
Building Custom, Efficient, and Accurate Memory
Monitoring Tools for Java Applications

Verena Bitto
Christian Doppler Laboratory MEVSS

Johannes Kepler University Linz, Austria
verena.bitto@jku.at

Philipp Lengauer
Institute for System Software

Johannes Kepler University Linz, Austria
philipp.lengauer@jku.at

ABSTRACT
Traditional monitoring techniques can distort application
behavior significantly. In this paper, we will provide an eval-
uation of state-of-the-art monitoring techniques and their
impact on memory behavior. We will use AntTracks to
show how VM-internal approaches can extract more diverse
memory information at object level, vastly outperforming
traditional techniques.

Keywords
Memory Monitoring; Garbage Collection; Java; Memory
Monitoring Tools

1. INTRODUCTION
Higher-level programming languages like Java or C# re-

lieve the programmer from freeing memory manually by ap-
plying automatic memory management, i.e., garbage col-
lection (GC). Concomitantly, the actual memory behavior
is hidden from the developer, making the detection of the
actual source for memory anomalies a tedious task. Mem-
ory monitoring tools allow to keep track of memory inter-
nals, such as memory allocations and GC time. However,
what kind of information can be tracked, at what granular-
ity and at which costs depends mainly on the approach used
for monitoring. Many existing tools impose an enormous
memory footprint and run-time overhead on the monitored
application, neglecting that such characteristics distort the
actual memory behavior. This paper provides insights into
all common monitoring strategies, i.e., Sample-based Moni-
toring, Instrumentation-based Monitoring and VM-internal
Monitoring. We especially focus on VM-internal monitoring
and our tool AntTracks, introduced at the ICPE’15 [3], to
sketch which advantages as well as challenges custom mon-
itoring tools implicate.

This paper is structured as follows: Section 2 describes
state of the monitoring tools techniques, their benefits and
drawbacks as well as their impact on the actual memory be-
havior; Section 3 compares all techniques by means of their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16, March 12-18, 2016, Delft, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2858664

information richness and information quality. Furthermore
we show exemplary, which performance can be expected for
different monitoring approaches; Section 4 concludes this
paper.

2. STATE OF THE ART
MONITORING TECHNIQUES

State-of-the-art approaches can be divided into 3 cate-
gories, i.e., Sample-based Monitoring, Instrumentation-based
Monitoring, and VM-internal Monitoring. These approaches
have fundamental differences in run-time overhead, informa-
tion richness (such as the kind of data that can be captured)
as well as quality (such as the accuracy of the generated re-
sults). We do not regard Event-based Monitoring as a dis-
tinct approach here, because one of the just mentioned ap-
proaches must be used to generate events in the first place.

The following sections will describe every approach in de-
tail, including basic principles as well as a performance eval-
uation in the context of memory monitoring. We built tools
according to the mentioned monitoring techniques with the
aim to produce equivalent memory-related data in order to
compare them accordingly. As basis for information com-
parison we used our tool AntTracks, since VM-internal tech-
niques allow for the most diverse data to collect.

2.1 Sampling-based Monitoring
Sampling-based monitoring tools collect data periodically.

In the best case, they reflect a statistically valid represen-
tation of the program under inspection. Commonly gath-
ered information includes CPU usage information, e.g., the
amount of time threads spend in specific methods, or mem-
ory information, e.g., the amount of memory data structures
occupy. What kind of information can be extracted with-
out modifying the virtual machine itself depends on the pro-
vided interface, e.g., the Java virtual machine tools interface
(JVMTI) for Java or the ICorProfilerCallback interface for
.NET.

A key requirement for sampling-based approaches is to
sample at random time intervals. Otherwise the tool may
record periodically recurring phases of a program over and
over again, e.g., the stack traces of threads which are sched-
uled at certain intervals, while missing other phases in-be-
tween. However, randomizing sample intervals is difficult,
since the program needs to be in a certain state, i.e., in safe
points to pause application threads, for retrieving samples
[1]. As a result, the accuracy of samples are limited by the
underlying virtual machine. Consequently, different moni-
toring tools may deliver different results on specific metrics

321

http://mevss.jku.at/?page_id=401
http://mevss.jku.at/
http://www.jku.at/
mailto:verena.bitto@jku.at
http://www.ssw.jku.at/General/Staff/PL/
http://www.ssw.jku.at/
http://www.jku.at/
mailto:philipp.lengauer@jku.at
http://dx.doi.org/10.1145/2851553.2858664

like frequently called methods, as pointed out by Mytkowicz
et al. [5].

2.2 Instrumentation-based Monitoring
Instrumentation-based monitoring tools allow to modify

the original code of an application such that it records the
desired information. Code can be instrumented either stat-
ically or dynamically, whereupon the former inserts code at
compile-time, and the latter at run-time. In the latter case,
the underlying virtual machine must support retrieving the
original code and exchanging it with the manipulated one,
e.g., by means of the JVMTI or the ICorProfilerCallback
interface. However, these interfaces only provide means to
instrument at bytecode level, not at machine code level.

Compared to sampling, instrumentation-based approaches
allow to record more accurate information. However, due to
the modified or injected code, instrumentation may impose
a significant run-time overhead on the application (1) due
to the additional code itself and (2) due to the just-in-time
compiler not being able to apply the same optimizations.

2.3 VM-internal Monitoring
Tools using the VM-internal monitoring approach require

a modified VM to host the monitored application. The mod-
ified VM can expose internal data structures to the monitor-
ing tool. For example, a VM may provide access to internal
timers that keep track of the time of certain GC phases.
Using this information, the monitoring tool may be able to
explain long garbage collection times.

However, when already modifying the VM to expose addi-
tional data, one might consider to move as much as possible
of the monitoring logic into the VM, because the information
of interest is easier and faster to access.

In previous work (cf. Lengauer et al. [3] and Bitto et
al. [2]), we have presented AntTracks, a custom VM able
to trace object allocations and object deallocations impos-
ing only a very small run-time overhead. Minimizing over-
head is paramount to reduce the impact of the Observer
Effect. Especially in the context of managed memory, a lot
of adaptive heuristics and adaptive thresholds are in place to
manage garbage collection. Even small changes in garbage
collection time or in object allocations may lead to different
choices by the GC, changing the overall garbage collection
behavior and, in consequence, memory performance.

However, modifying a VM to support monitoring raises
some interesting challenges if one of the primary goals is
low run-time overhead and in-production use, such as (1)
how to record the data, (2) how to maintain the data within
the VM, (3) how to send the data to an external monitoring
tool, (4) how to store the mass of data as well as (5) how to
process the raw data and how to transform it to a meaningful
memory representation.

Recording. The information of interest needs to be re-
corded, without distorting the application behavior. For
example, AntTracks must fire an event for every new object
by inserting code at every allocation. However, contrary to
traditional instrumentation, it can insert the code during the
lowering phase of the intermediate representation (i.e., in the
abstract syntax tree) of the just-in-time compiler to machine
code. If the allocation is optimized away, e.g., by escape
analysis and scalar replacement, the allocation will not be
lowered to machine code, and thus no instrumentation will
be performed. Traditional bytecode instrumentation would

impede escape analysis and scalar replacement, and thus
change the application behavior by forcing the allocation of
the object, no matter what.

Managing. The next step comprises the management of
the recorded data, as we want to keep IO to a minimum and
consequently do not want to process and send every event
immediately. An obvious approach is to buffer data until
enough has aggregated and send an entire chunk when the
buffer is full, instead of firing every event one by one. How-
ever, buffering needs to be implemented carefully in order
not to degrade performance. For example, when multiple
threads record data in parallel, the buffer must be locked.
Additionally, flushing the buffer (e.g., to a file) when it is
full may block other threads for a significant amount of time.
Thus, AntTracks uses thread-local buffers, i.e., every thread
own its private buffer to write events to. Furthermore, when
the buffer is full, the buffer is not flushed directly (which
would stop the thread for too long), instead the buffer is
submitted to a flush queue and a new buffer is fetched from
a free list. A dedicated worker thread consumes buffers from
this queue, flushes them, and submits it to the free list.
Buffer sizes are randomized to avoid multiple threads with
the same recording frequency to submit buffers to the flush
queue at the same time.

Sending. Sending includes either storing the recorded
data in a file for subsequent analysis or sending it, e.g., using
a socket connection, to a tool directly. The performance of
this step is heavily dependent on the underlying operating
system and hardware performance.

Storing. Storing the recorded data for subsequent analy-
sis can be challenging if the amount of data faces disk limita-
tions. Most tools reduce their accuracy and send statistical
aggregations only. However, aggregation must be done at
run-time, whereupon it increases run-time overhead.

AntTracks uses a novel approach by cyclically overwriting
old tracing information without losing most vital informa-
tion (cf. Lengauer et al. [4]). It creates multiple trace files,
clears them periodically, and starts every trace file with a
synchronization point, which can be used for reattaching to
the Java heap state.

Processing. Stored data is often highly compacted, keep-
ing the storage performance and recording performance in
mind. Thus, the raw data needs to be processed and trans-
formed to meaningful memory representations. Depending
on the amount of data collected, this can take up a signifi-
cant amount of time.

AntTracks reconstructs thread-local heap states, and merg-
es them at defined points in time. Thus the recorded data
can be processed mostly in parallel.

3. COMPARISON
The following section compares monitoring techniques ex-

emplary to give an estimate regarding information richness,
information quality and performance. To compare the differ-
ent approaches fairly, we have started from AntTracks and
built tools trying to record as much of the same data as pos-
sible, once via sampling, i.e., dumping the heap periodically,
and once via instrumentation at bytecode level.

Setup. All measurements were run on an Intel R© Core
TM i7-3770 CPU @ 3.4GHz x 4 (8 Threads) on 64-bit with
32 GB RAM and a Samsung SSD 840 PRO Series
(DXM03B0Q), running Ubuntu Trusty Tahr 14.04 with the

322

Kernel Linux 3.11.0-23-generic. All unnecessary services
were disabled in order not to distort the experiments.

3.1 Information Richness and Quality
Different monitoring techniques provide different levels of

granularity of information. Figure 1 gives an overview about
the different kind of traced information of the discussed mon-
itoring strategies.

Smpl. Instr. VM
Information Ref. Ref. ET AT

Object allocations Some All All All
– Size All All All All
– Type All All All All
– Pointers All None* All All
– Allocation site None All All All
– Address None None None All
– Allocating subsystem None None None All
Object deaths Some All All All
– Time unreachable None None All None
– Time collected Some All None* All
– Liveness from GC None None None All
Object lifecycle None None None All
Object movements None None None All
Heap structure None None None All
Method entries/exits None* None* All None
Temporal ordering All Some All Some
Explicit GCs triggered None None All None
Arbitrary VMs All Some Some None

Figure 1: Comparison of the capabilities of
sampling-based (our reference implementation),
instrumentation-based (our reference implementa-
tion as well as ElephantTracks (ET), the most simi-
lar tool to AntTracks) and VM-internal (AntTracks
- AT) monitoring. (*Recording of information pos-
sible, but not implemented)

Object allocations can be tracked with every monitor-
ing technique, although the amount of monitored informa-
tion differs. Sampling stands out as the only method that
may miss allocations altogether, e.g., objects may be al-
located and freed in the time between two samples. Al-
though all techniques provide basic object information like
its size, its type and its pointers, only VM-based monitor-
ing allows to collect internal information like the object’s
address or its allocating subsystem, i.e., the interpreter, C1
compiler or C2 compiler. Object deaths can be monitored
with all techniques as well. Sampling-based approaches suf-
fer again from incompleteness due to non-sampled time in-
tervals. Other approaches differ in their definition of object
death. ET considers the time an object becomes unreach-
able, while our instrumentation-based reference implemen-
tation and AT track the time an object is actually freed
by the GC. The instrumentation approach uses Phantom-

References (a more scalable variant of WeakReferences) to
detect deallocations. Since garbage collection data is only
available via VM-internal tracking, ET has to run its own
reachability analysis to determine liveness of objects, by ex-
plicitly triggering additional GCs. Movements of objects,
e.g., during garbage collection, are only monitored by the
VM-internal approach. As a result, VM-internal techniques
can reproduce the entire lifecycle of objects. This includes

changes to the object’s pointers as well as its location in the
heap.

Likewise, the heap structure can only be reconstructed by
the VM-internal approach. This covers both object related
information, e.g., the location of objects in the heap, as well
as memory related information, e.g., address ranges of a
specific heap region.

Method-related data cannot be monitored via sampling
since heap dumps lack this kind of information. In case
of AT and our sample-based reference implementation, it
currently is not monitored by choice, since the hotness of
methods is derived differently.

Temporal ordering concerns the chronological order of mon-
itored information. Since AT and our instrumentation-based
reference implementation record events in a thread-local man-
ner contrary to ET, event ordering among different thread
is not ensured. Sample-based approaches are by definition
in order, due to the periodically drawing of samples.

Although, on the one hand, every JVM supports heap-
dumps, instrumentation on the other hand requires an inter-
face like JVMTI which is supported from JDK 5.0 onwards.
VM-internal tracking requires a modified VM and therefore
lacks portability.

3.2 Performance
All three approaches have major differences in terms of

overhead as well as behavior distortion they introduce. Fig-
ure 2 and 3 show the run-time overhead and the GC-time
overhead respectively, normalized compared to the applica-
tion without any active monitoring.

To make the sampling approach comparable to the instru-
mentation approach and the VM-internal approach, we ad-
justed the sampling rate for every benchmark individually,
so that the sampling approach generates as many dumps
as the other approaches can reproduce a full and consistent
heap state.

In terms of run-time, the VM-internal approach, i.e.,
AntTracks, outperforms all other tools. In some cases, i.e.,
mpegaudio, avrora, and scalaxb, the sampling strategy per-
forms almost as good because these benchmarks only have
few allocations and even fewer live objects, consequently re-
sulting in small and fast dumps. For allocation intensive
applications, however, sampling produces an overhead of at
least 100%. The instrumentation approach produces the
most overhead, due to impeding the scalar replacement of
objects and its need for additional object allocations (phan-
tom references).

In terms of GC-time, the sampling strategy performs best
with only one exception (factorie) because it only introduces
pauses while the application is running. Consequently, sam-
pling shows only slight deviations regarding GC-time, due to
the changed application-to-GC ratio. The instrumentation-
based approach actually introduces so much GC overhead,
that three benchmarks (compiler.compiler, xml.validation,
factorie) crash altogether, because the VM spends more than
98% of its time on garbage collection. This overhead is
caused by effectively doubling the amount of objects, i.e.,
one phantom reference for every object allocated, and the
additional handling of those special references by the GC.
In those benchmarks that do not crash, the overhead is with
a minimum (with the least-allocating benchmark mpegau-
dio) of 2922% and a maximum of 48408% tremendous. The
VM-internal approach changes the GC behavior because of

323

Benchmark Sampling Instrumentation VM-internal (AntTracks)

compiler.compiler 279.2% crashed 119.8%
mpegaudio 102.4% 104.2% 100.4%

xml.validation 378.2% crashed 116.7%
avrora 102.5% 113.8% 100.0%

jython 213.7% 515.0% 105.6%

factorie 377.3% crashed 126.0%

scalaxb 135.1% 255.8% 103.1%

Figure 2: Run time of all three approaches, relative to the respective application’s run-time without any
monitoring.

Benchmark Sampling Instrumentation VM-internal (AntTracks)

compiler.compiler 102.8% crashed 156.1%

mpegaudio 100.0% 2922.2% 88.8%
xml.validation 124.7% crashed 150.4%

avrora 100.0% 29700.0% 133.3%

jython 125.7% 48408.5% 131.4%
factorie 167.2% crashed 137.9%

scalaxb 101.4% 13466.6% 133.3%

Figure 3: GC time of all three approaches, relative to the respective application’s GC time without any
monitoring.

its internal instrumentation. Consequently, the overall GC-
time is higher, however, the overhead is pretty constant and
predictable compared to the other approaches.

The data size (bytes generated) is variable depending on
the approach. In general, the instrumentation approach pro-
duces more data than the VM-internal approach, because
the first has to send an event for every deallocated object,
whereas the latter has to send only events for live objects.
Considering that only a small portion of objects survive their
first GC, the former has to generate more data. The data
size of the sampling approach is highly unpredictable, de-
pending on when a dump is taken, i.e., right before vs. right
after a garbage collection.

4. CONCLUSION
In this paper, we evaluated different monitoring techniques

with respect to three metrics, i.e., information quality, in-
formation richness and overhead in terms of run time, GC
time, and heap memory. Although a VM-internal approach,
such as AntTracks, poses more complex and VM-specific
challenges to overcome, we showed that it outperforms the
traditional techniques in all three metrics. Our approach in-
corporates new techniques for efficient monitoring, that can
be easily adapted for other high-performance and almost
distortion-free tools.

5. ACKNOWLEDGMENTS
This work was supported by the Christian Doppler Forsch-

ungsgesellschaft, and by Dynatrace Austria GmbH.

6. REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.

Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The jalapeño virtual
machine. IBM Syst. J., 39(1):211–238, Jan. 2000.

[2] V. Bitto, P. Lengauer, and H. Mössenböck. Efficient
rebuilding of large java heaps from event traces. In
Proceedings of the Principles and Practices of
Programming on The Java Platform, PPPJ ’15, pages
76–89, New York, NY, USA, 2015. ACM.

[3] P. Lengauer, V. Bitto, and H. Mössenböck. Accurate
and efficient object tracing for java applications. In
Proc. of the 6th ACM/SPEC Int’l. Conf. on
Performance Engineering, ICPE ’15, pages 51–62, 2015.

[4] P. Lengauer, V. Bitto, and H. Mössenböck. Efficient
and viable handling of large object traces. In Proc. of
the 7th ACM/SPEC Int’l. Conf. on Performance
Engineering, ICPE ’16, pages 51–62, 2016.

[5] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Evaluating the accuracy of java profilers. In
Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’10, pages 187–197, New York, NY, USA, 2010.

324

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.dynatrace.com

	Introduction
	State of the Art Monitoring Techniques
	Sampling-based Monitoring
	Instrumentation-based Monitoring
	VM-internal Monitoring

	Comparison
	Information Richness and Quality
	Performance

	Conclusion
	Acknowledgments
	References

