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ABSTRACT
Source code changes may inadvertently introduce perfor-
mance regressions. Benchmarking each software version is
traditionally employed to identify performance regressions.
Although e↵ective, this exhaustive approach is hard to carry
out in practice. This paper contrasts source code changes
against performance variations. By analyzing 1,288 software
versions from 17 open source projects, we identified 10 source
code changes leading to a performance variation (improve-
ment or regression). We have produced a cost model to
infer whether a software commit introduces a performance
variation by analyzing the source code and sampling the
execution of a few versions. By profiling the execution of
only 17% of the versions, our model is able to identify 83%
of the performance regressions greater than 5% and 100% of
the regressions greater than 50%.

Keywords
Performance variation; performance analysis; performance
evolution

1. INTRODUCTION
Software evolution refers to the dynamic change of charac-

teristics and behavior of the software over time [17]. These
progressive changes may negatively decrease the quality of
the software and increase its complexity [3, 15]. Such dete-
rioration may also a↵ect the application performance over
time [20]. Testing software continuously helps detect possible
issues caused by source code changes [2, 8].
Diverse approaches have been proposed to detect perfor-

mance regressions along software evolution [5, 18, 22, 26].
The most commonly employed technique is exhaustively ex-
ecuting all benchmarks over all versions: comparing the
performance metrics of the recently released version with
the previous ones are then used to spot performance vari-
ations [5, 11]. However, such approaches are highly time
consuming because benchmarks can take days to execute [12].
Furthermore, there are a number of factors (e.g., garbage
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collection, JIT compiler) that can a↵ect the measurements
and benchmarks need to be executed multiple times to reduce
the measurement bias [22]. For this reason, testing software
performance periodically (e.g., daily or per release basis) is
an expensive task. It has been shown that by identifying
the relations between source code changes and performance
variations, it is possible to estimate whether a new software
version introduces a performance regression or not; without
executing the benchmarks [12].
Existing research [12, 13, 24, 30] predominantly catego-

rizes recurrent performance bugs and fixes by analyzing a
random sample of performance bug reports. These studies
voluntary ignore performance related issues that are not re-
ported as a bug or bug fix. Therefore, in this paper, we aim
to bridge this gap by conducting a comprehensive study of
real-world performance variations detected by analyzing the
performance evolution of 17 open source projects along 1,288
software versions. The two research questions addressed in
this study are:

• RQ1 – Are performance variations mostly caused by
modifications of the same methods? This question is
particularly critical to understanding what performance
variation stems from. Consider a method m that causes
a performance regression when it is modified. It is
likely that modifying m once more will impact the
performance. Measuring the proportion of such “risky”
methods is relevant for statically predicting the impact
a code revision may have.

• RQ2 – What are the recurrent source code changes
that a↵ect performance along software evolution? More
precisely, we are interested in determining which source
code changes mostly a↵ect program performance along
software evolution and in which context. If performance
variations actually do match identified source code
changes, then it is posible to judge the impact of a
given source code change on performance.

Findings. Our experiments reveal a number of facts for the
source code changes that a↵ect the performance of the 17
open source systems we analyzed:

• Most performance variations are caused by source code
changes made in di↵erent methods. Therefore, keeping
track of methods that participated in previous per-
formance variations is not a good option to detect
performance variations.
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• Most source code changes that cause a performance
variation are directly related to method call addition,
deletion or swap.

Based on the result of our study, we propose horizontal
profiling, a sampling technique to statically identify versions
that may introduce a performance regression. It collects
run-time metrics periodically (e.g., every k versions) and
uses these metrics to analyze the impact of each software
version on performance. Horizontal profiling assigns a cost
to each source code change based on the run-time history.
The goal of horizontal profiling is to reduce the performance
testing overhead, by benchmarking just software versions that
contain costly source code changes. Assessing the accuracy
of horizontal profiling leads to the third research question:

• RQ3 – How well can horizontal profiling prioritize the
software versions and reduce the performance testing
overhead? This question is relevant since the goal of
horizontal profiling is to reduce the performance regres-
sion testing overhead by only benchmarking designated
versions. We are interested in measuring the balance
between the overhead of exercising horizontal profiling
and the accuracy of the prioritization.

We evaluate our technique over 1,125 software versions.
By profiling the execution of only 17% of the versions, our
model is able to identify 83% of the performance regressions
greater than 5% and 100% of the regressions greater than
50%. These figures are therefore comparable with the related
work: Huang et al. [12] have proposed a static approach and
identify 87% (without using program slicing) of regression
with 14% of software versions. However, by using a dedicated
profiling technique, our cost model does not require painful
manual tuning, and it performs well, independently of the
performance regression threshold. Moreover, our hybrid
technique (static and dynamic) is applicable to a dynamically
typed and object-oriented programming languages.

Outline. Section 2 describes the projects under study and
the benchmarks used to detect performance variations. Sec-
tion 3 contrasts source code changes with the performance
variations. Section 4 presents and evaluates the cost model
based on the run-time history. Section 5 discusses threats to
validity we face and how we are addressing them. Section 6
overviews related work. Section 7 concludes and presents an
overview of our future work.

2. EXPERIMENTAL SETUP

2.1 Project under Study
We conduct our study around the Pharo programming

language1. Our decision is motivated by a number of factors:
First, Pharo o↵ers an extended and flexible reflective API,
which is essential to iteratively execute benchmarks over
multiple application versions and executions. Second, appli-
cation instrumentation and monitoring its execution are also
cheap and with a low overhead. Third, the computational
model of Pharo is uniform and very simple, which means
that applications for which we have no knowledge are easy
to download, compile and execute.

1http://pharo.org

Table 1: Projects under Study.
Project Versions LOC Classes Methods
Morphic 214 41,404 285 7,385
Spec 270 10,863 404 3,981
Nautilus 214 11,077 173 2012
Mondrian 145 12,149 245 2,103
Roassal 150 6,347 227 1,690
Rubric 83 10,043 173 2,896
Zinc 21 6,547 149 1,606
GraphET 82 1,094 51 464
NeoCSV 10 8,093 9 125
XMLSupport 22 3,273 118 1,699
Regex 13 4,060 39 309
Shout 16 2,276 18 320
PetitParser 7 2,011 63 578
XPath 10 1,367 93 813
GTInspector 17 665 17 128
Soup 6 1,606 26 280
NeoJSON 8 700 16 139
Total 1,288 130,386 2,106 26,528

We pick 1,288 release versions of 17 software projects from
the Pharo ecosystem stored on the Pharo forges (Squeak-
Source2, SqueakSource3 3 and SmalltakHub4). The set of
considered project have a broad range of application: user
interface frameworks (Morphic and Spec), a source code
highlighter (Shout), visualization engines (Roassal and Mon-
drian), a HTTP networking tool (Zinc), parsers (PetitParser,
NeoCSV, XMLSupport, XPath, NeoJSON and Soup), a chart
builder (GraphET), a regular expression checker (Regex),
an object inspector (GTInspector) and code browsers and
editors (Nautilus and Rubric).
Table 1 summarizes each one of these projects and gives

the number of defined classes and methods along software
evolution. It also shows the average lines of code (LOC) per
project.
These applications have been selected for our study for

a number of reasons: (i) they are actively supported and
represent relevant assets for the Pharo community. (ii) The
community is friendly and interested in collaborating with re-
searchers. As a result, developers are accessible in answering
our questions about their projects.

2.2 Source Code Changes
Before reviewing variation of performance, we analyze how

source code changes are distributed along all the methods of
each software project. Such analysis is important to contrast
performance evolution later on.

Let M be the number of times that a method is modified
along software versions of each software project. Figure 1
gives the distribution of variable M of all projects under
study. The y-axis is the percentage of methods, and x-
axis is the number of modifications. One method has been
modified 14 times. In total, 83% of the methods are simply
defined without being modified in subsequent versions of the
application (M = 0).

There are 2, 846 methods (11%) modified only once (M =
1) in the analyzed versions. Only 6% of the methods are
modified more than once (M > 1). Table 2 gives the number
of methods that: i) are not modified (M = 0), ii) are modified
only once (M = 1), and iii) are modified more than once
(M > 1) for each software project. We have found that in all

2http://www.squeaksource.com/
3http://ss3.gemstone.com/
4http://smalltalkhub.com/
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Figure 1: Source Code Changes histogram at
method level.

but one project, the number of methods that are modified
more than once are relatively small compared to the number
of methods that are modified once. The Mondrian project is
clearly an outlier since 28% of its methods are modified twice
or more. A discussion with the authors of Mondrian reveals
the application went through long and laborious maintenance
phases on a reduced set of particular classes.

Table 2: M = number of times that a method is
modified.
Project Methods M = 0 M = 1 M >1
Morphic 7,385 6,810 (92%) 474 ( 6%) 101 ( 1%)
Spec 3,981 2,888 (73%) 730 (18%) 363 ( 9%)
Rubric 2,896 2,413 (83%) 362 (13%) 121 ( 4%)
Mondrian 2,103 1,361 (65%) 146 ( 7%) 596 (28%)
Nautilus 2,012 1,646 (82%) 248 (12%) 118 ( 6%)
XMLSupport 1,699 1,293 (76%) 276 (16%) 130 ( 8%)
Roassal 1,690 1,379 (82%) 232 (14%) 79 ( 5%)
Zinc 1,606 1,431 (89%) 139 ( 9%) 36 ( 2%)
XPath 813 780 (96%) 33 ( 4%) 0 ( 0%)
PetitParser 578 505 (87%) 66 (11%) 7 ( 1%)
GraphET 464 354 (76%) 70 (15%) 40 ( 9%)
Shout 320 304 (95%) 12 ( 4%) 4 ( 1%)
Regex 309 303 (98%) 5 ( 2%) 1 ( 0%)
Soup 280 269 (96%) 11 ( 4%) 0 ( 0%)
NeoJSON 139 131 (94%) 7 ( 5%) 1 ( 1%)
GTInspector 128 119 (93%) 0 ( 0%) 9 ( 7%)
NeoCSV 125 84 (67%) 35 (28%) 6 ( 5%)
Total 26,528 22,070 (83%) 2,846 (11%) 1,612 (6%)

Similarly, we analyzed the occurrence of class modification:
59% of the classes remain unmodified after their creation,
14% of the classes are modified once (i.e., at least one method
has been modified), and 27% of the classes are modified more
than once.

2.3 Benchmarks
In order to get reliable and repeatable execution foot-

prints, we select a number of benchmarks for each considered
application. Each benchmark represents a representative
execution scenario that we will carefully measure. Several of
the applications already come with a set of benchmarks. If no
benchmarks were available, we directly contacted the authors
and they kindly provided benchmarks for us. Since these
benchmarks have been written by the authors, they are likely
to cover part of the application for which its performance is
crucial.
At that stage, some benchmarks have to be worked or

adapted to make them runnable on a great portion of each
application history. The benchmarks we considered are there-
fore generic and do not directly involve features that have

been recently introduced. Identifying the set of benchmarks
runnable over numerous software versions is particularly time
consuming since we had to test each benchmark over a se-
quence of try-fix-repeat. We have 39 executable benchmarks
runnable over a large portion of the versions.

All the application versions and the metrics associated to
the benchmarks are available online5.

3. UNDERSTANDING PERFORMANCE
VARIATIONS OF MODIFIED METHODS

A software commit may introduce a scattered source code
change, spread over a number of methods and classes. We
found 4,458 method modifications among 1,288 analyzed soft-
ware versions. Each software version introduces 3.46 method
modifications on average. As a consequence, a performance
variation may be caused by multiple method source code
changes within the same commit.

3.1 Performance Variations of Modified Meth-
ods

We carefully conducted a quantitative study about source
code changes that directly a↵ect the method performance.
Let V be the number of times that a method is modified and
becomes slower or faster after the modification. We consider
that the execution time of a method varies if the absolute
value of the variation of the accumulated execution time
between two consecutive versions of the method is greater
than a threshold. In our situation, we consider threshold =
5% over the total execution time of the benchmark. Below
5%, it appears that the variations may be due to technical
consideration, such as inaccuracy of the profiler [4].
Figure 2 gives the distribution of V for all methods of

the projects under study. In total, we found 150 method
modifications where the modified method becomes slower or
faster. These modifications are made over 111 methods; 91
methods are modified only once (V = 1) and 20 more than
once (V > 1). Table 3 gives the number of methods for each
software project.
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Figure 2: Performance Variations of Modified Meth-
ods (threshold = 5%), 111 methods are here re-
ported.

5http://users.dcc.uchile.cl/˜jsandova/hydra/
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Table 3: V= number of times that a method is mod-
ified and becomes slower/faster after the modifica-
tion. (threshold = 5%).
Project Methods V = 0 V = 1 V >1
Morphic 7,385 7,382 (100%) 2 (0%) 1 (0%)
Spec 3,981 3,944 (99%) 24 (1%) 13 (0%)
Rubric 2,896 2,896 (100%) 0 (0%) 0 (0%)
Mondrian 2,103 2,091 (99%) 11 (1%) 1 (0%)
Nautilus 2,012 2,008 (100%) 4 (0%) 0 (0%)
XMLSupport 1,699 1,689 (99%) 10 (1%) 0 (0%)
Roassal 1,690 1,675 (99%) 14 (1%) 1 (0%)
Zinc 1,606 1,597 (99%) 7 (0%) 2 (0%)
XPath 813 813 (100%) 0 (0%) 0 (0%)
PetitParser 578 566 (98%) 12 (2%) 0 (0%)
GraphET 464 459 (99%) 3 (1%) 2 (0%)
Shout 320 320 (100%) 0 (0%) 0 (0%)
Regex 309 309 (100%) 0 (0%) 0 (0%)
Soup 280 280 (100%) 0 (0%) 0 (0%)
NeoJSON 139 138 (99%) 1 (1%) 0 (0%)
GTInspector 128 128 (100%) 0 (0%) 0 (0%)
NeoCSV 125 119 (95%) 5 (4%) 1 (1%)
Total 26,528 26,417(99.6%) 91(0.33%) 20(0.07%)

False Positive. However, not all these 150 modifications are
related to the method performance variations because there
are a number of false-positives. Consider the change made
in the open method on the class ROMondrianViewBuilder:

ROMondrianViewBuilder>>open
| whiteBox realView |
self applyLayout.
self populateMenuOn: viewStack.

� ˆ stack open
+ ˆ viewStack open

This modification is only a variable renaming: the variable
stack has been renamed into viewStack. Our measurement
indicates that this method is now slower, which is odd since a
variable renaming should not be the culprit of a performance
variation. A deeper look at the method called by open reveals
that the method applyLayout is also slower. Therefore, we
conclude that open is slower because of a slower dependent
method, and not because of its modification. Such a method
is a false positive and its code modification should not be
considered as the cause of the performance variation.
Example code with a leading “-” is from the previous

version, while code with a leading “+” is in the current
version. Unmarked code (without a leading “-” or “+”) is in
both versions.

Manually Cleaning the Data. We manually revised the
150 method variations by comparing the call-graph (obtained
during the execution) and the source code modification. We
then manually revised the source code (as we just did with the
method open). In total, we found 66 method modifications
(44%) that are not related with the method performance
variation. The remaining 84 method modifications (56%)
cause a performance variation in the modified method. These
modifications are distributed along 11 projects; table 4 gives
the distribution by project.

Summary. Are performance variations mostly caused by
modifications of the same methods? We found that 84 method
modifications that cause a performance variation (regression
or improvement) were done over 67 methods, which means
1.25 modifications per method. Table 4 shows the ratio
between method modifications and methods is less than two
in all projects. In addition, we found that the these methods

Table 4: Method modifications that a↵ect method
performance (R= regression, I= improvement, R/I
= regression in some benchmarks and Improvement
in others).

Method Modifications Involved Mod. by
Project

R I R/I Total Methods Method
Spec 19 9 0 28 16 1.75
Roassal 7 5 0 12 11 1.09
Zinc 2 1 4 7 7 1.00
Mondrian 5 3 0 8 7 1.14
XMLSupport 6 0 0 6 6 1.00
GraphET 4 3 0 7 5 1.4
NeoCSV 0 5 0 5 5 1.00
PetitParser 5 0 0 5 5 1.00
Morphic 2 1 0 3 2 1.50
Nautilus 2 0 0 2 2 1.00
NeoJSON 0 1 0 1 1 1.00
Total 52 28 4 84 67 1.25

were modified a number of times along source code evolution
without causing a performance variation.

Most performance variations were caused by source
code changes made in di↵erent methods. Therefore,
keeping track of methods that participated in previous
performance variations is not a good option to detect
performance variations.

3.2 Understanding the Root of Performance
Regressions

Accurately identifying the root of a performance regres-
sion is di�cult. We investigate this by surveying authors
of method modifications causing a regression. From the 84
method modifications mentioned in Section 3.1, we obtained
author feedback for 21 of them. Each of 21 method modi-
fications is the cause of a regression greater than 5%. We
also provided the benchmarks to the authors since it may be
that the authors causing a regression are not aware of the
application benchmarks. These methods are spread over four
projects (Roassal, Mondrian, GraphET, and PetitParser).
Each author was contacted by email and we discussed about
the method modification causing a regression.
For 6 (29%) of these 21 modifications, the authors were

aware of the regression at the time of the modification. The
authors therefore consciously and intentionally made the
method slower by adding or improving functionalities. We
also asked them whether the regression could be avoided
while preserving the functionalities. They answered that
they could not immediately see an alternative to avoid or
reduce the performance regression.

For 5 (24%) of the modifications, authors did not know that
their new method revision caused a performance regression.
However, authors acknowledged the regressions and were
able to propose an alternative method revision that partially
or completely removes the regression.
For the 10 remaining modifications, author did not know

that they caused a performance regression and no alternative
could be proposed to improve the situation.

This is a preliminary result and we can not draw any strong
conclusion from only 21 method modifications. However, this
small and informal survey of practitioners indicates that a
significant number of performance regressions are apparently
inevitable. On the other hand, such incertitude expressed
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by the authors regarding the presence of a regression and
providing change alternative highlights the relevance of our
study and research e↵ort.

3.3 Categorizing Source Code Changes That
Affect Method Performance

This section analyzes the cause of all source code changes
that a↵ect method performance. We manually inspected the
method source code changes and the corresponding perfor-
mance variation. We then classify the source code changes
into di↵erent categories based on the abstract syntax tree
modifications and the context in which the change is used.
In our study, we consider only code changes that are the cul-
prits for performance variation (regression or improvement),
ignoring the other non-related source code changes.

Subsequently, recurrent or significant source code changes
are described. Each source code change has a title, a brief
description, followed by one source code example taken from
the examined projects.

Method Call Addition. This source code change adds
expensive method calls that directly a↵ect the method per-
formance. This situation occurs 24 times (29%) in our set
of 84 method modifications, all these modifications cause
performance regressions. Consider the following example:

GETDiagramBuilder>>openIn: aROView
self diagram displayIn: aROView.
+ self relocateView

The performance of openIn: dropped after having inserted
the call to relocateView.

Method Call Swap. This source code change replaces a
method call with another one. Such a new call may be either
more or less expensive than the original call. This source
change occurs 24 times (29%) in our set of 84 method modi-
fications; where 15 of them cause a performance regression
and 9 a performance improvement.

MOBoundedShape>>heightFor: anElement
ˆ anElement
� cachedNamed: #cacheheightFor:
� ifAbsentInitializeWith: [ self computeHeightFor:

anElement ]
+ cacheNamed: #cacheheightFor:
+ of: self
+ ifAbsentInitializeWith: [ self computeHeightFor:

anElement ]

The performance of heightFor: dropped after having swapped
the call to cacheNamed:ifAbsentInitializeWith by cacheNamed:
of:ifAbsentInitializeWith.

Method Call Deletion. This source code change deletes
expensive method calls in the method definition. This pattern
occurs 14 times (17%) in our set of 84 method modifications
- all these modifications cause performance improvements.

MOGraphElement>>resetMetricCaches
� self removeAttributesMatching: ''cache∗''
+ cache := nil.

This code change follows the intuition that removing a
method call makes the application faster.

Complete Method Change. This category groups the
source code changes that cannot be categorized in one of
these situations, because there are many changes in the

method that contribute to the performance variation (i.e.,
a combination of method call additions and swaps). We
have seen 9 complete method rewrites (11%) among the 84
considered method modifications.

Loop Addition. This source code change adds a loop (i.e.,
while, for) and a number of method calls that are frequently
executed inside the loop. We have seen 5 occurrences of this
pattern (6%) - all of them cause a performance regression.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to:

toNode) + shape.
+ selfDefinedInteraction do: [:int | int value: edge ].

ˆ edge

Change Object Field Value. This source code change sets
a new value in an object field causing performance variations
in the methods that depend on that field. This pattern
occurs 2 times in the whole set of method modifications have
analyzed.

GETVerticalBarDiagram>>getElementsFromModels
ˆ rawElements with: self models do: [ :ele :model |

+ ele height: (barHeight abs).
count := count + 1].

On this example, the method height: is a variable accessor
for the variable height defined on the object ele.

Conditional Block Addition. This source code change
adds a condition and a set of instructions. These instructions
are executed upon the condition. This pattern occurs 2 times
in the whole set of method modifications we analyzed. Both
of them cause a performance improvement.

ZnHeaders>>normalizeHeaderKey:
+ (CommonHeaders includes: string) ifTrue: [ ˆ string ].

ˆ (ZnUtils isCapitalizedString: string)
ifTrue: [ string ]
ifFalse: [ ZnUtils capitalizeString: string ]

Changing Condition Expression. This source code change
modifies the condition of a conditional statement. This
change could introduce a variation by changing the method
control flow and/or the evaluation of the new condition ex-
pression is faster/slower. This pattern occurs 2 times in the
whole set of method modifications we have analyzed.

NeoCSVWriter>>writeQuotedField:
| string |
string := object asString.
writeStream nextPut: $”.
string do: [ :each |

� each = $”
+ each == $”

ifTrue: [ writeStream nextPut: $”; nextPut: $” ]
ifFalse: [ writeStream nextPut: each ] ].

writeStream nextPut: $”

The example above simply replaces the equal operation
= by the identity comparison operator ==. The latter is
significantly faster.

Change Method Call Scope. This source code change
moves a method call from one scope to another executed more
or less frequently. We found 1 occurrence of this situation
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Table 5: Source code changes that a↵ect method
performance (R= Regression, I= Improvement, R/I
= Regression in some benchmarks and Improvement
in others).
Source Code Changes R I R/I Total
1 Method call additions 23 0 1 24 (29%)
2 Method call swaps 15 9 0 24 (29%)
3 Method call deletion 0 14 0 14 (17%)
4 Complete method change 6 0 3 9 (11%)
5 Loop Addition 5 0 0 5 (6%)
6 Change object field value 2 0 0 2 (2%)
7 Conditional block addition 0 2 0 2 (2%)
8 Changing condition expression 0 2 0 2 (2%)
9 Change method call scope 1 0 0 1 (1%)
10 Changing method parameter 0 1 0 1 (1%)

Total 52 28 4 84 (100%)

in the whole set of method modifications. Such a change
resulted in a performance improvement.

GETCompositeDiagram>>transElements
self elements do: [ :each | | trans actualX |

+ pixels := self getPixelsFromValue: each getValue.
(each isBig)

ifTrue: [ | pixels |
� pixels := self getPixelsFromValue: each

getValue.
...

ifFalse: [ ˆ self ].
...
]

Changing Method Parameter. The following situation
changes the parameter of a method call. We found only
1 occurrence of this situation in the whole set of method
modifications.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to:

toNode) + shape.
� selfDefinedInteraction do: [:int | int value: edge ].
+ selfDefinedInteraction do: [:int | int value: (Array with:

edge) ].
ˆ edge'

Table 5 gives the frequency of each previously presented
source code change.

Categorizing Method Calls. Since most changes that cause
a performance variation (patterns 1,2,3) involve a method
call. We categorize the method call additions, deletions and
swaps (totaling 62) in three di↵erent subcategories:

• Calls to external methods: 10% of the method calls cor-
respond to method of external projects (i.e., dependent
projects).

• Calls to recently defined methods: 39% of the method
calls correspond to method that are defined in the same
commit. For instance, a commit that defines a new
method and adds method calls to this method.

• Calls to existing project methods: 51% of the method
calls correspond to project methods that were defined
in previous versions.

Summary. RQ2: What are the most common types of source
code changes that a↵ect performance along software evolu-
tion? We found, in total, that 73% of the source code changes

that cause a performance variation are directly related to
method call addition, deletion or swap (patterns 1,2,3). This
percentage varies between 60% and 100% in all projects,
with the only exception of the Zinc project that has a 29%;
most Zinc performance variations were caused by complete
method changes.

Most source code changes that cause a performance
variation are directly related to method call addition,
deletion or swap.

3.4 Triggering a Performance Variation
To investigate whether a kind of change could impact

the method performance we compare changes that caused
a performance variation with those that do not cause a
performance variation. For this analysis, we consider the
source code changes: loop addition, method call addition,
method call deletion and method call swap 6.

To fairly compare between changes that a↵ect performance
and changes that do not a↵ect performance, we consider
changes in methods that are executed by our benchmark set.
Table 6 shows the number of times that a source code change
was done along software versions of all projects (Total), and
the number of times that a source code change cause a
performance variation (Perf. Variation) greater than 5% over
the total execution time of the benchmark.

Table 6: Comparison of source code changes that
cause a variation with the changes that do not cause
a variation (R= regression, I= improvement, R/I =
regression in some benchmarks and Improvement in
others).

Perf. Variations
Source Code Changes Total

R I R/I Total
Method call additions 231 23 0 1 24(10.39%)
Method call deletions 119 0 14 0 14(11.76%)
Method call swap 321 15 9 0 24 (7.48%)
Loop additions 8 5 0 0 5(62.5%)

Table 6 shows that these four source code changes are
frequently done along source code evolution; however just
a small number of instances of these changes cause a per-
formance variation. After manually analyzing all changes
that cause a variation, we conclude that there are mainly
two factors that contribute to the performance variation:

• Method call executions. The number of times that a
method call is executed plays an important role to deter-
mine if this change can cause a performance regression.
We found that 92% of source code changes were made
over a frequently executed source code section.

• Method call cost. The cost of a method call is important
to determine the grade of performance variation. We
found that 7 (8%) method calls additions/deletions were
only executed once and cause a performance regression
greater than 5%. In the other 92% the performance
vary depending on how many times the method call is
executed and the cost of each method call execution.

6These changes correspond the top-4 most common changes,
with the exception of “Complete method change” which we
did not consider in the analysis since it is not straightforward
to detect this pattern automatically.
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PPSequenceParser>>parseOn: aContext

  | memento elements element |                                              
  + memento := aPPContext remember.                                                            +  100*10 (addition)
  elements := Array new: parsers size.                                                                  +  0 
  1 to: parsers size do: [ :index |

    element := (parsers at: index) parseOn: aPPContext.                               +  0
    element isPetitFailure ifTrue: [                                                                   +  0

                                  - aStream position: start                                                          -   50*50   (deletion)
            + aPPContext restore: memento.                                            + 200*50  (addition)
            ^ element ].

           elements at: index put: element ].                                                              + 0

   ^ elements

Execution Profile obtained 
by executing benchmark b

m
et

ho
d-

bo
dy

do
:

ifT
ru

e:

method-body:   10 executions
                           (along the execution)

ifTrue:                 50 executions
                           (half of the times was true)

do:                     100 executions 
                           (10 for each method execution)

Number of executions:

Cost:

remember          100 u
                            (average execution time)
restore:               200 u
                            (average execution time)

position:             50 u
                            (average execution time)

Modification Cost

——————
8500  u

Method Modification

u = unit of time

parseOn:            1000 u
                            (average execution time)

Figure 3: LITO cost model example

We believe these factors are good indicators to decide when
a source code change could introduce performance variation.
We support this assumption by using this criteria to detect
performance regressions, as we describe in the following
sections.

4. HORIZONTAL PROFILING
We define horizontal profiling as a technique to statically

detect performance regressions based on benchmark execu-
tion history. The rationale behind horizontal profiling is that
if a software execution becomes slow for a repeatedly iden-
tified situation (e.g., particular method modification), then
the situation can be exploited to reduce the performance
regression testing overhead.

4.1 LITO: A Horizontal Profiler
We built LITO to (mostly) statically identify software

versions that introduce a performance regressions. LITO
takes as input (i) the source code of a software version Vn and
(ii) the profile (obtained from a traditional code execution
profiler) of the benchmarks execution on a previous software
version Vm. LITO identifies source code changes in the
analyzed software version Vn, and determines if that version
is likely to introduce a performance regression or not.
The provided execution profile is obtained from a dedi-

cated code execution profiler and is used to infer components
dependencies and loop invariants. As discussed later on,
LITO is particularly accurate even if Vm is a version distant
from Vn.
Using our approach, practitioners prioritize the perfor-

mance analysis in the selected versions by LITO, without the
need to carry out costly benchmark executions for all versions.
The gain here is significant since LITO helps identify soft-
ware commits that may or may not introduce a performance
variation.

Execution Profile. LITO runs the benchmarks each k ver-
sions to collect run-time information (e.g., each ten versions,
k = 10). Based on the study presented in previous sections,
LITO considers three aspects to collect run-time information
in each sample:

• Control flow – LITO records sections of the source code
and method calls that are executed. This allows LITO
to ignore changes made in source code sections that

are not executed by the benchmarks (e.g., a code block
associated to an if condition or a method that is never
executed).

• Number of executions – As we presented in the previ-
ous sections, the method call cost itself is not enough
to detect possible performance regressions. Therefore
LITO records the number of times that methods and
loops are executed.

• Method call cost – LITO associates the average execu-
tion time of each method as the cost of executing each
method call. Note that LITO does not estimate the
execution time variation itself, it uses this average as a
metric to detect possible performance regressions.

• Method execution time – LITO estimates for each
method m (i) the accumulated total execution time
and (ii) the average execution time for calling m once
during the benchmarks executions.

LITO Cost Model. LITO abstracts all source code changes
as a set of method calls additions and/or deletions. To LITO,
a method call swap is abstracted as a method call addition
and deletion. Block additions, such as loops and conditional
blocks, are abstracted as a set of method call additions.

The LITO cost model is illustrated in Figure 3. Consider
the modification made in the method parseOn: in the class
PPSequenceParser. In this method revision, one line has been
removed and two have been added: two method call additions
(remember and restore:) and one deletion (position:). In order
to determine whether the new version of parseOn: is slower
or faster than the original version, we need to estimate how
the two call additions compare with the call deletion in terms
of execution time. This estimation is based on an execution
profile.

The LITO cost model assesses whether a software version
introduces a performance regression for a particular bench-
mark. The cost of each call addition and deletion depends
therefore on the benchmark b when the execution profile is
produced.

We consider an execution profile obtained from the execu-
tion of a benchmark on the version of the application that
contains the original definition of parseOn:. LITO determines
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whether the revised version of parseOn: does or does not in-
troduce a performance regression based on the execution
profile of the original version of parseOn:.
The execution profile indicates the number of times that

each block contained in the method parseOn: is executed. It
further indicates the number of executions of the code block
contained in the iteration (i.e., do: [ :index | ... ]). The profile
also gives the number of times the code block contained in
the ifTrue: statement is executed. In Figure 3, the method
parseOn: is executed 10 times, the iteration block is executed
100 times (i.e., 10 times per single execution of parseOn: on
average) and the conditional block is executed 50 times (e.g.,
0.5 time per single execution of parseOn: on average).

LITO uses the notion of cost [12] as a proxy of the execution
time. We denote u as the unit of time we use in our cost
model. In our setting, u refers to the number of times the send
message bytecode is executed by the virtual machine. We
could have used a direct time unit as milliseconds, however it
has been shown that counting the number of sent messages
is significantly more accurate and this metric is more stable
than estimating the execution time [4]. On the example, the
method parseOn: costs 1000u, and remember 100u, implying
that remember is 10 times faster to execute than parseOn:.

The modification cost estimates the cost di↵erence between
the new version and original version of a method. On the
example, the modification cost of method parseOn: is 8500u,
meaning that the method parseOn: spends 8500u more than
previous version for a given benchmark b. For instance, if the
benchmark b execution time is 10,000u, then the new version
of the method parseOn: results in a performance regression
of 85%.
The average cost of calling each method is obtained by

dividing the total accumulated cost of a method m by the
number of times m has been executed during a benchmark
execution. In our example, calling remember has an average
cost of 100u. The theoretical cost of a method call addition
m is assessed by multiplying the cost of calling m and the
number of times that it would be executed based on the
execution profile (Figure 3 right hand).

Let Ai be a method call addition of a given method modifi-
cation and Dj a method call deletion. Let be costb a function
that returns the average cost of a method call when executing
benchmark b, and execb a function that returns the number
of times a method call is executed. Both functions lookup the
respective information in the last execution sample gathered
by LITO.
Let MCb(m) be the cost of modify the method m for

a benchmark b, na the number of method call additions
and nd the number of method call deletions. The method
modification cost is the sum of the cost of all method call
additions less the cost of all method call deletions.

MCb(m) =
naX

i=1

costb(Ai) ⇤ execb(Ai)�
ndX

j=1

costb(Dj) ⇤ execb(Dj).

Let C be the cost of all method modifications of a software
version, and m the number of modified methods, we therefore
have:

C[v, b] =
m2vX

MCb(m)

In case we have C[v, b] > 0 for a particular version v and
a benchmark b, we then consider that version v introduces a
performance regression.

New Method, Loop Addition, and Conditions. Not all
the methods may have a computed cost. For example, a new
method, for which no historical data is available, may incur
a regression. In such a case, we statically determine the cost
for code modification with no historical profiling data.
We qualify as fast a method that is returning a constant

value, an accessor / mutator, or doing arithmetic or logic
operations. A fast method receives the lowest method cost
obtained from the previous execution profile. All other meth-
ods receive a high cost, the maximal cost of all the methods
in the execution profile.

In case a method is modified with a new loop addition or
a conditional block, no cost has been associated to it. LITO
hypothesizes that the conditional block will be executed and
the loop will be executed the same number of times as the
most recently executed enclosing loop in the execution profile.

The high cost we give to new methods, loop additions, and
conditions is voluntarily conservative. It assumes that these
additions may trigger a regression. As we show in Table 5,
loop and conditional block additions represent 6% and 2%,
respectively, of the source code changes that a↵ect software
performance.

Project Dependencies. An application may depend on
externally provided libraries or frameworks. As previously
discussed (Section 3), a performance regression perceived by
using an application may be in fact located in a dependent
and external application. LITO takes such analysis into
account when profiling benchmark executions. The generated
profile execution contains runtime information not only of
the profiled application but also of all the dependent code.

During our experiment, we had to ignore some dependen-
cies when analyzing the Nautilus project. Nautilus depends
on two external libraries: ClassOrganizer and RPackage.
LITO uses these two libraries. We exclude these two depen-
dencies in order to simplify our analysis and avoid unwanted
hard-to-trace recursions. In the case of our experiment, any
method call toward ClassOrganizer or RPackage is considered
costly.

4.2 Evaluation
For the evaluation, we use the project versions where at

least one benchmark can be executed. In total, we evaluate
LITO over 1,125 software versions. We use the following
3-steps methodology to evaluate LITO:

S1. We run our benchmarks for all 1,125 software versions
and measure performance regressions.

S2. We pick a sample of the benchmark executions, every
k versions, and apply our cost model on all the 1,125
software versions. Our cost model identifies software
versions that introduce a performance regression.

S3. Contrasting the regressions found in S1 and S2 will
measure the accuracy of our cost model.

Step S1 - Exhaustive Benchmark Execution. Consider
two successive versions, vi and vi�1 of a software project
P and a benchmark b. Let µ[vi, b] be the mean execution
time to execute benchmark b multiple times on version vi.
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Table 7: Detecting performance regressions with LITO using a threshold=5% and a sample rate of 20.
Performance Evolution

Project Versions
Selected
Versions

Performance
Regressions

Detected
Perf. Reg.

Undetected
Perf. Reg. by benchmark

Spec 267 43(16%) 11 8 ( 73%) 3

Nautilus 199 64 (32%) 5 5 (100%) 0

Mondrian 144 9 ( 6%) 2 2 (100%) 0

Roassal 141 26 (18%) 3 3 (100%) 0

Morphic 135 8 ( 6%) 2 1 ( 50%) 1

GraphET 68 20 (29%) 5 4 ( 80%) 1

Rubric 64 2 ( 3%) 0 0 (100%) 0

XMLSupport 18 8 (44%) 4 4 (100%) 0

Zinc 18 2 (11%) 0 0 (100%) 0

GTInspector 16 1 ( 6%) 1 1 (100%) 0

Shout 15 0 ( 0%) 1 0 ( 0%) 1

Regex 12 1 ( 8%) 1 1 (100%) 0

NeoCSV 9 3 (33%) 0 0 (100%) 0

NeoJSON 7 0 ( 0%) 0 0 (100%) 0

PetitParser 6 1 (17%) 1 1 (100%) 0

Soup 4 0 ( 0%) 0 0 (100%) 0

XPath 2 0 ( 0%) 0 0 (100%) 0
Total 1125 188 (16.7%) 36 30 (83.3%) 6 (16.7%)

The execution time is measured in terms of sent messages
(u unit, as presented earlier). Since this metric has a great
stability [4], we executed each benchmark only 5 times and
took the average number of sent messages. It is known that
the number of sent messages is linear to the execution time
in Pharo [4].

We define the time di↵erence between versions vi and vi�1

for a given benchmark b as:

D[vi, b] = µ[vi, b]� µ[vi�1, b] (1)

Consequently, the time variation is defined as:

�D[vi, b] =
D[vi, b]
µ[vi�1, b]

(2)

For a given threshold, we say vi introduces a performance
regression if it exists a benchmark bj such that� D[vi, bj ] �
threshold.

Step S2 - Applying the Cost Model. Let C[vi, b] be the
cost of all modifications made in version vi from vi�1; using
the run-time history of benchmark b.

�C[vi, b] =
C[vi, b]
µ[vj , b]

(3)

We have j, the closest inferior version number that has
been sampled at an interval k. If C[vi, b] � threshold in at
least one benchmark, then LITO considers that version vi
may introduce a performance regression.

Step S3 - Contrasting �C[vi, b] with �D[vi, b]. The cost
model previously described (Section 4.1) is designed to favor
the identification of performance regression. Such design

is reflected in the high cost given to new methods, loop
additions, and conditions. We therefore do not consider
performance optimizations in our evaluation.

Results. We initially analyze the software versions with
LITO and collect the run-time information each k = 20
versions, and a threshold of 5%. LITO is therefore looking
for all the versions that introduce a performance regression
of at least 5% in one of the benchmarks. These benchmarks
are executed every 20 software versions to produce execution
profiles that are used for all the software versions. LITO
uses the cost model described previously to assess whether a
software version introduces a regression or not.

Table 7 gives the results of each software project. During
this process LITO selected 189 costly versions that represent
16.7% of total of analyzed versions. These selected versions
contain 83.3% of the versions that e↵ectively introduce a
performance regression greater than 5%. In other words,
based on the applications we have analyzed, practitioners
could detect 83.3% of the performance regressions by running
the benchmarks on just 16.8% of all versions, picked at a
regular interval from the total software source code history.

Table 8 shows that LITO has a high recall (83.3%) despite
having a low precision (15.95%). This high recall indicates
that LITO helps practitioners to identify a great portion of
the performance regressions by running the benchmarks over
a few software versions.

Threshold. To understand the impact of the threshold in
our cost model, we carry out the experiment described above
but using di↵erent thresholds (5, 10, 15, 20, 25, 30, 35, 40, 45,
and 50). Figure 4 shows the percentage of selected versions
and detected performance regressions by LITO. Figure 4
shows that LITO detects all regressions greater than 50%
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Table 8: Precision and recall of LITO to detect per-
formance regressions greater than 5%(threshold) us-
ing a sample-rate of 20. (TP = true-positive, TN
= true-negative, FP = false-positive, FN = false-
negative, Prec. = Precision).

Project TP FP FN TN Prec. Recall
Spec 8 35 3 221 0.19 0.73
Nautilus 5 59 0 135 0.08 1
Mondrian 2 7 0 135 0.22 1
Roassal 3 23 0 115 0.12 1
Morphic 1 7 1 126 0.13 0.5
GraphET 4 16 1 47 0.2 0.8
Rubric 0 2 0 62 0 -
XMLSupport 4 4 0 10 0.5 1
Zinc 0 2 0 16 0 -
GTInspector 1 0 0 15 1 1
Shout 0 0 1 14 - 0
Regex 1 0 0 11 1 1
NeoCSV 0 3 0 6 0 -
NeoJSON 0 0 0 7 - -
PetitParser 1 0 0 5 1 1
Soup 0 0 0 4 - -
XPath 0 0 0 2 - -
Total 30 158 6 931 15.95% 83.33%

(totaling ten). Figure 4 also shows that the number of selected
versions decreases as the threshold increases, meaning that
LITO safely discards more versions because their cost is not
high enough to cause a regression with a greater threshold.
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Figure 4: The e↵ect of the threshold on the percent-
age of detected performance regressions and the per-
centage of selected versions by LITO (> threshold).

By profiling the execution of only 17% of the versions,
our model is able to identify 83% of the performance
regressions greater than 5% and 100% of the regressions
greater than 50%. Such versions are picked at a regular
interval from the software source code history.

Sample Rate. To understand the e↵ect of the sample rate,
we repeated the experiment using di↵erent tree sample rates
1, 20 and 50. Figure 5 shows the percentage of performance
regressions by LITO with the di↵erent sample rates. As
it was expected, the accuracy of LITO increment when we
take a sample of the execution every version (sample rate

= 1). Consequently the accuracy get worse when we take
a sample each 50 versions. Figure 5 shows that sampling a
software source code history each 50 versions make LITO
able to detect a great portion of the performance regression,
for any threshold lower than 50%.
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Figure 5: Evaluating LITO with sample rates of 1,
20, and 50.

Overhead. Statically analyzing a software version with LITO
takes 12 seconds (on average). It is considerably cheaper than
executing the benchmarks in a software version. However,
each time that LITO collects the run-time information is
seven times (on average) more expensive than executing the
benchmarks. LITO instruments all method projects, and
executed twice the benchmarks: the first one to collect the
average time of each method and the second one to collect the
number of executions of each source code section. Even with
this, the complete process of prioritizing the versions and
executing a performance testing over the prioritized versions
is far less expensive than executing the benchmarks over all
application versions.
For instance, in our experiment, the process to do an

exhaustive performance testing in all software versions takes
218 hours; on the other hand, the process of prioritize the
versions and executed the benchmarks only in the prioritized
versions takes 54 hours (25%).

5. THREATS TO VALIDITY
To structure the threats to validity, we follow the Wohlin

et al. [29] validity system.

Construct Validity. The method modifications we have
manually identified may not be exhaustive. We analyzed
method modifications that cause performance variations
greater than 5%, over the total execution time of the bench-
mark. Analyzing small performance variations, such as the
one close to 5%, is important since it may sum up over
multiple software revisions. Detecting and analyzing vari-
ations smaller variation is di�cult, because many factors
may distort variance to the observable performance, such as
inaccuracy of the profiler [4].

External Validity. This paper is voluntarily focused on
the Pharo ecosystem. We believe this study provides rele-
vant findings about the performance variation in the studied
projects. We cannot be sure of how much the results gen-
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eralize to other software projects beyond the specific scope
this study was conducted. As future work, we plan to repli-
cate our experiments for the Javascript and Java ecosystem.
In addition, we plan to analyze how LITO performs with
multi-thread applications.

Internal Validity. We cover diverse categories of software
projects and representative software systems. To minimize
the potential selection bias, we collect all possible release
versions of each software project, without favoring or ignoring
any particular version. We manually analyze twice each
method modification: the first time to understand the root-
cause of the performance variation and the second time to
confirm the analysis.

6. RELATED WORK
Performance Bug Empirical Studies. Empirical stud-
ies over performance bug reports [13, 24] provide a better
understanding of the common root causes and patterns of per-
formance bugs. These studies help practitioners save manual
e↵ort in performance diagnosis and bug fixing. These per-
formance bug reports are mainly collected from the tracking
system or mailing list of the analyzed projects.
Zaman et al. [30] study the bug reports for performance

and non-performance bugs in Firefox and Chrome. They
studied how users perceive the bugs, how bugs are reported,
what developers discuss about the bug causes and the bug
patches. Their study is similar to that of Nistor et al. [23] but
they go further by analyzing additional information for the
bug reports. Nguyen et al. [21] interviewed the performance
engineers responsible for an industrial software system, to
understand these regression-causes.
Sandoval et al. [1] have studied performance evolution

against software modifications and have identified a number
of patterns from a semantic point of view. They describe a
number of scenarios that a↵ect performance over time from
the intention of a software modification (vs the actual change
as studied in this paper).
We focus our research on performance variations. In this

sense we consider performance drops and improvements that
are not reported as a bug or a bug-fix. We contrast the per-
formance variations with the source code changes at method
granularity. In addition, we analyze what kind of source code
changes cause performance variations in a large variety of
applications.

Performance Bug Detection and Root-Cause Analy-
sis. Great advances have been made to automate the perfor-
mance bug detection and root-cause analysis [10, 19, 27]. Jin
et al. [13] propose a rule-based performance-bug detection
using rules implied by patches to found unknown perfor-
mance problems. Nguyen et al. [21] propose the mining of
a regression-causes repository (where the results of perfor-
mance tests and causes of past regressions are stored) to
assist the performance team in identifying the regression-
cause of a newly-identified regression. Bezemer et al. [6]
propose an approach to guide performance optimization pro-
cesses and to help developers find performance bottlenecks
via execution profile comparison. Heger et al. [11] propose
an approach based on bisection and call context tree analysis
to isolate the root cause of a performance regression caused
by multiple software versions.

We improve the performance regression overhead by pri-
oritizing the software versions. We believe that our work
complements these techniques in order to help developers
address performance related issues. We do not attempt to
detect performance regression bugs or provide root-cause
diagnosis.

Performance Regression Testing Prioritization. Dif-
ferent strategies have been proposed in order to reduce the
functional regression testing overhead, such as test case pri-
oritization [9, 25] and test suite reduction [7, 14, 16, 31].
However, few projects have been able to reduce the perfor-
mance regression testing overhead.
Huang et al. [12] propose a technique to measure the

risk given to a code commit in introducing performance
regressions. Their technique uses a full static approach
to measure the risk of a software version based on worst
case analysis. They automatically categorize the source
code change (i.e., extreme, high, and low) and assign a risk
score to each category; these scores may require an initial
tuning. However, a fully static analysis may not accurately
assess the risk of performance regression issues in dynamic
languages. For instance, statically determining the loop
boundaries may not be possible without special annotations
[28]. Dynamic features of programming languages such as
dynamic dispatching, recursion and reflexion make this task
more di�cult.
In this paper we propose a hybrid (dynamic and static)

technique to automatically prioritize the performance testing;
it uses the run-time history to track the control flow and
the loop boundaries. Our technique reduces a number of
limitations of a fully static approach and does not need an
initial tuning. We believe that these techniques can comple-
ment each other to provide a good support for developers
and reduce the overhead of performance regression testing.

7. CONCLUSION
This paper studies the source code changes that a↵ect soft-

ware performance of 17 software projects along 1,288 software
versions. We have identified 10 source code changes lead-
ing to a performance variation (improvement or regression).
Based on our study, we propose a new approach, horizontal
profiling, to reduce the performance testing overhead based
on the run-time history.

As future work, we plan to extend our model to prioritize
benchmarks and generalize horizontal profiling to identify
memory and energy performance regressions.
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