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ABSTRACT 
Traditional testing approaches for enterprise systems are no longer 
possible, agile enough, affordable, or accurate in many cases.  
This is due to ongoing changes, reduced time between production 
updates and the inability to test all system components because of 
third party services and the expense of maintaining a test 
environment.  One alternative approach has been to manually 
build predictive performance models to mitigate performance risk.  
Even this has become impractical and cannot keep pace with 
changes in complex enterprise systems.  

In response to these challenges we have developed a way to 
automatically build and parameterize performance models for 
large scale enterprise systems from Application Performance 
Management (APM) data. This industry experience report 
summaries our experiences with automatically building 
performance models for commercial customers over the last two 
years. For each project we summarize the problem context, the 
performance risks to be addressed, the automatic modelling 
process, the range in complexity of the resulting models, the 
accuracy of the predictions, and the benefits and limitations of the 
models in practice. 
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1. Introduction 
Since 2007 we have developed a software performance modelling 
tool and applied it to a variety of different enterprise technologies 
and performance problems [15-27]. For the last 2 years we have 
been delivering performance modelling in a purely commercial 
context which has necessitated a change from manually built 
performance models to automatically built models. We have 
found that manually built models cannot be built with sufficient 
speed, reliability, accuracy or complexity, to satisfy the business 

and technical constraints of commercial performance model 
delivery. However, many customers now have increasingly 
sophisticated APM tools installed, from a decreasing number of 
vendors, which provide a valuable source of data for automatic 
model building, particularly if the investment in building tools for 
conversion from APM tools to a modelling platform can be 
maximized by reuse for multiple customers. 

Previous work in automated performance modelling explores a 
variety of approaches for data capture (including modelling from 
architecture and design artefacts, source code, code 
instrumentation, JVM, logs, and monitoring data), and application 
domains (e.g. enterprise software, HPC) [1-10]. 

Because we are working in a commercial enterprise application 
context we have focused on a few APM vendors who provide 
monitoring solutions which include: Large-scale monitoring of 
heterogeneous software stacks; End-to-end transaction flow data 
for every transaction and every sub-system called; a rich variety 
of per transaction metrics; and means of obtaining the data from 
the APM system (e.g. export facilities or REST APIs).   

Our performance modelling tool is model driven and supports a 
meta-model of software performance based around SOA concepts 
of workloads, composite and simple services, and servers. These 
can be used to model business processes, workflows, and internal 
software processes and services to an arbitrary level of detail.  Our 
tool provides a graphical user interface to build, parameterize and 
visualize performance models. The performance models are 
solved with a discrete event simulation engine and performance 
metrics computed and displayed graphically for analysis. Models 
can be changed and predictions easily compared.  The tool is 
currently hosted as a SaaS to reduce costs and increase ease of use 
by customers. Previously we parameterized models from a variety 
of data sources depending on availability such as SLAs, sub-
system time budgets, benchmarks, experimental in-house test-bed 
results, log files, custom monitoring solutions, and older APM 
products. Such data was often substandard in terms of quality and 
quantity and coverage of the target systems. 

We have developed an automatic model building pipeline for one 
main APM vendor, and experimented with variation of it for 
several others. The pipeline can ingest data from files obtained 
from customer copies of the APM tool, or it can use REST API 
calls to obtain data remotely or from a local copy of the APM 
tool.  Once the raw APM data is read it, several processing steps 
occur including parsing, format/structure/semantic conversion and 
transformation steps into our internal normalized APM data 
format, error checking, statistics calculations, initial internal 
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model building and analytical simulation (for more sophisticated 
validation), and finally generation of the performance model and 
upload to the SaaS tool where simulations can be run and changes 
made to the models.  Depending on the amount and type of APM 
data available, and the purpose of modelling, different models 
types can be automatically generated.  Typically the tradeoff is 
between model simplicity and complexity, modelling for capacity 
vs. performance predictions, and availability of detailed 
transactional data from the APM tools. Being able to build 
different model types from the same data is also valuable for 
research purposes and we easily investigate the pros/cons of 
different model types and the impact on accuracy, power of the 
models, and ease of use and understandability.  Changes 
(additions, deletions, modifications, aggregation) can also be 
introduced at different phases of the pipeline with different 
pros/cons including in the APM tool before data is imported into 
our system, in the data itself before or during processing, in the 
pre-processing tool either before, during or after internal model 
generation, in the outputted model, or in the SaaS modelling tool. 

The bulk of the paper will focus on our experiences with 
automatic model building for three projects. However, two aspects 
of modelling that are discussed in the project summaries are first 
introduced in more detail to provide sufficient background. These 
are: Model Calibration, and Model Complexity. 

 

1.1 Model calibration 
By default our performance models are parameterized with 
measured data (metric time distributions). They are more accurate 
at loads closer to the average load that the APM data was 
collected at, but tend to produce optimistic predictions for 
response times, capacity and resource requirements at 
significantly higher loads. For more accurate predictions models 
can be calibrated with load test results, however, such calibrations 
are dependent on the availability, correctness, and interpretability 
of load test data, and are context specific as they depend on the 
actual load and specific server resources available.  Moreover, if 
part of the system saturates first (which is inevitable for real world 
systems) then the calibrations are likely to be inaccurate for the as 
yet unsaturated sub-systems.  In theory it is be possible to obtain 
0% model error using calibration data, however, in practice we 
have found that this is unachievable for commercial systems due 
to factors such as: problems running and interpreting load test 
result; differences in transactions and transaction mixes in load 
tests and models; and ambiguity around the modelling, allocation 
and setting resource limits for servers for detailed time breakdown 
metrics available from some APM tools, e.g. CPU (user/system), 
I/O, suspension, wait, and synchronization times.  Introducing 
load dependent scaling (e.g. using linear or non-linear regression 
analysis) to model times under varying loads is a typical solution 
used to increase the predictive accuracy. However, it depends on 
having a sufficiently large sample of data from a large enough 
range of loads to be significant, extrapolation beyond the 
measured load range is risky, and it is difficult to apply to 
complex models which are parameterized with response time 
distributions, as in many cases load dependency is specific to each 
transaction, service and server combination. Hence, for the 
reported projects most of the models could not be calibrated to 0% 
error. 

 

1.2 Model complexity 
Model complexity is a simplified estimate of the upper number of 
components in a model and is computed as complexity = 
(transactions * services) + services + servers.  Transactions are 
the number of transaction types (not individual transactions). 
Services appear twice as there is one model component per 
transaction type per service for the probability of the service being 
called and the time distribution, and another component per 
service per model representing the deployment of that service on a 
server.  Servers is the number of physical or virtual servers the 
services are deployed to. Actual models may be simpler as not all 
services are called for each transaction, but more complex in that 
this formula does not take account into account relationships 
between components.  Automatically built models can also 
include other system aspects such as Entry points (where a 
transaction enters the system), APIs, Classes and even method 
calls, which all have the potential for dramatically increasing the 
complexity but also the utility of models. Our previously 
manually constructed and parameterized models were practically 
limited to a maximum complexity of around 100, but 
automatically built models can have orders of magnitude higher 
complexity. We summarize the automatically built models for the 
projects below in terms of minimum (aggregated transactions) and 
maximum (all transaction types represented) complexities. 

 

2. Projects 
2.1 Project 1 
The context of project 1 was the migration of multiple different 
applications from a legacy physical infrastructure that was soon to 
be retired, to a new virtualized infrastructure.  There were a large 
number of poorly understood legacy applications, with different 
performance characteristics, and the client wanted to be able to 
assure their customers (who owned and used these applications) 
that they would still perform on the new infrastructure well in 
advance of migration. They also wanted to know if the sizing of 
the new infrastructure was sufficient and also efficient from a cost 
perspective. The plan was to take an example application (the first 
application to be migrated), install an APM tool on the physical 
infrastructure, deploy the application on both platforms, and run 
load tests on each application and platform to determine the 
maximum capacity.  The next step was to build models from the 
APM data on the physical platform, and then demonstrate that 
given the APM data and model for the application on the physical 
platform, the performance, capacity and resource requirements for 
the application on the new virtualized platform could be predicted, 
and that this was a repeatable process for other applications to be 
migrated in the future. 

Our methodology was to run a load test multiple times for each 
application/platform, and ramp up the load gradually until 
maximum throughput was observed.  Load test and APM data was 
captured for each test and the results used to build a model and 
validate the predictions.  The high level results are as follows.  For 
the old physical platform, the maximum measured capacity was 
14TPS. Models were built for the lowest and the highest loads. 
The lowest and highest load models predicted an optimistic 
maximum theoretical capacity of 92TPS and 63TPS respectively, 
both obviously higher than the actual measured capacity.   

For the new virtualized platform, the maximum measured 
capacity was higher at 38TPS. The low load model from the 
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physical platform was calibrated for the lowest and the highest 
loads on the virtualized platform, and predicted a closer maximum 
theoretical capacity of 45TPS and 49TPS respectively, with an 
error of 21% and 33% respectively. 

The uncertainty in these predictions is due to a combination of 
factors including using only load independent models which don’t 
take into account increasing times with increasing load, 
uncertainty over how to allocate and accurately model capacity of 
time metric breakdowns (User and system CPU/IO, and other 
times), and simplifications made in calibrating the models (using 
scaling factors computed using average times for each server at 
the maximum load divided by the average times for the same 
components at the minimum load. To be more accurate, 
calibration is ideally done per transaction type/service). 

Another metric was also computed which we call “efficiency”.  It 
is computed as efficiency = TP/RT/cores.  Higher efficiency is 
better. The old physical platform was actually faster than the new 
virtualized platform, although the new virtualized platform had 
higher concurrency (16 cores c.f. 12).  The efficiency of the old 
physical platform was better (7.8) than the efficiency of the new 
virtualized platform (5.8).  The metric TP/RT is referred to in the 
literature as “power” [11, 12]. 

The business goal of this project was to reuse the methodology to 
assist with migrating multiple applications.  However, there was a 
problem with repeatability with our approach, as in theory the 
calibration factors used to scale the model of the application on 
the legacy platform to make accurate capacity predictions for the 
new platform first needs to be obtained from load tests of the 
application on the new virtualized platform – but the application 
has to be first deployed on the new platform.  The calibration 
factors are likely to be specific to application, hardware, 
virtualization technology, cores per VM, load, etc.  However, a 
few more complete iterations with multiple application examples 
would produce more calibration examples. It may then be possible 
to calibrate models with a range and average values obtained from 
previous examples, to provide sufficient assurance before 
decisions are made to migrate the applications to the new 
virtualized platform.  

The project 1 application was relatively simple, having 40 
transaction types, 2-3 services, and 3-4 servers. The model 
complexity for the application on the physical platform was 85 
and for the virtualized platform the model complexity was 127. 
We used 24k transactions from the APM tool to build the model 
on the physical platform, and 67k on the virtualized platform. On 
the physical platform the average metric breakdown percentages 
were 44% for DB time, 2% user CPU, and 53% system CPU/IO. 
On the virtualized platform the average metric percentages were 
11% for DB time, 1% user CPU, 87% system CPU/IO. In absolute 
terms both DB time and system CPU/IO times were greater on the 
virtualized platform, probably due to the overhead of 
virtualization. 

 

2.2 Project 2 
The context of project 2 was the migration of a large scale mission 
critical application to a web-based system, and migration to new 
infrastructure to support it.  There was a hard deadline for the 
migration to occur by, and the client wanted assistance in assuring 
that the migrated application had adequate performance and 
scalability, and that the new infrastructure was sufficient but not 

substantially over resourced, as there was a significant cost 
overhead and time delay for server provisioning. The 
development and testing and user acceptance testing of the new 
system was conducted on different platforms to the new 
production infrastructure, and the focus of testing was functional 
rather than performance or load testing.  However, all the systems 
were monitored by a commercial APM tool which provided 
detailed per transaction metrics per service/sub-system, including 
a breakdown of metric times (user and system CPU, I/O, wait, 
synchronization and suspension) and server metrics including 
CPU utilization and number of cores.  Due to the timetable of the 
migration and when data from the various testing activities was 
available, we had a very limited amount of time to obtain the 
APM data, build models, and make capacity and resource 
predictions. 

The earliest APM data available was from functional testing in an 
Amazon Web Services (AWS) Cloud environment.  The tests 
were performed in a planned order, exercising a subset of 
transaction types at a time over a period of weeks. We therefore 
needed to obtain the APM data for a significant range of the test 
period to obtain as many transaction types as possible.  This gave 
us 104k transaction samples to work with. Once we had the data 
we analyzed it to check for quality prior to modelling, revealing 
that there were a large number of errors and unhandled 
exceptions, and the majority of time was spent in synchronization 
and I/O+System CPU (50% synchronization, 25% I/O+System 
CPU, 20% User CPU).  There were 2114 transaction types in the 
test data, significantly less than expected, leading us to suspect 
that the data was not giving us complete coverage of the 
application. It was also unlikely that the transaction ratios from 
test were representative of a production mixture. After filtering 
out some of the worst transactions, we automatically built and 
parameterized a performance model from the remaining data.  The 
most complex model that we built from this data (including all 
2214 transaction types, 27 services, and 46 hosts) had a 
complexity of 59k, and the simplest (using a single aggregated 
transaction, which is adequate for capacity prediction) had a 
complexity of only 100. Using only the CPU time breakdowns the 
model predicted a total minimum number of cores at the target 
load of 240. 

Given the potentially problematic results from the AWS 
environment, the client decided to accelerate production 
deployment, and deployed a subset of the final functionality onto 
a smaller production environment earlier than planned.  We 
obtained 80k transactions over 5 days of APM data from this 
environment.  We noticed that the percentage of User CPU time 
had gone up to 50% (but absolutely was a lot less), I/O+system 
CPU time was 20%, synchronization time had dropped below 
1%). There was also a substantial reduction in errors and 
unhandled exceptions.  The number of transactions types had 
increased to 7771 so more functionality was being measured. The 
model automatically built from this data predicted a total 
minimum number of cores at the target load of 74, significantly 
less than the original prediction.   The client had meanwhile 
arranged for a cheaper/more flexible provisioning option and 
proceeded to fully deploy the application in production with 152 
cores (approximately double the minimum predicted cores) to 
reduce the risk of performance and scalability issues.  Once the 
production system had been deployed and running for several 
weeks we obtained a final 220k transaction sample.  The final 
number of transaction types was 13k, with 30 servers and 46 
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servers. The most complex model had 402k components, but the 
simplest had 106 components. The final model predicted a 
minimum of 72 cores at the target load, close to the 2nd prediction.  
However, we noticed that the percentage of user CPU time had 
dropped to 13%, synchronization and suspension times had risen 
to 3%, but I/O+system CPU had risen to 74%.  Given that the 
application was consuming significant non-user CPU resources, 
and that as the load increased some of these times would increase 
due to load dependence, we redid the prediction including these 
times, giving a more pessimistic minimum number of cores at the 
target load of 134, closer to the number the client had used in 
production (15% error). 

This project exposed some difficulties of building performance 
models from APM data which was skewed in multiple ways (e.g. 
exceptions, incomplete functionality, un-representative transaction 
ratios, from different infrastructures, at low load compared to the 
target load).  The main challenge was calibrating the model for 
accurate capacity predictions at significantly higher target loads 
than measured. The average measured load from the three samples 
of APM data was 12k, 8k and 30 times less than the target load, so 
the potential calibration error was substantial. Even though it was 
possible to rapidly build performance models to assist with 
capacity prediction, project 2 suggests that having high quality 
representative APM data is desirable for improved accuracy of 
results. In practice it is also becoming common practice to have a 
more flexible and dynamic provisioning approach (in terms of 
costs, initial and ongoing billing periods, VM sizes, provisioning 
times, elastic spin up of VMs, etc), and this will better manage 
unknowns, variations, and spikes in loads. 

Note that as this project was focused on capacity prediction the 
simplest possible models (a single aggregated transaction) were 
used. The more complex models mentioned were built as a proof 
of concept to show that it was possible to build models that could 
also be useful for predicting response times for each transaction 
type. 

 

2.3 Project 3 
The business goals for project 3 were to demonstrate that we 
could build performance models automatically from a proprietary 
APM solution.  The models had to be accurate for the baseline 
systems, and we had to demonstrate that we could model a 
number of alternatives of relevance to the customer. The system 
was a mission critical distributed system with many types of 
online users (employees and users, in different locations, on 
different platforms), it had well defined SLAs for the internal 
processing time for the system (excluding network time), and 
performed risk assessment processing in real-time.  Risk 
assessment was performed by a sub-system which supported 
multiple types of assessment services, consuming different 
amounts of resources, and called with a large range of different 
frequencies per day. The challenges for the client were: to support 
a growing number of users over time; different peaks per day 
depending on the time of year; to develop, test, and put into 
production increasing numbers of risk assessment services at a 
faster rate than before; to explore alternative deployment options, 
all while understanding the impact of changes on performance, 
scalability and resources. 

We have previously had experience of automatically building 
performance models from an APM product which provided 
detailed application independent per transaction metrics in a 

variety of data formats including XML and CSV, for which we 
developed a pre-processor (Projects 1 and 2). However, the 
semantics, structure and format of the data from this clients’ APM 
tool were different. We developed a solution in Apache Hive [28] 
to pre-process the client APM data and transform it into the 
semantics, structure and format that could be consumed by our 
automatic model building pipeline. The main challenge was that 
the times from the APM tool were provided for “profile points” 
(times which were captured by developers in their code using the 
APM tool harness, basically a way of registering the time between 
two arbitrary points in the code).  These times were developed for 
assurance, testing and business purposes rather than performance 
modelling, and therefore sometimes crossed sub-system and 
server boundaries, requiring extra processing to determine the 
breakdown of times for each sub-system and server. 

Once the new enhanced APM modelling pipeline was developed 
and tested we were able to repeatably build baseline models from 
a day or more of production or test data.  The baseline model 
response time performance predictions were accurate to less than 
10% error for the baseline average daily load giving us and the 
client confidence that modelling alternatives would be useful. We 
have a number of different ways of modelling alternatives with 
this type of automatic model building pipeline including: deleting, 
changing or adding to the input APM performance data (e.g. by 
increasing the number of some type of transactions, by 
introducing new transactions and times, etc); by introducing 
transformations into the model building phase (e.g. categorizing 
or aggregating transactions differently, scaling times, or changing 
the service to server deployment mappings, or by changing the 
number or CPU on servers); or by manually or semi-automatically 
changing the resulting models.  For this project all of these 
approaches were trialed.   Some simple alternative models 
produced included: Calling the risk-assessment services either 
synchronously or asynchronously, calling some sub-systems 
sequentially or concurrently (if allowed by the business logic), 
adding new risk-assessment services (given the expected 
frequency of calls per day and average response time).   

A more complex alternative scenario was to model the impact of 
splitting the risk assessment services across multiple different 
servers.  The default deployment was for each service to be 
deployed on multiple servers, but the number and type of services 
was close to the upper limit that could be supported with the 
existing infrastructure due mainly to RAM consumption.  The 
client was interested in modelling the impact of deploying a 
subset of the services on different numbers of servers. This is 
actually an optimization problem, comparable to the box packing 
problem with multiple variables (number of services, number of 
servers, CPUs per server, memory use per service, response time 
distribution per service, and frequency of calls per service - 
average and peak). The client had determined a possible split of 
services to servers, but it was apparent from the initial base model 
that we had built that some services were substantially more 
demanding than others (in terms of Service Demand), which they 
had not taken into account. 

As an aside, we recently noticed [personal email to Samuel 
Kounev and Andreas Brunnert, 1/9/2015] that (based on upwards 
of five client examples of APM data) the service demand of 
components, sub-systems, services, etc of large scale distributed 
systems typically approximates Zipf’s law. That is, a few 
components are more demanding that all the others put together.  
A graph of log10 of rank of service demand for each component 
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vs. log10 of service demand for each component gives a straight 
line with a gradient close to -1.0.  Zipf’s law has been explored 
for word frequency, city sizes, animal species, the internet, and 
performance evaluation, etc [13, 14].  This relationship has 
potentially interesting/useful implications for software 
performance and modelling. For example, the scalability and 
resource usage of a system may be critically dependent on the 
very few most demanding components.  Also, if you can measure 
the demand on the most demanding component, and estimate the 
total number of components, Zipf’s law can be used to estimate 
the total service demand of the system (e.g. in the same way that 
given the weight of just the largest animal and the number of 
species on Noah’s Ark, you can estimate the total mass of animals 
on the Ark). 

We modelled the impact of locating only the most demanding four 
risk assessment services on one server, and all others 
(approximately thirty) on another server. This resulted in a 
predicted 50:50 resource split so was optimal in terms of resource 
load balancing.  Even though it doesn’t measure the impact for all 
the variables, it does demonstrate the possibility of significant 
problems with performance and scalability if the wrong subsets of 
assessment services are deployed on the same server.  For 
example, scalability and therefore response times under higher 
loads will be impacted if too many high demand services are 
deployed to one server only.  Response times (potentially even at 
lower loads) may be impacted if services with very long and very 
short response times are deployed on the same server.  We have 
therefore proposed a future work plan to the client to address this 
risk. They will provide us with: details of service performance 
metrics (including number, memory use, response times, and 
frequency of use), and possible deployment scenarios. We will 
optimize the deployment of the services for 1-n servers with 
different numbers of CPUs, and model the most promising 
deployments and predict response time distributions and resource 
usage/scalability and tell them which ones pass/fail SLAs. 

There were a couple of challenges to producing an accurate 
capacity model for this project.  The 1st was that the APM tool did 
not give us a breakdown of time metrics, just response time.  If 
breakdown times are available we have previously found that it is 
possible to calibrate models for best and worst case capacity 
predictions, and at least for simple (e.g. linear) load dependence. 
However, the APM data did give us explicit Garbage Collection 
times (because GC was one of the profile points), which revealed 
that GC was a significant overhead for the system (33% of the 
total service demand). Consequently a simple tactic to improve 
resource usage was to explore more efficient GC strategies, such 
as the use of multiple object pools to enable objects used in only a 
single transactional context to be efficiently deleted. 

The 2nd problem related to the limited range of load data. The 
baseline model was built from a typical day’s production data.  
The peak load of the day was close to the expected absolute peak 
load for the application, there was not much variation in load 
across the day, and there was still substantial headroom available 
on the servers. It was therefore difficult to calibrate the model for 
load dependent behavior to accurately predict response times and 
resource demands at significantly higher loads using techniques 
such as regression. Instead we relied on the client conducting a 

stress to break load test.  However, the test itself had problems 
with performance and resource problems (increased response 
time, increased CPU utilization, increased errors) well before the 
final eventual stable measured maximum capacity was reached.  
Nevertheless, using the final measured maximum throughput we 
calibrated our baseline model to predict the maximum throughput 
accurately, resulting in a reduction in error margin from 60% to 
10%.   

One of the unexpected difficulties with the APM data for this 
project was that for some likely modelling alternatives a model 
will be needed which accurately captures the different transaction 
types.  We have successfully built detailed transaction type 
models from other APM data, however it was unavailable for this 
application and APM combination.  Instead we attempted to infer 
the transaction types from the available APM data, using a 
combination of parameter values visible in the data and services 
called. We were able to automatically produce multiple possible 
transaction categories, however producing the exact required 
category was unachievable as in practice the resulting categories 
were either too few or too many. 

The baseline model was finally built from several days of data 
(170k transactions), with half of the data used to build the model, 
and half to validate it. The simplest model had 1 transaction type, 
44 services and 7 servers, giving a model complexity of 95, and 
the most complex had 183 inferred transaction types giving a 
much higher model complexity of 8k.  The initial APM data size 
was 2GB, so the size of each transaction was 11.8KB on average. 
The output from Hive pre-processing was 34MB, and the model 
size (XML size before upload to our SaaS modelling tool) was 
235KB, giving an overall size reduction of 8,510 times. This 
shows quantitatively the power of abstraction due to modelling, 
even simply at the level of the data compression ratio from raw 
APM data to a model.  

As part of proposal for providing ongoing modelling services for 
this client we estimated the likely ROI of using a hybrid testing 
and modelling approach.  We assumed that each load test takes 1 
week and costs $10,000, and that the initial performance model 
also takes 1 week and costs $10,000. Evaluating alternatives using 
the performance model are much faster and cheaper, taking only 1 
day and costing $2,000. A testing only approach can only 
complete 4 tests per month at a cost of $40,000. A hybrid 
testing/modelling approach, allowing for 1 initial model build, 4 
alternatives modelled and evaluated, and 1 load test to confirm the 
most promising alternative, would cost $28,000 and take 2 weeks 
and 4 days.  Better cost and time savings can be achieved as the 
effort to build initial and updated models decreases over time 
(potentially reducing to a single day), and with increasing 
numbers of alternatives modelled. This increased efficiency is 
likely to have agility benefits as decisions can be made earlier 
based on modelling results, even in the business and development 
phases. 

 

3. Conclusions 
Table 1 shows a summary of the projects including minimum and 
maximum model complexity, and the smallest error % for each. 
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Table 1 Summary of model complexity and smallest error 

 Minimum 
Complexity 

Maximum 
Complexity 

Smallest 
Error % 

Manual 
models 

3 100 <= 100% 

Project 1 85 127 21% 

Project 2 100 60k 15% 

Project 3 95 8k 10% 

 

Some issues we discovered include: lack of standards for APM 
data resulting in differences in metrics available, different metric 
semantics and names, differences in metric structure and 
availability of transactional metrics.  Accurate and automatic 
calibration of models for load dependency and maximum capacity 
is an outstanding problem.  Some of the models quickly become 
very complex, making it difficult to visualize them and make 
manual changes.  The benefits of automatic model building are 
significant. We demonstrated that we can build models 
automatically for a variety of application types and from several 
APM tools. The use of detailed transaction metrics including 
response time distributions rather than just averages results in 
models with accurate response time distribution predictions. 
Models are useful, accurate enough in practice, and can be built 
fast and reliably enough to solve real business problems on a 
commercial basis. 
 

3.1 Future work 
We discovered that some APM tools and applications capture a 
very large amount of data per transaction.  Consequently one of 
the significant issues we encountered was the long time taken to 
obtain data for large numbers of transactions from the APM tool.  
In the worst case we could only extract 10 transactions per second 
from the APM REST API.  We did not need all the data captured 
about each transaction to build performance models, but there was 
no way to request only the required data, which may have 
increased the throughput. However, once the data was obtained 
from the APM tool our automatic model building program worked 
very quickly (in the order of seconds, rather than hours to get the 
data in the first place).  Apart from obvious potential 
improvements to the APM APIs to improve throughput, another 
solution we have considered is sampling. For some APMs it may 
be possible to obtain summary data for all the transactions of 
interest very quickly (including transaction type, start and end 
time of transaction, total response time, and transaction id).  In 
this case it is often possible to obtain detailed transaction data for 
specific transactions by request. Some sampling strategies we 
have either experimented with or are considering for the future 
include: model building from a small fixed or percentage random 
sample of transactions (using complete data), and testing against 
the remainder (using summary data only); incrementally building 
models starting from very small sizes and then increasingly the 
sample size until there is no observed benefit from including more 
samples; filtering transactions to remove problematic samples 
with errors or exceptions; filtering transactions based on load 
ranges or thresholds, e.g. to remove samples with long response 
times, or when server or thread resources are saturated; and 
requesting samples of specific transaction types to ensure that 
each transaction type has sufficient representation to be 
statistically significant. Note that some APM tools provide ways 

of filtering the transactions in advance of (or as part of) the 
external service calls to obtain the data. 

Some of these approaches will also be applicable for use in 
DevOps when there is a continuous stream of APM data available. 
Models could be built periodically, incrementally or even 
continuously. Full or incremental or continuous model building, 
or partial updates to models, could be triggered by changes to 
components in the monitored environment (e.g. transaction types, 
services or servers coming or going) and once significant 
differences between model predictions and APM measurements 
are detected. Models could be quickly rebuilt once a potential 
problem is detected using the most recent data only, and then used 
to compare with previous model results. 

We are also investigating the use of automatic decisions about 
possible model types based on analysis of the APM data and 
model purpose. This could also result in automatic retrieval of 
more, better or selected data on demand to achieve modelling 
purposes with the least effort and most agility.  

We also suggest that it would be valuable to the wider 
performance engineering community to conduct more in-depth 
experiments and comparisons of different APM tools on the same 
application, with the purpose of evaluating what types and 
accuracy of models can be built from each, what data is essential 
or optional, and overall what the pros and cons of each APM tool 
are for automatic model building. To facilitate this we have 
developed a draft evaluation framework based on knowledge of 
four APM tools which begins to capture important similarities and 
differences.   
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