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ABSTRACT 
In many software development projects, attention is only paid to 
performance concerns after functional testing, when it usually too 
late to remedy disabling performance problems. Early attention to 
performance concerns and early planning of performance 
requirements and performance testing can prevent debacles like 
the early rollout of healthcare.gov while addressing cross-cutting 
concerns such as scalability, reliability and, security. Performance 
engineering methods may be integrated into all phases of the 
software lifecycle, from the conception of a system to 
requirements specification, architecture, testing, and finally to 
production. Performance expectations can be managed by 
carefully specifying performance requirements. Reviewing the 
architecture of a system before design and implementation take 
place reduces the risk of designing a system that contains inherent 
performance vice. Performance modeling can be used to justify 
architectural and design decisions and to plan performance tests. 
The outputs of such performance tests enable us able to identify 
concurrent programming and other issues that would not be 
apparent in unit testing. Finally, risk is mitigated by avoiding 
design antipatterns that undermine scalability and performance. 
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1. INTRODUCTION 
Historically, performance concerns about a software system have 
often only been addressed when system is close to being delivered 
for production. In a keynote speech at SIGMETRICS 1981, J. C. 
Browne commented that performance evaluation was usually 
carried out in repairman mode, i.e., when the system is in 
production, rather than being part of the software design process 
[5]. More recently, Bass et al presented the results of a survey 
showing that performance was the single biggest risk factor 
affecting performance [WICSA2007]. Even though Smith and 
Williams have emphasized that “Build it, then tune it” is a 
mindset that makes performance failure almost inevitable [11], 
there are well known cases of systems exhibiting poor 
performance to the point of being all but unusable. The 2013 
rollout of healthcare.gov, the US government’s web site for 
applying for health insurance, is an example. According to press 
reports, the demand and performance requirements of 

healthcare.gov were not understood, and little time was allowed 
for performance testing [7]. 

We advocate that performance concerns be addressed from project 
inception to delivery, and give an overview of how performance 
engineering methods can be incorporated into various stages of 
the software development life cycle. This may be opposed by 
stakeholders on the ground that it takes time away from feature 
delivery, or that there is not enough staff time available for the 
purpose, among other reasons. It may be resisted by product 
managers who are reluctant to commit to a “performance number” 
because different market segments may have different 
performance needs. 

Early involvement of a performance engineer and early use of 
performance engineering methods are essential to the mitigation 
of the business and engineering risks inherent in any large 
performance engineering project. The goal is to identify and 
address performance concerns early so as to reduce the risk of 
having to redo work. Early application and adoption of 
performance engineering practices provides insurance against the 
penalties, costs, and lost revenue associated with rework and late 
delivery. 

 

Figure 1. A performance engineering process and its 
relationship to a development process. 

Figure 1 depicts the relationship between the steps of a 
performance engineering process and corresponding steps in a 
software development process. The functional requirements drive 
the form that functional testing will take. They also inform the 
nature of the performance requirements. The performance 
requirements describe how often various functions are executed, 
how long they will take, and the corresponding memory and 
secondary storage requirements.  Performance requirements and 
performance models inform decisions about the system 
architecture and the technology platforms to be used as well as the 
planning of performance tests. When the system architecture is 
being mapped out, care must be taken to ensure that it will be able 
to meet disparate performance requirements, including those 
intended to meet regulatory and safety needs. This is a point at 
which the tradeoffs between performance and other cross-cutting 
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concerns such as security should be identified. A performance 
model can help determine whether performance and security 
requirements and the costs of meeting them are compatible.  

Performance testing usually occurs after functional testing, since 
there is little point in running full performance tests on a system 
or component that is known not to function properly. Just as 
functional testing is driven by functional requirements, 
performance test planning should be driven by performance 
requirements, knowledge of anticipated workloads, and the 
desired characteristics of performance curves. Among these 
characteristics is linearity of the average hardware utilizations 
with respect to the offered load [6]. The use of performance 
models to predict the capacity of a system in production is 
described in [6] and will not be discussed here. 

2. PERFORMANCE ISSUES AT EACH 
LIFE CYCLE PHASE 
The absence of or lack of clarity in performance requirements is a 
cause of unmet or unrealistic performance expectations. It is 
difficult to architect a system without understanding the 
performance requirements of various functions and the ability of 
various technologies to meet them. Even if performance 
requirements are soundly specified, poor architectural choices can 
undermine performance. Choices of deployment scenarios can 
induce foci of overloads or antipatterns such as god classes [11]. 
The scalability of a system might be impaired by the use of single 
threading when multithreaded operations could exploit multiple 
cores or processors. These architectural choices would be 
propagated into the development phase, where there are further 
possibilities to use performance antipatterns and poorly 
performing algorithms. Poorly designed performance tests might 
fail to reveal performance issues. Performance tests might be 
driven by workloads that are too small, resulting in an optimistic 
view of the capabilities of the system, or by workloads that are too 
large, with the opposite effect. Finally, lack of capacity or poor 
configuration in production could lead to unsatisfactory 
performance. 

2.1 Performance Requirements 
By linking performance requirements to functional requirements 
and to business engineering needs, one ensures that they are 
traceable and not superfluous. By linking them to other cross-
cutting concerns such as security [10], one is driven to explore the 
tradeoffs between the concerns and to modify the system 
architecture accordingly. By insisting that performance 
requirements be written in measurable testable terms, we are 
forced to verify that instrumentation is there to provide the 
verification and that the performance requirements are meaningful 
within the context of the domain. The guidelines we suggest for 
writing sound performance requirements are quite similar to those 
for functional requirements in IEEE Standard 830 [8]. Like 
functional requirements, performance requirements should be 
traceable, so that we know why each one is there. They should be 
based on a well-defined and explicitly stated set of assumptions. 
They should be verifiable. They should also be numerically 
consistent. If two or more performance requirements lead to 
numerical inconsistency or contradict each other, the cause should 
be investigated before the performance requirements document is 
released following review. Performance modeling methods can be 
used to demonstrate numerical consistency or inconsistency 
between performance requirements. The demonstrations should be 
mentioned in the performance requirements documents in support 

of verifiability and traceability, and, in the case of inconsistency, 
as triggers for correction. 

2.2 Performance Engineering and 
Architecture 
An architect should have an overview of cross-cutting concerns 
such as performance, reliability, scalability, availability, security, 
and the choices of software and hardware platforms. Architects 
and performance engineers can jointly assess the performance 
requirements to determine scalability needs and identify platform 
choices while bearing cross cutting concerns in mind. A 
performance engineer can support an architect’s efforts by 
drawing attention to performance pitfalls during architectural 
reviews, clarifying performance requirements, and suggesting 
scheduling rules and other design choices to help meet them.  

Even if not much is known with certainty about a system that does 
not yet exist (e.g., because performance data is lacking), a 
performance engineer’s experience about software performance 
pitfalls and the properties of queueing systems and scheduling 
rules can be used to great effect to mitigate performance risks at 
this stage of the development cycle. When technological choices 
are being discussed, a performance engineer can have a significant 
impact by asking about their known performance characteristics 
and about how often they will be invoked. In cases of doubt, it 
may be prudent to defend against the possibility of a platform 
being too slow by recommending early performance testing and 
benchmarking [2], [9]. 

The following are among the questions that should be asked 
during architecture reviews to support performance needs: 
• What is the end-to-end flow of information? 
• What technologies and parts of the system pose the biggest 

risk to performance?  
• Are there any object pools or other passive software objects 

such as lock that could become software bottlenecks?  
• Does the design contain any performance antipatterns that 

could cause performance to degrade or that could impede 
scalability?  

• What are the potential foci of overload? 
• Can the chosen platforms handle the required actions at the 

desired rates and with turnaround times that are low enough 
to meet performance requirements? 

• Is any part of the system single-threaded when 
multithreading could be used to exploit multiple CPUs?  

• Can priority scheduling be supported if needed? Answering 
this question may require an understanding of the data 
structures and protocols that are needed to implement the 
system.  

Rules of thumb can be used to identify performance pitfalls and 
antipatterns. God classes and foci of overload can be spotted by 
reviewing UML message sequence charts, activity and 
collaboration diagrams, and deployment scenarios. If a message 
sequence diagram shows that at least one swim lane has large 
numbers of arrows pointing into it or coming out of it, the 
corresponding object is likely to be focus of overload, a god class, 
or both. One-lane bridges and scheduling rules such as the 
museum checkroom pattern leading to deadlock [3] may be harder 
to spot, but the benefit of identifying them is the reduced risk of 
concurrent programming problems that are hard to diagnose. 

2.3 Performance Engineering in Design and 
Implementation 
The approach to taking performance considerations into account 
at the design and implementation stage is similar to that taken in 
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the architectural phase, except that the focus will be on finer 
details than would be considered when discussing the architecture. 
As with the architecture, we recommend that a design review be 
done while keeping the risks of various performance antipatterns 
in mind. The implementation should avoid the use of busy waiting 
to implement mutual exclusion and synchronization. Scheduling 
rules must be free of dependencies that cause deadlocks and 
livelocks. A review of the implementation should flag and other 
activities such as insertion sorts whose processing costs are at 
least polynomial in the number of items involved.  

2.4 Performance Testing 
Functional testing can be leveraged to support performance 
testing, because performance tests involve the repeated invocation 
of the use cases exercised in the functional tests in a controlled 
and predictable manner. Finally, performance and resource usage 
monitoring in production can be combined with performance 
models to identify areas for performance improvement. Of course, 
our emphasis should be on early performance intervention rather 
than on measurement in production, but the latter is necessary to 
verify the effectiveness of and correct defects in the former. 

Performance testing usually occurs towards the end of the 
development cycle, after functional testing. This is 
understandable, because performance tests of a system that does 
not meet functional requirements may not tell us accurately about 
the performance of a system that does meet them. Where an 
application is built on services and other building blocks, it is 
often useful to test those before they are built into applications. 
Thus, there are distinct phases of the development cycle during 
which performance testing is useful for containing engineering 
risk. 

• To contain the performance risk inherent in a choice of 
hardware platform, software platform, programming 
environment, or operating system, one may subject it to 
synthetic loads that exercise basic functions that will be 
invoked frequently. This reduces the risk of building a 
system on the platform, only to find just before delivery that 
the platform is inherently unable to execute the basic 
functions fast enough to meet performance requirements [2], 
[8]. 

• Performance tests of the implementation of a system or of a 
part of the system should be done after functional testing, so 
that time is not wasted on testing the performance of a 
system that does not work. One can test the use cases of each 
service it is implemented. One should also test the system 
with multiple use cases being exercised concurrently as they 
would be in production. 

Notice that functional tests will not usually expose concurrent 
programming errors, as these are usually unit tests done in single 
user mode. Performance tests may reveal concurrent programming 
errors. These can be manifested as deadlocks, livelocks, or thread 
safety and divisibility errors. Symptoms of thread safety and 
divisibility errors include the frequent transaction failures and the 
frequently reattempted actions, and corrupted data. Symptoms of 
deadlock include sudden drops in CPU utilizations and average 
response times that oscillate wildly over time. Symptoms of 
software bottlenecks include response times that grow as 
functions of the offered load and over time while CPU and device 
utilizations level off as functions of the offered load [4], [1]. 

Performance tests should be structured to reveal trends in 
utilizations, response times, and domain-related indicators such as 
transaction failure rates and transaction success rates. Three basic 
goals should be met by a performance test plan. First, one should 

be able to verify that a system operating under constant load will 
have constant average performance measures and resource 
utilizations between load ramp up and load ramp down. Second, 
one should run tests with at least three load levels to verify that 
utilizations are linear with respect to the offered load rate or 
transaction arrival rate, i.e., that the Utilization Law is satisfied. 
Third, one should determine that performance requirements are 
met by the system under test. Performance tests should be run 
long enough under a constant load to demonstrate that the system 
has reached equilibrium. Statistics on memory usage should be 
collected to enable the detection of memory leaks. Stress tests in 
which the system is subjected to a load large enough to cause a 
system to crash or nearly crash are of limited utility, because they 
reveal nothing about utilization trends and so cannot be used to 
predict load levels at which one or more components of the 
system will be saturated. They will only tell us if the system is 
capable of maintaining normal activity under a saturating load and 
of recovering from a crash once the intense load has abated. In our 
structured tests, if at least one of the hardware utilizations 
approaches 100% as the load is increased and all utilizations rise 
in constant ratios as predicted by the Forced Flow Law [6], we 
may be confident that a software bottleneck has not manifested 
itself. The range of transaction arrival rates and the nature of the 
transactions tested should be based on performance requirements, 
the anticipated size of the user base, as well as on functional 
requirements and use case specifications. A transaction rate 
should not be offered in a test if a modeling prediction shows that 
it would saturate the system. 

Of necessity, the performance test lab may be a small version of a 
target production system that is not architecturally representative 
of it. This means that bottlenecks may arise in testing that might 
not arise in production or vice versa. To mitigate this risk, the 
performance test lab should be built in the light of how a system 
might be scaled up or down to meet the needs of various market 
segments while still meeting performance requirements and 
architectural needs. 

We have found it worthwhile to conduct performance tests of the 
individual services of a service-oriented architecture before 
building and testing the applications that use them. This sort of 
early testing reduces the risk of having to diagnose the causes of 
performance problems and reworking the applications to use other 
services instead [1], [4]. 

3. SCALABILITY AND DESIGN CHOICES 
Let us briefly attempt to describe our understanding of scalability 
and then provide illustrations of how it can be examined at the 
design stage. Load scalability is “the ability of a system to 
function gracefully, that is without undue delay and without 
unproductive resource consumption or resource contention, at 
light, moderate, or heavy loads, while making good use of 
available resources.” A system “has space scalability if its 
memory requirements do not grow to intolerable levels as the 
number of items it supports increases.” A system “may be said to 
have structural scalability if its implementation or standards do 
not impede the growth of the number of objects it encompasses, or 
… will not do so within a chosen time frame [3].” 

Our definition of structural scalability was a precursor of a 
connection between scalability and performance requirements, 
namely that the performance requirements describe the 
dimensions, context and the extent of scalability that the system 
must support. For example, a small version of a system might be 
required to provide the processing power, secondary storage, 
memory, storage, bandwidth, and software needed to meet the 
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performance requirements of ten users, while a large version of a 
system must provide them to meet the performance requirements 
of 100 users doing the same sort of work. Here, the dimension of 
scalability is the number of users, the context is the type of work 
they do, while the extent is ten users for the small system and 100 
for the large one.  

Impediments to load scalability include the occurrence of 
unproductive cycles (as in the case of busy waiting on locks to 
implement mutual exclusion rather than semaphores) and the 
inability to exploit parallel processing power because of serial or 
single-threaded processing of transactions that use disjoint data. 
Structural scalability can be constrained by the sizes of address 
spaces or of fixed-size sequence numbers. For example, the length 
of an array is constrained by the maximum bit length of its integer 
index. Questions about the impact of a design choice on load 
scalability can sometimes be answered by applying a simple 
analytic model over a wide variety of parameters. We have done 
this to justify the use of semaphores rather than locking 
instructions 1 implement mutual exclusion [3].  

 
Figure 2. Unbalanced CPU loads due to serial execution via 
single thread. 

Measurements taken during performance tests can also reveal 
limitations on load scalability [4]. Figure 2 illustrates contrived 
data representing measurements of a two-processor UNIX™-
based system. The data are contrived because measurements of 
the actual system were not available for publication. The straight 
line between the upper and lower lines shows the average CPU 
utilization overall. Observations of the actual system were taken 
with mpstat. An examination of ps –eLF output taken at regular 
intervals revealed that activity was concentrated in two processes 
for which changes in the cumulative processing times 
corresponded to the two processor utilizations. Since cache 
affinity was turned on, we inferred that each process was bound to 
one processor, yielding test results like those shown in Figure 2. 
The developers explained that the more CPU-intensive process 
was processing disjoint sets of data sequentially. An opportunity 
for parallel execution had been overlooked. The maximum offered 
load of the system was constrained by the larger of the two CPU 
utilizations. Thus, the processor imbalance limited the extent of 
load scalability to 10 work units in unit time, while architecting 
the system to allow parallel execution on disjoint data sets could 
have increased the extent of load scalability to 12.3 units of work 
in unit time, in the absence of any other bottlenecks. 

4. CONCLUSION 
The foregoing discussion and examples illustrate how 
performance engineering methods can be applied to mitigate 
performance risk throughout the software life cycle. Clearly 
specified performance requirements, performance-oriented 
architecture reviews, and performance tests planned in the light of 
requirements all contribute to the mitigation of performance risk 
and the delivery of a product that meets performance expectations. 
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