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ABSTRACT
The recent rise of the NoSQL movement motivates invest-
igation on the performance impact that new persistence ap-
proaches can bring in the model-driven re-engineering of a
consolidated object-oriented software architecture.

We report comparative experimental performance results
attained by combining a pattern-based domain logic with
a persistence layer based on different paradigms and we de-
scribe how data model is persisted in various implementation
based on MySQL, Neo4j, and MongoDB.

Keywords
Model-driven performance engineering, Reflection pattern,
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1. INTRODUCTION
Non-functional requirements of changeability and adapt-

ability [1] have primary relevance for a large class of soft-
ware intensive systems that are intended for managing great
volumes of data with a high degree of variety in the struc-
ture of contents. The attainment of these qualities can be
largely facilitated by the assumption of a tailored software
architecture.

In particular, the Reflection architectural pattern [2] pro-
vides a mechanism that allows for dynamically changing
data structure and system behaviour at run-time [3]. To this
end, the domain logic is modeled using two different levels
of abstraction: a meta level provides a self-representation
of the system encoding knowledge about data type struc-
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tures, algorithms, and relationships; besides a base level ap-
plication logic carries concrete data whose interpretation is
determined by the values of so-called meta-objects.

The Observations & Measurements analysis pattern [4]
implements the reflection principle specializing the abstrac-
tion for the case of high variety in the data attributes of ob-
ject types. This pattern-oriented architectural design brings
a number of further benefits, mostly linked to the quality
of the code, and notably to maintainability, reusability, and
consolidated understanding of implementation choices and
consequences.

However, design by patterns does not account for per-
formance as first-class requirement, and naturally incurs in
well-known performance anti-patterns [5, 6], which may be-
come crucial when volume and variety must meet also velo-
city [7]. These drawbacks are largely exacerbated when the
domain logic is persisted over a relational storage layer, due
to the nature of the domain model and its mismatch with
the relational tier [8].

In general, the persistence of a domain model with com-
plex structure into a relational database comes with a num-
ber of performance penalties, that translate in longer time
required for key persistence operations. These issues can be
partially mitigated with ad-hoc optimizations in the design
of the relational database [9], pertaining to the choice of
a particular representation for class inheritance, the use of
auxiliary tables to store additional information, and the
smart use of data fetching.

The interposition of an object-relational mapping (ORM)
layer between the domain logic and the storage layer can
mitigate this problem. In the practice of development of
Java enterprise applications, Java Persistence API (JPA)
specification represents a mature and state-of-the-art ORM
solution which grants many benefits [10]. First of all, it al-
lows to persist domain classes with a minimal boilerplate
code, thanks to simplified annotation facilities. Also, it
provides full integration with the Java application stack,
composed by other technologies such as EJB (for encap-
sulating the business logic) and CDI (for implementing the
Inversion of Control pattern [11]). However, JPA further
increases the degree of indirection and this can have negat-
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ive effects on the system performance, also due to the loss of
design control on the impact that domain logic operations
have on the storage process.

With the rise of the Not Only Sql (NoSQL) movement
[12], other options in the design of the storage layer are now
available, and provide various advantages, including reduced
access time through the clustering of similar data [13], and
increased adaptability to the variety and variability of data
over time through the use of a schemaless structure. This
motivates the investigation on engineering the performance
of existing applications by changing the storage schema from
a relational + ORM persistence stack to a NoSQL solution,
while preserving the domain logic structure. In particular,
this subtends a problem of re-modeling content representa-
tion in the schema of some NoSQL technology and quant-
itatively evaluating the performance gain that can be at-
tained. In so doing, different NoSQL paradigms are more
or less close to the domain model and suited for its main
operations [14, 15], and a pattern-based organization of the
domain logic can drive the refactoring of the data model to-
wards more efficient performance results.

In this paper, we report on the performance engineering
of a three-tier web-application focused on the replacement
of a relational + ORM persistence stack through two differ-
ent NoSQL technologies, describing how a reflection-based
architecture can be modeled over the graph-oriented Neo4j
[16] and the document-oriented MongoDB [17] databases,
and comparing experimental performance results achieved
by the different solutions.

To this end, in Sect. 2, we describe a reflection-based ar-
chitecture that combines the Observations & Measurements
and the Composite patterns to attain a high degree of ad-
aptability and changeability and that is persisted over a re-
lational + ORM stack (Sect. 2.1), and we describe how this
was concretely exploited in the implementation of an Elec-
tronic Health Record (EHR) system [18, 19] which is in use
since various years in a major Italian hospital (Sect. 2.2).
In Sect. 3, we discuss how the domain model of the reflec-
tion architecture can be suitably represented over Neo4j and
MongoDB databases (Sect. 3.1, 3.2) and we show how these
representations are information equivalent to the original
relational representation (Sect. 3.3). In Sect. 4 we report
the result of experimentations aimed at measuring the per-
formance gain, compared to the actual implementation, re-
ferred to a crucial application use case, applied on real data
taken from the practice of use of the EHR system and on
synthetic data generated so as to stress the most relevant
dimensions of complexity. Performance results obtained in
both datasets show a clear gain in performance by the Mon-
goDB solution, and more generally, a better scalability of
NoSQL technologies when the complexity of the data struc-
tures increases. Conclusions are drawn in Sect. 5.

2. A REFLECTION ARCHITECTURE FOR
ADAPTABILITY

In this section we describe how the Reflection architec-
tural principles [2] can be implemented through a powerful
combination of the Observations & Measurements analysis
pattern [4] and the Composite pattern [20] to implement an
EHR system able to deal with medical concepts and clinical
data characterized by complexity and volatility.

2.1 Exploiting the Reflection, Observations &
Measurements, and Composite patterns

The Reflection architectural pattern [2, 3] permits the de-
velopment of a domain logic with a high degree of changeab-
ility and adaptability [1] through a mechanism that allows
for changing structure and behaviour of objects at run-time.
To this end, the domain logic is split in two layers so as to
support dynamic adaptation of the system in response to
changing requirements. On the one hand, a meta level con-
sists of a set of meta-objects providing information about
system properties. On the other hand, a base level mod-
els the business logic and uses information provided by the
meta level, in order to make the system more flexible when
changes occur.

The Observations & Measurements analysis pattern [4]
comprises an embodiment of the Reflection pattern, where
meta-objects are used to create abstraction on the attrib-
utes carried by different object types. In this case, measure-
ments, that allow to record quantitative information, and
observations, that extend the expressiveness of the pattern
for taking into account qualitative information, are both rep-
resented in a so-called day-to-day operational level. Their
configuration, in terms of semantic definition, is constrained
by a so-called knowledge level, where changes are typically
more infrequent.

Hierarchical structured data resulting from repeated ag-
gregation of basic observations and measurements can be
cast in the representation through a mix-in of the Compos-
ite pattern [20], by allowing an observation or measurement
be implemented as a collection of references to other obser-
vations or measurements.

Observations & Measurements has been frequently advoc-
ated as a scheme of great potential in the development of a
variety of applications that are supposed to collect data with
different structures and different versions over time. A not-
able class of applications, with major practical and econom-
ical impact, occurs in the creation of Electronic Health Re-
cord (EHR) systems [21]. In general, an EHR system [18] is a
kind of Health Information Management (HIM) system sup-
porting the acquisition, analysis, and maintenance of clinical
information items about a patient, in digital or traditional
form. For such a system, changeability and adaptability
[1] are qualities of primary relevance, which largely condi-
tion the ability of a software product in fitting the needs
of different medical specialities, and in accompanying their
evolution over time due to changes of local organizational
assumptions or even of the patient’s health status.

In the rest of this Section, we describe a concrete soft-
ware architecture that combines the Observations & Meas-
urements pattern with the Composite pattern. This pattern-
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Figure 1: The domain model of the Empedocle EHR system based on the underlying meta-modeling paradigm,
addressed in the architectural perspective by the Reflection pattern [2] and in the conceptual perspective by
the Observations & Measurements pattern [4]. The meta-modeling approach allows a new medical concept
to be accounted in the EHR system just through the instantiation of a new object from the class FactType,
avoiding the need of programming new classes or class members and without any impact on the database
schema or on its records. In the same manner, a new clinical concept can be recorded just through the
instantiation of a new object from the class Fact.

based architecture was implemented within an EHR system
named Empedocle, which is in use since more than 3 years
in various units of the major hospital of Tuscany Region
(Careggi hospital, in Florence). While referring to this case
for the sake of experimentation concreteness, most of the
subsequent discussion about the development of a graph-
oriented or document-oriented database representation as
well as about their impact on system performance are more
generally applicable to most schemes that can be designed
in the style of the Reflection architectural pattern.

2.2 The Empedocle EHR system
The UML class-object diagram of Fig. 1 provides a high-

level specification of the domain model implemented in the
core of the Empedocle EHR system.

At the operational level, an EHR represents a structured
collection of health information items about a Patient, de-
rived through a set of clinical Examinations. Specifically,
during each Examination, a series of clinical information
items like signs (i.e. objective evidences noticed), symptoms
(i.e. subjective evidences reported by patient), and other
clinical observations are captured by health professionals as
instances of the Fact class.

Conversely, the knowledge level must be designed so as
to accommodate the intrinsic variability of the medical do-
main, which depends on the evolution over time as well as
on differences among medical specialities. To this end, all
medical concepts can be defined directly by domain experts
as instances of the FactType class.

The resulting high-level model abstraction allows to sep-
arate the representation of medical knowledge (i.e. the se-
mantic of medical phenomena) from clinical data (i.e. the
value assumed by a specified medical phenomenon in a spe-
cified time for a specified patient), and empower domain
experts to contribute to this knowledge in the course of sys-
tem life. Accordingly, four different categories of knowledge
can be identified: TextualType, for free-text information
(e.g. patient’s anamnesis); QualitativeType, for values in
a finite range of acceptable Phenomena (e.g. blood type with
groups A, B, AB, and 0 ); QuantitativeType, for quant-
ities with a specified set of acceptable Units (e.g. heart
rate, measured in beats-per-minute); and CompositeType, for
composing FactTypes in a hierarchical structure through a
Composite pattern implementation (e.g. vital sign includ-
ing temperature, blood pressure, heart and respiratory rate).
The same categories can be identified at the operational
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Figure 2: An example of Examination structure as represented using the domain model shown in Fig. 1: on the
left, a direct acyclic graph obtained composing FactTypes and TypeLinks; on the right, a tree-like structure as
resulting from the composition of Facts and FactLinks. Note that rectangles represent instances of FactType

and Fact classes and define, respectively, medical concepts and clinical observations that are to be taken into
account during a clinical examination. Rounded boxes represent instances of TypeLink and FactLink classes
and are used to increase the expressiveness of each Type-to-Type and Fact-to-Fact association (for example,
through the definition of its cardinality).

level: TextualFact, QualitativeFact, QuantitativeFact,
and CompositeFact.
ExaminationType class represents the structure of an Ex-

amination in terms of which FactTypes (and related Facts)
have to be considered during a medical examination; more-
over, it specifies, through TypeLink and FactLink associ-
ations, the multiplicity of occurrence of each Fact in order to
dynamically adapt the structure to multiple contexts-of-use
that require a different number of instances to be recorded.
In addition, the reuse of already defined named FactTypes

is supported, so as to avoid their proliferation, just referen-
cing them in multiple parts of the structure. Alternatively,
anonymous FactType instances (i.e. FactTypes that do not
need to be referenced by others) can be used, and the defini-
tion of their structures is directly included inside the parent
structure. As relevant consequence, as depicted in Fig. 2,
the FactType structure will result in a direct acyclic graph,
while the derived Fact structure will result in a tree, usually
with an increased number of nodes due to the multiplicity
attribute.

This implies a more complex data model, with various
drawbacks. On the one hand, while the number of Facts

concretely recorded at run-time during a clinical session is
bounded in semantic and multiplicity by the FactType defin-
ition, the real depth of an Examination cannot be known in
advance, precluding the possibility to exploit optimized ad-
hoc mechanisms for retrieving all the data, requiring instead
to explore the entire structure. On the other hand, since the
model is split in two levels, the whole Examination will be
completely known only when both parts will be provided.
For this reason, retrieving all the data collected during an
Examination is not restricted to exploring the Fact tree, but
requires to explore the related FactType graph, affecting sys-
tem performances. Finally, the resulting model consists of
a relative small number of classes for representing only con-
crete concepts; nevertheless, the high degree of abstraction

is counterbalanced by the instantiation, at run-time, of an
increased number of objects required for describing the ac-
tual domain. Usually, this does not represent a problem in
small and static domains, but it becomes evident in domains
characterized by complexity and volatility.

«component»
Empedocle

«component»
Application Layer

«component»
Presentation Layer

«component»
ORM Layer

«component»
Data Layer

«component»
Domain model

Figure 3: The software architecture of the Empe-
docle EHR system. The Domain model component
implements the domain logic through the meta-level
modeling approach as described in Fig. 1.
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Fig. 3 shows the software architecture of the Empedocle
EHR system, as currently deployed at the Careggi hospital,
which follows the usual scheme of a 3-tier system: the Data
layer provides mechanisms for storing and retrieving data
from a relational database; the Object-Relational Mapping
(ORM) Layer, implemented by Hibernate, reconciles the ob-
ject/relational paradigm mismatch between objects and re-
lational data [22]; the Application layer implements the do-
main model of Fig. 1 and other services; finally, for the sake
of completeness, the Presentation layer implements inter-
faces and logic for the interaction with users, and includes
a Viewer Engine for automated generation of EHR content
GUIs.

The high degree of changeability and adaptability provided
by the Empedocle architecture allows that user tasks and
responsibilities in the context-of-use [23] be partitioned ac-
cording to the summary use case diagram of Fig. 4.

Health 
professional

Perform a 
medical 

examination

Access EHR 
content

Domain 
expert

Define 
EHR 

knowledge

Maintain 
Domain 
Model

ICT 
expert

Operational Level

Knowldge Level

Figure 4: A typical outpatient scenario, specifying
the major actors involved in the care process and
their interaction with an EHR system. The high-
lighted use case represents a major scenario of in-
teraction: the health professional actor accesses pa-
tient’s EHR content in order to review past med-
ical examinations and read collected clinical inform-
ation.

Health professionals (e.g. general practitioner, medical
specialist, registered nurse) take part to the care process at
the operational level in different ways, in accordance with
personal skills and specializations, including: i) the com-
plete review of the patient’s EHR content (e.g. clinical his-
tory, allergies, active problems, test results); ii) the acquisi-
tion of clinical data through a medical examination; iii) the
formulation of the correct diagnosis; and iv) the develop-
ment of a specific treatment plan.

Medical concepts related to clinical data collected into
the EHR system are identified and steadily maintained at
knowledge level by one or more domain experts, who are
health professionals with specific domain expertise as well
as aware about governmental and hospital directives, and

about factors depending on specialization of activities and
scientific aims.

Finally, the ICT expert plays a lead role in bridging med-
ical and informatics domains, in cases where technical skills
are required for supporting health professionals through the
implementation of additional system requirements that de-
mand structural changes in the domain model, at the oper-
ational as well as the knowledge levels.

We do not report here on the characteristics of other com-
plementary roles which are involved in the organization and
enactment of the clinical process (e.g. from health direc-
tion and administrative support), but that are not directly
concerned with the topic addressed in this paper.

3. MODELING REFLECTION OVER A
NOSQL PERSISTENCE LAYER

In the common practice of software development, the per-
sistence layer deals with retrieving data from and storing
data to a relational data store, usually through the interpos-
ition of an ORM layer. In this kind of approach, the per-
sistence model is largely determined by the object-oriented
design of the domain logic.

By contrast, when persistence relies on a NoSQL solution,
design gives space to alternative choices in the definition of
the storage data model, which is, to a large extent, inde-
pendent from the structure of object types. In fact, the
absence of a fixed schema provides multiple options con-
cerning the definition of the database structure, facilitating
the representation of heterogeneous data characterized by
high variability over time. The overall design results more
flexible, but inevitably more complex and harder to under-
stand for software developers used to deal with traditional
relational databases [24]; it also requires to take into account
some specific aspects so as to realize data migration in the
most opportune way [13].

In the rest of this Section, we describe two new data
models as implemented using different NoSQL technologies,
Neo4j [16], and MongoDB [17]. The choice of these two
technologies was made so as to experiment with their data
structure and promising performance improvement [25, 26],
and to compare graph- and document-oriented NoSQL solu-
tions applied to the case of a reflection software architecture
that combines the Observations & Measurements and Com-
posite patterns, as described in Sect. 2. Finally, the validity
of the proposed models is proved, in terms of integrity of
persisted data and equivalence of data representations.

3.1 A model for Neo4j
Neo4j [16] relies on a graph-oriented structure, which can

natively represent the domain logic of a reflection architec-
ture, whose data structures are direct acyclic graphs and
trees [27]. As a schemaless database, the data model in
Neo4j is inherently defined by the nodes and relationships
persisted in the database. Every node and relationship can
also be characterized by an arbitrary number of properties.

From version 2.0, Neo4j developers tweaked its schemaless
nature by introducing labels and indexes, two concepts that
help modelling data in a more organized way, without losing
the database original adaptability. Specifically, labels can be
used to group together nodes, and each node can optionally
be labeled with one or more text descriptions, and indexed
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Type:CompositeType
{ name : “compositeType”}

Type:TextualType

Type:QualitativeType

Type:QuantitativeType

Phenomenon
{ name : “Phenomenon1” }

Unit
{ name : “unit1”, 
symbol : “u1” }

Has Phenomenon

Phenomenon
{ name :“Phenomenon2” }

Unit
{ name : “unit2”,
symbol : “u2” }

Has Children
{ "uuid" : �,
name : “aQualitativeType” }

Type:CompositeType
{ name : “namedType” }

Has Phenomenon

Has Children
{ "uuid" : �,
name : “aNamedType” }

Has Children
{ "uuid" : �,
name : “aQuantitativeType” }

Has Children
{ "uuid" : �,
name : “aTextualType” }

Has Unit
{ digits : 5,
decimals : 2 }

Has Unit
{ digits : 3,
decimals : 4 }

Fact:TextualFact
{ value : “aText” }

Fact:QualitativeFact

Has Children
{ “type” : � }

Fact:CompositeFact

Has Children
{ “type” : � }

Has Children
{ “type” : � }

Has Children
{ “type” : � }

Has Unit

Has Phenomenon

Has Type

Has Type

Has Type

Has Type

Has Type
Knowledge Level Operational Level

Fact:CompositeFact

Fact:QuantitativeFact
{ value : 10.2 }

… …

Figure 5: The representation of an instance of the domain model described in Sect. 2 on the graph model
of Neo4j database. Oval shapes represent nodes, and arcs between nodes represent relationships, with
labels written in bold, and properties reported between braces. For example, a Type:CompositeType node is
characterized by multiple labels: the first one specifies that it is an instance of FactType class, the second one
identifies its role in the hierarchy. The Has Children relationship identifies children nodes. For reasons of
readability, uuid property values have been replaced with symbols.

to improve query expressiveness and flexibility. Moreover,
indexes can be defined on properties of labelled nodes, to
improve performance during query operations, similarly to
the relational case. Both labels and indexes are optional.

In our concrete case, modeling the domain logic in Neo4j
comes down to: i) identifying the node structure that forms
the model; ii) defining the relationships between nodes; iii)
defining the properties that characterize nodes and relation-
ships, and iv) labeling with the appropriate qualifiers.

Specifically, as depicted in the schema of Fig. 5, each class
that is an entity in the original model has been represented
as a node in the target model (i.e. FactType and Fact hier-
archy classes, and Phenomenon and Unit classes). The result-
ing nodes have been labeled with a correspondent qualifier
and, in addition to that, nodes that are part of the Fact-

Type and Fact hierarchies contain an extra label to identify
their role in the class hierarchy (e.g. Fact:QualitativeFact
qualifies a QualitativeFact inside a Fact hierarchy).

As it can be observed in the schema, the name prop-
erty is used for identifying, at the knowledge level, a named
FactType. The value property is used to record, at the op-
erational level, the value assumed by a TextualFact or a
QuantitativeFact node: a string of text in the first case,
and a double precision number in the latter case. In this
model, there is basically no difference between named and
anonymous FactTypes: both are modeled using a node, and
the only distinction between them is the presence of the
name property.

Another characteristic of the graph model in Fig. 5 is the
capability of modeling TypeLink and FactLink classes us-
ing relationships. These two classes were introduced in the
original model to represent the parent-child relationship be-
tween FactType or Fact classes. For this reason, they can be
naturally represented as a relationship in a graph-oriented
model. In addition, since Neo4j represents relationships as
directed arcs that can be traversed in both directions, this al-
lows to simplify the model introducing a single relationship,
called Has Children, for modeling TypeLink and FactLink

classes, without any impact on query capabilities. Note that
Neo4j allows to put a relationship only between two nodes,
and this precludes the possibility to use a relationship to rep-
resent the reference between TypeLink and FactLink, as in
the original model. Properties have been used to solve this
problem, as follows: i) the uuid property of each TypeLink

is used for storing an identifier value; ii) the same value
is copied into the type property of the related FactLink.
Properties have been used to solve this problem without
transforming these two classes from relationships to nodes.
Finally, the Has Type relationship is used to link together
Fact and FactType nodes.

The self-explanatory Has Unit and Has Phenomenon re-
lationships are ambivalent across the knowledge and the op-
erational level, and are used to connect a Quantitative-

Type or QualitativeType node with a set of possible Unit

or Phenomenon nodes, and the corresponding Quantitat-

iveFact or QualitativeFact node with the selected Unit

or Phenomenon node.
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{ "_id" : ObjectId("55e45670d4c67eba5b0e9e16") ,
"name" : “namedType",
"class" : "cmp",
"children" : [ { "class" : "txt",

    "name" : "aTextualType",
    "uuid" : ♦ },

       { "class" : "qnt",
    "name" : "aQuantitativeType",
    "uuid" : ♥,
    "units" : [ { "name" : "unit1",

           "symbol" : "u1",
   "format" : "5,2" },

                                                { "name" : "unit2",
      "symbol" : "u2",
     "format" : "3,4" } ] } ]

db.facts

{ "_id" : ObjectId("62e45671d4c67eba5b0e9e1a") ,
  "name" : “compositeType”,

"class" : "cmp",
"children" : [ { "class" : "qlt",

           "name" : "aQualitativeType",
            "uuid" : ♠,

                                 "values" : [ "Phenomenon1", "Phenomenon2" ] },
{ "class" : "ref",
    "name" : "aNamedType",

           "uuid" : ♣,
    "reference" : ObjectId("55e45670d4c67eba5b0e9e16") } ]

{ "_id" : ObjectId("552168dcdb77569140663ba7") ,
      "class" : "cmp",
      "typeId" : ObjectId("62e45671d4c67eba5b0e9e1a"),
      "children" : [ { "class" : "qlt",

     "type" : ♠,
     "value" : "Phenomenon1" },

                           { "class" : "cmp",
                                  "type" : ♣,
                                  "children" : [ { "class" : "txt",
                  "type" : ♦,
                  "value" : "aText" },
                                                       { "class" : "qnt",
                  "type" : ♥,
                  "value" : "10.2",
                                                             "unit" : "u1" } ] } ]
}

db.types

Knowledge Level Operational Level

Figure 6: The representation of an instance of the domain model described in Sect. 2 on the document
model of MongoDB database. The two sides of the figure show the collections used to persist FactType and
Facts instances, named db.types and db.facts, respectively. At knowledge level, two named types have been
persisted, with names compositeType and namedType. The first type includes the second one, as noted by the
use of the ObjectId reference, and both of them include anonymous types as sub-documents. For reasons of
readability, uuid property values have been replaced with symbols.

3.2 A model for MongoDB
MongoDB [17] data model is based upon a document-

oriented structure. A document is a collection of attrib-
ute–value pairs, with values that can be basic types, array
of values or nested sub-documents. Documents with sim-
ilar characteristics are grouped together and stored in col-
lections. Relation between documents can be represented
using references, that produce a normalized data model, or
by embedding related data in documents, producing denor-
malized models. In particular, the use of denormalization
techniques [28] is promoted by document-oriented NoSQL
solutions for discouraging the usage of JOIN queries, and
solving typical performance issues that affect relational data-
bases, preserving data consistency and completeness [29].

The schema of Fig. 6 illustrates the document-oriented
model used in our concrete case, representing data in accord-
ance with the domain model of Fig. 1. Usually, modeling an
object-oriented domain logic using a document-based data
model can be achieved in a direct way, but, in the case of
study of a reflection architecture, this simplicity is weakened
from the indirect structure of the model. The proposed solu-
tion attains a good balance, mixing together documents em-
bedding approaches with references techniques [30] for ob-
taining a flexible data representation without performance
degradation. In particular, the FactType hierarchy com-

prises a neat example of mixed modelation. In fact, while
named FactType instances are persisted as documents, and
are referenced by other documents using their ObjectId, an-
onymous FactType instances are persisted as embedded doc-
uments inside the named FactType document in which they
are defined.

To efficiently recognize the subtyping-class of an instance
in the FactType or Fact hierarchy, every persisted document
has a property called class that can assume the following val-
ues: i) txt, for referring to a TextualType or TextualFact

instance; ii) qlt, for referring to a QualitativeType or Qual-
itativeFact instance; iii) qnt, for referring to a Quantit-

ativeType or QuantitativeFact instance; and, iv) cmp, for
referring to a CompositeType or CompositeFact instance. In
so doing, it is sufficient to check the class property value of a
document to recognize its nature, avoiding to pre-emptively
explore its properties. In the case of named FactTypes, the
class property is valued with the string value ref, and an ad-
ditional property called reference contains the ObjectId of
the named FactType.

This different behaviour in FactType persistence drops the
need to persist the TypeLink class as a separate entity. For
this reason, TypeLink and FactType classes are modeled in
MongoDB as a single entity, and the name property of em-
bedded documents inside CompositeType instances corres-
ponds to the TypeLink name property of the original model.
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Note that since the embedded documents are always an-
onymous, the FactType name property is specified only for
the root document of a FactType instance.

The Fact hierarchy does not have the same need for re-
usability and referencing that characterize FactTypes. For
this reason, Fact instances can always be represented as a
single document, in which Fact children are embedded as
sub-documents. In so doing, the number of queries for data
retrieval is considerably limited.
Fact and related FactType instances are linked together

with different strategies, based on the nature of the Fact. In
the case of a Fact root document, the typeId property is used
to store the ObjectId of the referenced FactType instance.
Otherwise, when dealing with sub-documents of the Fact

root, the type property is used to refer to the uuid value of
the corresponding FactType. Consequently, for completely
retrieving a Fact and its FactType, it is necessary to: i)
query for the Fact; then, ii) query for the corresponding
FactType using the ObjectId referenced by the Fact root;
iii) link together the retrieved Fact and FactType instances
using the type property.

For the sake of completeness, Phenomenon entities are mod-
eled as embedded documents inside QualitativeFact and
QualitativeType documents with the intent of minimizing
the number of retrieval query in reading operations. In the
same manner, Unit entities are modeled inside Quantitat-

iveFact and QuantitativeType documents.

3.3 Information equivalence across
data models

A comparison of the performance among different data
storage implementations (i.e. from relational to a graph-
or document-oriented model) requires that they are in some
sense equivalent. Since data can be modeled in various ways
through the use of different data structures offering the same
information capacity, a notion of model equivalence, or hier-
archy of equivalences [31], is required to be defined. In a gen-
eral sense, two data structures can be considered equivalent
in terms of information-capacities if they can be associated
to the same number of states, such that each state of a data
structure can be mapped to a database state of the other
structure, preserving any relationship attribute value.

For the purpose of our experimentation, it is not neces-
sary to prove the complete equivalence between two rep-
resentations, but it is sufficient to prove the query equival-
ence of two models [32], i.e. the possibility to extract the
same information from both models through query opera-
tions. Specifically, the equivalence problem consists in cast-
ing information data into structures (i.e. graphs or tree) of
the same type. Comparing and matching graphs is a well-
known NP-complete problem [33], and different approaches
have been proposed to determine the distance between two
graphs using specific heuristic [34, 35]. In our case, prov-
ing the equivalence of Neo4j and MongoDB data models
with respect to the actual relational model means showing
that they have the same representativeness of information.
This means that the equivalence problem will be focused on
showing that two data structures are exactly identical in the
information they carry, rather than identifying similarities
and differences between data models. Furthermore, it is not
necessary to verify the query dominance for the new data
model, but simply proving that it is possible to query the

same Examination and ExaminationType structure across
different representations.

In a practical manner, we consider equivalent two data
representations of the same domain logic using different per-
sistence models when the carried information can be serial-
ized into an equivalent string of information. In so doing,
given two different persistence models, named A and B, A
and B are equivalent if it is possible to generate the same
string serialization for each given Examination and Examin-

ationType instance represented in A and B. Consequently,
if A is a valid model, and A and B are equivalent, than B
is also valid. Note that we assume that the actual relational
model is a valid reference model, from which we want to
prove the validity of the converted NoSQL models.

We have started by choosing a dataset with an arbitrary
number of clinical information data persisted in the rela-
tional model. Then, we have retrieved all the Examinations

and ExaminationTypes instances contained in the dataset,
and we have serialized the information data in a string rep-
resentation. Finally, for testing the equivalence, we have
converted information data from the relational model to the
target NoSQL model, serializing again the information data,
and comparing the resulting string with the string obtained
from the relational model at the previous step. The valida-
tion process is considered successful, if we are able to obtain
an equivalence between the reference relational model and
the target NoSQL model for every string of information.

Fig. 7 illustrates an example of the string produced during
the serialization process applied to the information data as
so represented using the models depicted in Figs. 5 and 6.
The structure of the serialization is deliberately similar to
a JSON document, due to its simple and readable syntax.
This string serialization can be also used to verify which are
the essential properties that a model must implement to be
valid.

Note that the completeness of the new representation is
also granted by the structures of target models. In fact,
the conversion from MySQL to Neo4j model is the most
natural way since it allows to maintain nodes and relation-
ships according to the structure of the original tree or graph.
Moreover, the MongoDB document representation is modeled
in a way that can be considered an inverse operation of
vertical decomposition during normalization process, as dis-
cussed in [32] and [36].

"compositeType" : {

"aNamedType" : {

"aQuantitativeType" : "10.2 u1"

"aTextualType" : "aText"

}

"aQualitativeType" : "Phenomenon2"

}

Figure 7: An example of serialization of a clinical
Examination. The pattern used to serialize the in-
formation is as follows: type.name : fact.value. Com-

positeFact values are described by the list of values
assumed by children Facts defined between braces.
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4. EXPERIMENTATION AND RESULTS
An experimentation was carried out to evaluate the per-

formance of the three different implementations based on
MySQL+Hibernate, Neo4j, and MongoDB, and their sens-
itivity to the characteristics of the dataset.

The evaluation was focused on the Access EHR content
use case (see Fig. 4), in which a health professional actor
access past medical examinations related to a specific patient
in order to review collected clinical information. This use
case has turned out to have the most relevant impact on
the perceived performance in the context-of-use and, at the
same time, constitutes a major scenario of interaction in
EHR systems.

4.1 Methodology of experimentation
We can expect that the response time of different storage

schemes be dependent on the complexity of the collection
of domain logic objects that are read-from or written-to the
persistence layer. Due to the pattern-based architecture of
classes in the domain logic, objects are organized in an al-
most tree-like structure, and their complexity can thus be
characterized in terms of number of nodes and depth of the
tree in the examination structure.

For this reason, we experimented with two different kind
of datasets: i) a real dataset of clinical examinations ac-
quired in the Empedocle EHR system for which we provide
a description of the statistics about the number of nodes and
the depth of the tree structure; ii) a synthetic dataset for
which we can control the statistics so as to stress the indexes
of complexity.

The real dataset consists of about 13 000 examinations 1

that belong to the same medical speciality and thus share
the same structure. Table 1 summarizes the complexity of
the examination structure, i.e. the number of FactTypes

included in each examination, which is the number of meta-
objects in the knowledge level. The structure of the exam-
ination includes 243+110+99 fields, which are organized in
a graph whose depth (intended as the maximum distance
from the root node) is equal to 8, and which includes 144
FactTypes that act as composition nodes.

Depth 8
Number of nodes 596

CompositeType 144
QualitativeType 243
QuantitativeType 110
TextuaType 99

Table 1: Characteristics of the considered examina-
tion structure in the dataset, with additional details
about the distribution of type nodes contained in the
structure. Of the 596 nodes that form the examin-
ation type, 452 nodes are leaf nodes, which actually
contain a value.

Note that, at the operational level, the complexity of the
tree structure depends on the course of each specific ex-
amination, and its statistic is resumed in Figs. 8 and 9.
Fig. 8 reports the distribution of examinations per number

1The real dataset was conveniently anonymized by omitting
patients’ personal information, and by obfuscating textual
observations recorded during each clinical session.
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Figure 8: The histogram describes the distribution
of examinations as the number of nodes varies. Note
that about 35% of the examinations in the dataset
are in the neighbourhood of 23±6, with peaks in 19,
20, 25 and 27. This shows clearly how, usually, only
a small part of the examination structure, compris-
ing 596 nodes, is actually filled out by health profes-
sionals. Only about 9% of the examinations in the
dataset have more than 70 nodes filled out.
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Figure 9: The histogram describes the distribution
of examinations as the depth increases. Note that
96% of the examinations in the dataset have depth
comprises between 4 and 6.

of nodes. Fig. 9 characterizes the distribution of examina-
tions per depth of the tree structure. From these statistics,
it is possible to note that the size of the tree-like structure
(composed by Facts) is always much lower than the size
of the corresponding graph structure (composed by Fact-

Types), which depends on the fact that, during a standard
clinical session, not all the observations allowed by the ex-
amination structure (≈ 600) are actually recorded.
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The synthetic dataset contains generated examinations
with a full binary tree structure, with depth ranging from 2
to 8. For each depth, a fixed number of 100 examinations
has been generated. Being a full binary tree, the number of
nodes n in each of the trees of depth d is given by:

n = 2d+1 − 1,

ranging from 3 to 511 nodes. The synthetic dataset does not
correspond to a real situation in the present context-of-use
of our EHR system, but it can become a possible scenario in
the evolution of the use of the Empedocle EHR system, and,
for this reason, represents a relevant part of the motivation
for this performance engineering investigation. In the more
general perspective of a reflection architecture, this corres-
ponds to the case where different courses can be described
on a structure with different degrees of completeness.

The evaluation has been carried out with reference to a
major scenario of interaction: a health professional accesses
a patient’s EHR content in order to review past medical
examinations and read collected clinical information. To do
that, each examination in the dataset has first been retrieved
and, then, a read-only operation has been performed in order
to simulate the real interaction of users with the EHR system
through the interfaces exposed by the Presentation Layer.

As a metric of performance, we evaluated the total time
required to complete the selected scenario, from data re-
trieving to data serialization, for all compared models. Note
that the examination retrieval also implies the retrieval of
the associated type structure. In the process of measuring
the total time, we do not distinguish time passed by the
various phases of data retrieval and process: specifically, we
measure the time to complete the whole use case, that com-
prises database retrieval operations, interactions with Java
database APIs or with the ORM persistence layer present
only in the relational case.

Experimental results not reported here indicate that the
ORM layer, implemented by Hibernate in the current ap-
plication stack, does not significantly impact the overall
performance, since it is optimized for the underlying data-
base technology [37, 38]. No comparison has been carried
out regarding storage space requirements for the considered
technologies, not representing a critical aspect for the EHR
system in the case under consideration.

The experiments were conducted on a computer with the
following characteristics: Debian 3.2.60 operating system,
with 2 x Intel Xeon E5640 @ 2.66 GHz 64-Bit CPU, and 32
GB of RAM Memory.

4.2 Results
Table 2 reports the results of the experimentation on the

real dataset, showing the mean value (µ), measured in ms,
and the coefficient of variation (CV ) of the time spent to
complete the read-only operation for a single examination
in the three implementations under test. These statistical
indexes were evaluated by repeating the task for 100 times
on all 12 953 examinations in the dataset.

In comparison with the MySQL + Hibernate implement-
ation, Neo4j reduces the retrieval time by approximately
1.5 times, and MongoDB reduces it by more than 33 times.
Performance with relational database such as MySQL are
deeply linked to the number of JOIN in the executed quer-
ies. For this reason, in the considered model, the retrieval of

µ (ms) CV min (ms) max (ms)
MySQL +
Hibernate

76.06 0.031 70.79 81.94

Neo4j 51.29 0.0024 50.94 51.57
MongoDB 2.27 0.064 1.82 2.57

Table 2: Comparison between MySQL+Hibernate,
Neo4j, and MongoDB, evaluated using the real data-
set comprising 12953 examinations. Table reports
the mean value (µ) and the coefficient of variation
(CV ) for the execution of a single examination, as
well as the minimum (min) and maximum (max) ex-
ecution time registered during the 100 iterations for
a specific technology.

specific classes of Facts has a different impact on the com-
plexity of the query. In particular, since CompositeFacts

represent hierarchical structures in the Facts tree, querying
operations result in a higher number of JOINs, which pro-
duces a significant impact on performance, documented by
[5] as “N+1 queries” data access anti-pattern or “Circuitous
Treasure Hunt” problem. In a similar way, Quantitative-
Facts and QualitativeFacts also produce more complex
queries, since an additional JOIN operation is required to
retrieve related Phenomena and Units.

Table 3 shows the results of experimentation on the syn-
thetic dataset. We report the mean value (µ), measured in
ms, and the coefficient of variation (CV ) of the time spent
to complete the read-only operation for a single examina-
tion in the three implementations under test, evaluated by
repeating the task for 100 times on all 100 examinations in
the dataset. Results indicate that MongoDB attains by far
a better performance and slower sensitivity to the examin-
ation depth. It should also be noted that the MySQL +
Hibernate implementation performs better than Neo4j for
examination with depth lower than 7.

Depth
MySQL +
Hibernate

Neo4j MongoDB

µ (ms) CV µ (ms) CV µ (ms) CV
2 6.93 0.12 18.76 0.12 1.07 0.05
3 9.54 0.11 19.41 0.09 1.2 0.06
4 12.6 0.1 21.57 0.09 1.38 0.07
5 18.87 0.09 26.04 0.08 1.64 0.07
6 28.17 0.09 33.94 0.05 2.2 0.07
7 48.18 0.08 44.03 0.05 3.05 0.08
8 121.29 0.04 72.93 0.05 4.88 0.07

Table 3: Comparison between MySQL+Hibernate,
Neo4j, and MongoDB, evaluated using the synthetic
dataset comprising 100 examinations with increas-
ing depth. Table reports the mean value (µ) and
the coefficient of variation (CV ) for the execution of
a single examination. Results in the table show that
the MySQL + Hibernate implementation performs
better than Neo4j for examination with depth lower
than 7, while MongoDB attains by far a better per-
formance and slower sensitivity to the examination
depth.
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5. CONCLUSIONS
In this paper we described a consolidated software archi-

tecture, pattern-based, which persistence data layer was ori-
ginally based on the MySQL relational database and JPA.
Using a model-driven approach we described new data per-
sistence models based on promising NoSQL technologies,
such as Neo4j [16] and MongoDB [17]. These models have
been engineered to balance in the best way elements such as:
ease of conversion, embedding and references, granting data
integrity and equivalence in the information representation
with the relational model.

We presented experimental results on performance gain
achieved through the use of such databases. The compar-
ison is based on the study of the real world scenario of our
EHR system, called Empedocle, based on the Observations
& Measurements [4] and Composite [20] patterns, where
the main requirement is the structure flexibility. Since the
considered NoSQL databases do not have a fixed schema,
non-functional requirements of changeability and adaptab-
ility can be easily achieved. In addition, they constitute a
good solution for big clusters of data which structure is sub-
ject to change over time.

Performance results obtained during experimentations in
real and synthetic datasets indicate a clear gain in perform-
ance through the use of MongoDB database, and more gen-
erally, a better scalability of NoSQL solutions when the
depth of the examination structures grows, due to the in-
creased number of JOINs and reference operations affecting
the MySQL solution. Moreover, both tested NoSQL tech-
nologies offer advantages in terms of flexibility in the data
model, scalability and reliability.

Results also indicate a counter-intuitive conclusion: the
graph-oriented data model of Neo4j allows a more natural
and direct data conversion, which also permits a simpler im-
plementation; however, the document-oriented data model
of MongoDB produces by far better performance results.
Specifically Neo4j, which modeling is more natural in our
software architecture context, presents a performance in-
crease of 1.5 times compared to MySQL + Hibernate. On
the other hand, MongoDB, which required a bigger engineer-
ing investment to convert our data model balancing between
redundancy, adaptability and performance, presents a gain
of almost 33 times compared to MySQL + Hibernate.

The present investigation is completely open to explore
the performances of NoSQL databases in other use cases,
not only limited to read-only operations, but also extended
to write and update scenarios, whose impact on the applic-
ation is less relevant but nonetheless interesting to have a
full comparison between the various models [39].
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