international Conference on Performance
Engineering (Boston, Massachusetts, USA, April 22 - 25,
2012). ICPE '12. ACM, New York, NY, 271-274. DOI=

http://doi.acm.org/10.1145/2188286.2188336
[17] Brebner, P. C. 2012. Is your cloud elastic enough?:

performance modelling the elasticity of infrastructure as a
service (IaaS) cloud applications. In Proceedings of the 3rd
ACM/SPEC international Conference on Performance

Engineering (Boston, Massachusetts, USA, April 22 - 25,
2012). ICPE '12. ACM, New York, NY, 263-266. DOI=
http://doi.acm.org/10.1145/2188286.2188334

[18] Brebner, P. C. 2011. Real-world performance modelling of
enterprise service oriented architectures: delivering business
value with complexity and constraints (abstracts
only). SIGMETRICS Perform. Eval. Rev. 39, 3 (Dec. 2011),
12-12. DOI= http://doi.acm.org/10.1145/2160803.2160813

[19] Brebner, P. C. 2011. Real-world performance modelling of
enterprise service oriented architectures: delivering business
value with complexity and constraints. In Proceedings of the
2nd ACM/SPEC international Conference on Performance
Engineering (Karlsruhe, Germany, March 14 - 16, 2011).
ICPE '11. ACM, New York, NY, 85-96. DOI=
http://doi.acm.org/10.1145/1958746.1958762

[20] Brebner, P. and Liu, A. 2011. Performance and cost
assessment of cloud services. In Proceedings of the 2010
international Conference on Service-Oriented Computing (San
Francisco, CA, December 07 - 10, 2010). Springer-Verlag,
Berlin, Heidelberg, 39-50.

[21] Paul Brebner, Is your Cloud Elastic Enough? Part 1. CMG
Measure IT, Issue 2, 2011. http://www.cmg.org/wp-
content/uploads/2011/08/m_82_3.pdf

[22] Paul Brebner, Is your Cloud Elastic Enough? Part 2. CMG
Measure IT, Issue 3, 2011. http://www.cmg.org/wp-

content/uploads/2011/10/m_84_3.pdf
[23] Brebner, P. 2009. Service-Oriented Performance Modeling the

MULE Enterprise Service Bus (ESB) Loan Broker
Application. In Proceedings of the 2009 35th Euromicro
Conference on Software Engineering and Advanced
Applications (August 27 - 29, 2009). IEEE Computer Society,
Washington, DC, 404-411. DOI=
http://dx.doi.org/10.1109/SEAA.2009.57

[24] Paul Brebner, Liam O'Brien, Jon Gray: “Performance
modeling evolving Enterprise Service Oriented Architectures”.
In Software Architecture, 2009 & European Conference on
Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on. 14-17 Sept. 2009. 71 – 80.
DOI=http://dx.doi.org/10.1109/WICSA.2009.5290793

[25] Brebner, P., O’Brien, L, Gray, J., “Performance modeling
power consumption and carbon emissions for Server
Virtualization of Service Oriented Architectures (SOAs)”.
EDOCW 2009. 13th. 92-99.

[26] Paul Brebner, Liam O’Brien, Jon Gray. “Performance
Modeling for e-Government Service Oriented Architectures
(SOAs)”, ASWEC (Australasian Software Engineering
Conference) Proceedings (Perth, March, 2008), 130-138.

[27] Paul C. Brebner. 2008. Performance modeling for service
oriented architectures. In Companion of the 30th international
conference on Software engineering (ICSE Companion '08).
ACM, New York, NY, USA, 953-954.
DOI=http://dx.doi.org/10.1145/1370175.1370204

[28] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy. Hive - A Petabyte Scale
Data Warehouse Using Hadoop. In ICDE, 2010.

61

