
Incorporating Software Performance Engineering Methods
and Practices into the Software Development Life Cycle

 André B. Bondi
Red Bank, New Jersey

bondia@acm.org

ABSTRACT
In many software development projects, attention is only paid to
performance concerns after functional testing, when it usually too
late to remedy disabling performance problems. Early attention to
performance concerns and early planning of performance
requirements and performance testing can prevent debacles like
the early rollout of healthcare.gov while addressing cross-cutting
concerns such as scalability, reliability and, security. Performance
engineering methods may be integrated into all phases of the
software lifecycle, from the conception of a system to
requirements specification, architecture, testing, and finally to
production. Performance expectations can be managed by
carefully specifying performance requirements. Reviewing the
architecture of a system before design and implementation take
place reduces the risk of designing a system that contains inherent
performance vice. Performance modeling can be used to justify
architectural and design decisions and to plan performance tests.
The outputs of such performance tests enable us able to identify
concurrent programming and other issues that would not be
apparent in unit testing. Finally, risk is mitigated by avoiding
design antipatterns that undermine scalability and performance.

General Terms
Performance; Measurement; Software life cycle; Architecture

Keywords
Software performance engineering; Performance measurement
and testing; Software life cycle; Modeling; Architecture

1. INTRODUCTION
Historically, performance concerns about a software system have
often only been addressed when system is close to being delivered
for production. In a keynote speech at SIGMETRICS 1981, J. C.
Browne commented that performance evaluation was usually
carried out in repairman mode, i.e., when the system is in
production, rather than being part of the software design process
[5]. More recently, Bass et al presented the results of a survey
showing that performance was the single biggest risk factor
affecting performance [WICSA2007]. Even though Smith and
Williams have emphasized that “Build it, then tune it” is a
mindset that makes performance failure almost inevitable [11],
there are well known cases of systems exhibiting poor
performance to the point of being all but unusable. The 2013
rollout of healthcare.gov, the US government’s web site for
applying for health insurance, is an example. According to press
reports, the demand and performance requirements of

healthcare.gov were not understood, and little time was allowed
for performance testing [7].

We advocate that performance concerns be addressed from project
inception to delivery, and give an overview of how performance
engineering methods can be incorporated into various stages of
the software development life cycle. This may be opposed by
stakeholders on the ground that it takes time away from feature
delivery, or that there is not enough staff time available for the
purpose, among other reasons. It may be resisted by product
managers who are reluctant to commit to a “performance number”
because different market segments may have different
performance needs.

Early involvement of a performance engineer and early use of
performance engineering methods are essential to the mitigation
of the business and engineering risks inherent in any large
performance engineering project. The goal is to identify and
address performance concerns early so as to reduce the risk of
having to redo work. Early application and adoption of
performance engineering practices provides insurance against the
penalties, costs, and lost revenue associated with rework and late
delivery.

Figure 1. A performance engineering process and its
relationship to a development process.

Figure 1 depicts the relationship between the steps of a
performance engineering process and corresponding steps in a
software development process. The functional requirements drive
the form that functional testing will take. They also inform the
nature of the performance requirements. The performance
requirements describe how often various functions are executed,
how long they will take, and the corresponding memory and
secondary storage requirements. Performance requirements and
performance models inform decisions about the system
architecture and the technology platforms to be used as well as the
planning of performance tests. When the system architecture is
being mapped out, care must be taken to ensure that it will be able
to meet disparate performance requirements, including those
intended to meet regulatory and safety needs. This is a point at
which the tradeoffs between performance and other cross-cutting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE'16, March 12 - 18, 2016, Delft, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4080-9/16/03…$15.00.
DOI: http://dx.doi.org/10.1145/2851553.2858668

327

concerns such as security should be identified. A performance
model can help determine whether performance and security
requirements and the costs of meeting them are compatible.

Performance testing usually occurs after functional testing, since
there is little point in running full performance tests on a system
or component that is known not to function properly. Just as
functional testing is driven by functional requirements,
performance test planning should be driven by performance
requirements, knowledge of anticipated workloads, and the
desired characteristics of performance curves. Among these
characteristics is linearity of the average hardware utilizations
with respect to the offered load [6]. The use of performance
models to predict the capacity of a system in production is
described in [6] and will not be discussed here.

2. PERFORMANCE ISSUES AT EACH
LIFE CYCLE PHASE
The absence of or lack of clarity in performance requirements is a
cause of unmet or unrealistic performance expectations. It is
difficult to architect a system without understanding the
performance requirements of various functions and the ability of
various technologies to meet them. Even if performance
requirements are soundly specified, poor architectural choices can
undermine performance. Choices of deployment scenarios can
induce foci of overloads or antipatterns such as god classes [11].
The scalability of a system might be impaired by the use of single
threading when multithreaded operations could exploit multiple
cores or processors. These architectural choices would be
propagated into the development phase, where there are further
possibilities to use performance antipatterns and poorly
performing algorithms. Poorly designed performance tests might
fail to reveal performance issues. Performance tests might be
driven by workloads that are too small, resulting in an optimistic
view of the capabilities of the system, or by workloads that are too
large, with the opposite effect. Finally, lack of capacity or poor
configuration in production could lead to unsatisfactory
performance.

2.1 Performance Requirements
By linking performance requirements to functional requirements
and to business engineering needs, one ensures that they are
traceable and not superfluous. By linking them to other cross-
cutting concerns such as security [10], one is driven to explore the
tradeoffs between the concerns and to modify the system
architecture accordingly. By insisting that performance
requirements be written in measurable testable terms, we are
forced to verify that instrumentation is there to provide the
verification and that the performance requirements are meaningful
within the context of the domain. The guidelines we suggest for
writing sound performance requirements are quite similar to those
for functional requirements in IEEE Standard 830 [8]. Like
functional requirements, performance requirements should be
traceable, so that we know why each one is there. They should be
based on a well-defined and explicitly stated set of assumptions.
They should be verifiable. They should also be numerically
consistent. If two or more performance requirements lead to
numerical inconsistency or contradict each other, the cause should
be investigated before the performance requirements document is
released following review. Performance modeling methods can be
used to demonstrate numerical consistency or inconsistency
between performance requirements. The demonstrations should be
mentioned in the performance requirements documents in support

of verifiability and traceability, and, in the case of inconsistency,
as triggers for correction.

2.2 Performance Engineering and
Architecture
An architect should have an overview of cross-cutting concerns
such as performance, reliability, scalability, availability, security,
and the choices of software and hardware platforms. Architects
and performance engineers can jointly assess the performance
requirements to determine scalability needs and identify platform
choices while bearing cross cutting concerns in mind. A
performance engineer can support an architect’s efforts by
drawing attention to performance pitfalls during architectural
reviews, clarifying performance requirements, and suggesting
scheduling rules and other design choices to help meet them.

Even if not much is known with certainty about a system that does
not yet exist (e.g., because performance data is lacking), a
performance engineer’s experience about software performance
pitfalls and the properties of queueing systems and scheduling
rules can be used to great effect to mitigate performance risks at
this stage of the development cycle. When technological choices
are being discussed, a performance engineer can have a significant
impact by asking about their known performance characteristics
and about how often they will be invoked. In cases of doubt, it
may be prudent to defend against the possibility of a platform
being too slow by recommending early performance testing and
benchmarking [2], [9].

The following are among the questions that should be asked
during architecture reviews to support performance needs:
• What is the end-to-end flow of information?
• What technologies and parts of the system pose the biggest

risk to performance?
• Are there any object pools or other passive software objects

such as lock that could become software bottlenecks?
• Does the design contain any performance antipatterns that

could cause performance to degrade or that could impede
scalability?

• What are the potential foci of overload?
• Can the chosen platforms handle the required actions at the

desired rates and with turnaround times that are low enough
to meet performance requirements?

• Is any part of the system single-threaded when
multithreading could be used to exploit multiple CPUs?

• Can priority scheduling be supported if needed? Answering
this question may require an understanding of the data
structures and protocols that are needed to implement the
system.

Rules of thumb can be used to identify performance pitfalls and
antipatterns. God classes and foci of overload can be spotted by
reviewing UML message sequence charts, activity and
collaboration diagrams, and deployment scenarios. If a message
sequence diagram shows that at least one swim lane has large
numbers of arrows pointing into it or coming out of it, the
corresponding object is likely to be focus of overload, a god class,
or both. One-lane bridges and scheduling rules such as the
museum checkroom pattern leading to deadlock [3] may be harder
to spot, but the benefit of identifying them is the reduced risk of
concurrent programming problems that are hard to diagnose.

2.3 Performance Engineering in Design and
Implementation
The approach to taking performance considerations into account
at the design and implementation stage is similar to that taken in

328

the architectural phase, except that the focus will be on finer
details than would be considered when discussing the architecture.
As with the architecture, we recommend that a design review be
done while keeping the risks of various performance antipatterns
in mind. The implementation should avoid the use of busy waiting
to implement mutual exclusion and synchronization. Scheduling
rules must be free of dependencies that cause deadlocks and
livelocks. A review of the implementation should flag and other
activities such as insertion sorts whose processing costs are at
least polynomial in the number of items involved.

2.4 Performance Testing
Functional testing can be leveraged to support performance
testing, because performance tests involve the repeated invocation
of the use cases exercised in the functional tests in a controlled
and predictable manner. Finally, performance and resource usage
monitoring in production can be combined with performance
models to identify areas for performance improvement. Of course,
our emphasis should be on early performance intervention rather
than on measurement in production, but the latter is necessary to
verify the effectiveness of and correct defects in the former.

Performance testing usually occurs towards the end of the
development cycle, after functional testing. This is
understandable, because performance tests of a system that does
not meet functional requirements may not tell us accurately about
the performance of a system that does meet them. Where an
application is built on services and other building blocks, it is
often useful to test those before they are built into applications.
Thus, there are distinct phases of the development cycle during
which performance testing is useful for containing engineering
risk.

• To contain the performance risk inherent in a choice of
hardware platform, software platform, programming
environment, or operating system, one may subject it to
synthetic loads that exercise basic functions that will be
invoked frequently. This reduces the risk of building a
system on the platform, only to find just before delivery that
the platform is inherently unable to execute the basic
functions fast enough to meet performance requirements [2],
[8].

• Performance tests of the implementation of a system or of a
part of the system should be done after functional testing, so
that time is not wasted on testing the performance of a
system that does not work. One can test the use cases of each
service it is implemented. One should also test the system
with multiple use cases being exercised concurrently as they
would be in production.

Notice that functional tests will not usually expose concurrent
programming errors, as these are usually unit tests done in single
user mode. Performance tests may reveal concurrent programming
errors. These can be manifested as deadlocks, livelocks, or thread
safety and divisibility errors. Symptoms of thread safety and
divisibility errors include the frequent transaction failures and the
frequently reattempted actions, and corrupted data. Symptoms of
deadlock include sudden drops in CPU utilizations and average
response times that oscillate wildly over time. Symptoms of
software bottlenecks include response times that grow as
functions of the offered load and over time while CPU and device
utilizations level off as functions of the offered load [4], [1].

Performance tests should be structured to reveal trends in
utilizations, response times, and domain-related indicators such as
transaction failure rates and transaction success rates. Three basic
goals should be met by a performance test plan. First, one should

be able to verify that a system operating under constant load will
have constant average performance measures and resource
utilizations between load ramp up and load ramp down. Second,
one should run tests with at least three load levels to verify that
utilizations are linear with respect to the offered load rate or
transaction arrival rate, i.e., that the Utilization Law is satisfied.
Third, one should determine that performance requirements are
met by the system under test. Performance tests should be run
long enough under a constant load to demonstrate that the system
has reached equilibrium. Statistics on memory usage should be
collected to enable the detection of memory leaks. Stress tests in
which the system is subjected to a load large enough to cause a
system to crash or nearly crash are of limited utility, because they
reveal nothing about utilization trends and so cannot be used to
predict load levels at which one or more components of the
system will be saturated. They will only tell us if the system is
capable of maintaining normal activity under a saturating load and
of recovering from a crash once the intense load has abated. In our
structured tests, if at least one of the hardware utilizations
approaches 100% as the load is increased and all utilizations rise
in constant ratios as predicted by the Forced Flow Law [6], we
may be confident that a software bottleneck has not manifested
itself. The range of transaction arrival rates and the nature of the
transactions tested should be based on performance requirements,
the anticipated size of the user base, as well as on functional
requirements and use case specifications. A transaction rate
should not be offered in a test if a modeling prediction shows that
it would saturate the system.

Of necessity, the performance test lab may be a small version of a
target production system that is not architecturally representative
of it. This means that bottlenecks may arise in testing that might
not arise in production or vice versa. To mitigate this risk, the
performance test lab should be built in the light of how a system
might be scaled up or down to meet the needs of various market
segments while still meeting performance requirements and
architectural needs.

We have found it worthwhile to conduct performance tests of the
individual services of a service-oriented architecture before
building and testing the applications that use them. This sort of
early testing reduces the risk of having to diagnose the causes of
performance problems and reworking the applications to use other
services instead [1], [4].

3. SCALABILITY AND DESIGN CHOICES
Let us briefly attempt to describe our understanding of scalability
and then provide illustrations of how it can be examined at the
design stage. Load scalability is “the ability of a system to
function gracefully, that is without undue delay and without
unproductive resource consumption or resource contention, at
light, moderate, or heavy loads, while making good use of
available resources.” A system “has space scalability if its
memory requirements do not grow to intolerable levels as the
number of items it supports increases.” A system “may be said to
have structural scalability if its implementation or standards do
not impede the growth of the number of objects it encompasses, or
… will not do so within a chosen time frame [3].”

Our definition of structural scalability was a precursor of a
connection between scalability and performance requirements,
namely that the performance requirements describe the
dimensions, context and the extent of scalability that the system
must support. For example, a small version of a system might be
required to provide the processing power, secondary storage,
memory, storage, bandwidth, and software needed to meet the

329

performance requirements of ten users, while a large version of a
system must provide them to meet the performance requirements
of 100 users doing the same sort of work. Here, the dimension of
scalability is the number of users, the context is the type of work
they do, while the extent is ten users for the small system and 100
for the large one.

Impediments to load scalability include the occurrence of
unproductive cycles (as in the case of busy waiting on locks to
implement mutual exclusion rather than semaphores) and the
inability to exploit parallel processing power because of serial or
single-threaded processing of transactions that use disjoint data.
Structural scalability can be constrained by the sizes of address
spaces or of fixed-size sequence numbers. For example, the length
of an array is constrained by the maximum bit length of its integer
index. Questions about the impact of a design choice on load
scalability can sometimes be answered by applying a simple
analytic model over a wide variety of parameters. We have done
this to justify the use of semaphores rather than locking
instructions 1 implement mutual exclusion [3].

Figure 2. Unbalanced CPU loads due to serial execution via
single thread.

Measurements taken during performance tests can also reveal
limitations on load scalability [4]. Figure 2 illustrates contrived
data representing measurements of a two-processor UNIX™-
based system. The data are contrived because measurements of
the actual system were not available for publication. The straight
line between the upper and lower lines shows the average CPU
utilization overall. Observations of the actual system were taken
with mpstat. An examination of ps –eLF output taken at regular
intervals revealed that activity was concentrated in two processes
for which changes in the cumulative processing times
corresponded to the two processor utilizations. Since cache
affinity was turned on, we inferred that each process was bound to
one processor, yielding test results like those shown in Figure 2.
The developers explained that the more CPU-intensive process
was processing disjoint sets of data sequentially. An opportunity
for parallel execution had been overlooked. The maximum offered
load of the system was constrained by the larger of the two CPU
utilizations. Thus, the processor imbalance limited the extent of
load scalability to 10 work units in unit time, while architecting
the system to allow parallel execution on disjoint data sets could
have increased the extent of load scalability to 12.3 units of work
in unit time, in the absence of any other bottlenecks.

4. CONCLUSION
The foregoing discussion and examples illustrate how
performance engineering methods can be applied to mitigate
performance risk throughout the software life cycle. Clearly
specified performance requirements, performance-oriented
architecture reviews, and performance tests planned in the light of
requirements all contribute to the mitigation of performance risk
and the delivery of a product that meets performance expectations.

5. ACKNOWLEDGMENTS
The figures in this paper originally appeared in [4]. They are
reproduced with the permission of the publisher. The author has
benefited from frequent discussions with Alberto Avritzer and
Bob Schwanke.

6. REFERENCES
[1] Avritzer, A., and A. B. Bondi. 2012. Resilience assessment

based on performance testing. In Resilience Assessment and
Evaluation of Computing Systems, edited by K. Wolter, A.
Avritzer, M .Vieira, and A. van Morsel. Springer.

[2] Avritzer, A., and E. Weyuker. 1995. The automatic
generation of load test suites and the assessment of the
resulting software. IEEE Trans. Softw. Eng. 21(9), 705–716.

[3] Bondi, A. B. 2000. Characteristics of scalability and their
impact on performance. In Proc. WOSP2000, Ottawa.

[4] Bondi, A. B. 2014. Foundations of Software and System
Performance Engineering. Addison-Wesley, Upper Saddle
River, NJ. ISBN-13: 978-0321-83382-2.

[5] Browne, J.C. 1981. Designing systems for performance.
Keynote address, ACM SIGMETRICS Conference, Las
Vegas, Nevada, 1981. In Performance Evaluation Review 10
(1), 1, 1981.

[6] Denning, P. J., and J. P. Buzen. 1978. The operational
analysis of queueing network models. ACM Computing
Surveys 10(3), 225–261.

[7] Eilperin, J.2013. CGI warned of HealthCare.gov problems a
month before launch, documents show. Washington Post,
October 29, 2013.

[8] IEEE Std 830-1998, IEEE Recommended Practice for
Software Requirements Specifications -Description.

[9] Masticola, S., A. B. Bondi, and M. Hettich. 2005. Model-
based scalability estimation in inception-phase software
architecture. In Model Driven Engineering Languages and
Systems, Lecture Notes in Computer Science 3713, 355–366.

[10] Schwaninger, C., Wuchner, E., and Kircher, M. 2004.
Encapsulating crosscutting concerns in system software.
Proc. Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software.

[11] Smith, C.U., and Williams, L.G. 2002. Performance
Solutions. Addison Wesley, Boston, MA.

330

