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ABSTRACT
Measurements for distributed algorithms, such as perfor-
mance results, are usually reported using averages, similarly
to prevailing practice in other areas of computer science. We
argue that including standard deviations offers additional
information and that the minimal burden of providing stan-
dard deviations is outweighed by the benefits. We propose
a new way of reporting run time speedup that incorporates
standard deviation and demonstrate its usefulness in terms
of two distributed graph algorithms.
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1. INTRODUCTION
The increasing complexity of the software/hardware stack

of modern machines, especially supercomputers, has made
it hard to analyze performance of different algorithms for
large-scale applications and reproduce relevant empirical re-
sults across different platforms. The variabilities incurred
during reproduction of experimental results are generally
acknowledged by the community and are attributed to the
platform-dependent many-dimensional parameters. Consider-
ing all factors involved in experimental design, performance
analysis has become an experimental science, made even
more challenging due to the presence of massive irregularity
and data dependency in important emerging problem areas.
Hence, the baseline experimental analyses seldom incorpo-
rate uncertainty measures while reporting performance and
thus lack in giving insight about an algorithm’s performance.

Recently, Hoefler and Belli [14] compiled several guidelines
to report results and advocated for the term interpretability
in place of reproducibility. The authors call an experiment
interpretable “if it provides enough information to allow sci-
entists to understand the experiment, draw own conclusions,
assess their certainty, and possibly generalize results”. Many
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papers in which experimental algorithms are proposed, lack
the characteristic of being interpretable. In the papers report-
ing parallel performance, the general trend is to mention the
performance of an algorithm in terms of speedup. Speedup
is a metric for relative performance, defined as ratio of per-
formance results (execution times). Typically, it is stated
as a single number. However, due to different execution
environments, system noise, network congestion etc., execu-
tion times are hardly deterministic. Hence, for example, a
statement ”algorithm A runs X times faster than algorithm
B” is not always true. The speedup X should be bounded
by an upper and lower limit based on the uncertainties from
a set of sample runs. Some questions, for example: whether
the execution times are normally distributed or not, how
many runs are sufficient to predict the behavior of an algo-
rithm, etc. remain at large and can, at least in principle,
be tackled by some standard statistical methodologies (for
example: Analysis of Variance (ANOVA) for the last case).
However, compounding the issue is the expense of running
experiments on supercomputers.

Another aspect of interpreting performance results comes
from their role in aiding design of software systems. For
example, our primary interest centers on designing runtime
system for exascale. We use, e.g., performance of mini apps
to guide the development of the runtime system. In this
context, the goal is not to answer fundamental questions
regarding validity of statistical approach; rather, it is to infer
insight about the system such identifying bottlenecks. It is
not desirable to run many experiments both due to cost and
due to time it takes; on the contrary, we want to maximize
insight while minimizing number of runs even if it is at the
expense of rigor.

A good example to investigate the implications of proper
performance reporting are irregular applications such as dis-
tributed graph algorithms. We have shown previously that
for performance engineering of distributed graph algorithms,
concentrating on the algorithm part of the application is not
sufficient [10]. We called for more transparency in reporting
results in literature, and advocated for documenting lower
level runtime features that are usually overlooked [9]. This
would allow us collectively construct a deeper understand-
ing of these complex issues in order to uncover practical
implications for performance engineering.

In order to be able to learn as a community, lessons learned
across the field need to be generalizable and transferable.
This condition is a given in hard sciences such as physics
where what we know and how well we know it is insepa-
rable. However, in computer science reporting results of
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experiments falls short of this expectation (for review, see
[14]). As previously mentioned, what is typically reported
are mean values without uncertainty of measurements. Thus,
rigorously speaking, comparing results across different exper-
iments or runs is not meaningful. The lack of rigor at this
level percolates to undermine the ability to draw conclusions
about more complex phenomena.

In this study we examine how inclusion of standard de-
viations of measurements illuminates performance results.
For simplicity, we consider different runs on the same su-
percomputer. Each run consists of solving a set of problem
instances. We acknowledge that methodologically, experi-
ments in computer science are not as clear-cut as in physics,
and lie somewhere in between physics and social science [17]
inquiry.

Standard deviation is arguably the simplest of statistical
measures, and is adequate in much of physics measurements.
It is easy to implement, and we posit that it would improve
the state of experiment analysis for practitioners. For these
reasons, adding standard deviation as a measure of uncer-
tainty is the focus of this present work. Moreover, standard
deviation enable to expand definition of speedup, a commonly
reported quantity, in a more meaningful way that allows for
comparison across different runs and experiments. We refer
to the expansion as adjusted speedup equation.

For the purpose of our study, we have chosen the prototyp-
ical irregular problem of graph traversal, in particular the
single source shortest path (SSSP) problem. Graph traversal
is a basic building block of other graph algorithms used in
social network analytics, transportation optimization, artifi-
cial intelligence, power grids, and, in general, any problem
where data consists of entities that connect and interact in
irregular ways. Given a source and a destination in a graph,
the SSSP problem asks to find the shortest route between
the source and the destination. Specifically, we have chosen
two different algorithms for finding single-source shortest
paths, ∆-stepping algorithm [19] and K-level Asynchronous
algorithm (KLA) [13], implementeded in two asynchronous
many-task runtime systems called High Performance Par-
alleX 5 (HPX-5)[2] and AM++ [24]. The study was done
within the context of development work of HPX-5.

The paper is organized as follows. Sec. 2 gives a summary
of the method for evaluating and expressing uncertainty
when multiple input quantities are involved. We then pro-
pose an adjusted speedup equation based on this discussion.
Next, to make the paper self-contained, in Sec. 3, we give
a brief overview of ∆-stepping and KLA based SSSP algo-
rithms. In Sec. 4, we discuss the High Performance ParalleX
5 (HPX-5) and AM++ runtime we used to implement our
SSSP algorithms. In Sec. 5, we show how including standard
deviation in presenting and comparing performance results
conveys valuable information that would otherwise be impos-
sible to infer. In Sec. 6, we give a synopsis of related work.
We provide our concluding remarks in Sec. 7.

2. STATISTICS OF UNCERTAINTY MEA-
SUREMENTS

Calculation of speedup involves independent measurement
of some metric (e.g., execution time, TEPS, etc.). Each
of these independent performance metrics has uncertainty
associated with it. When computing speedup, each of these

uncertainties should be taken into account. In this section,
we first recap the NIST [3] guidelines on uncertainty of
measurement results, which dictate how to calculate output
uncertainty when two or more independent inputs and their
associated uncertainties are involved. Next, we use the NIST
guidelines to propose an adjusted speedup equation, taking
into consideration the associated uncertainties of performance
metrics.

2.1 Background
National Institute of Standards and Technology (NIST) [3]

provides guidance regarding uncertainty in physical exper-
iments. Consider a quantity Y being measured, called the
measurand, that can be expressed as a function of N other
quantities X1, X2, . . . , XN

Y = f (X1, X2, . . . , XN ) . (1)

These quantities X1, X2, . . . , XN can include other factors
involved in a physical experiment, such as different observers,
instruments, samples, laboratories and times at which ob-
servations are made. Consequently, the function f should
contain all quantities that can contribute a significant uncer-
tainty to the measurement result.

The estimate of the measurand or output quantity Y
denoted by y, is derived from Eq. (1) using input esti-
mates x1, x2, . . . , xN for the values of N input quantities
X1, X2, . . . , XN . Thus, the estimate of measurand is

y = f (x1, x2, . . . , xN ) . (2)

The uncertainty of the measurement result y emerges from
the component uncertainties u(xi), or ui for brevity, of the
input estimates xi. Components of the uncertainty can be
divided into two categories according to the method used to
evaluate them: 1)Type A Evaluation: Method of evaluation
of uncertainty is based on the statistical analysis of the
series of observations; and 2)Type B Evaluation: Method
of evaluation of uncertainty is based on means other than
the statistical analysis of the series of observations. (These
were formerly known as random and systematic uncertainty,
respectively. NIST cautions against the old terminology since
it can be misleading.) However evaluated, each component
of uncertainty, ui is equal to the positive square root of the
estimated variance.

A useful quantity is the relative standard uncertainty de-
fined as

ur(xi) =
u(xi)

|xi|
. (3)

where xi is assumed nonzero.
In this paper, we are interested in Type A evaluation. Let

us consider the input quantity Xi. If we get the values for
this input quantity by n independent observations Xi,k under
the same condition of measurement, then the input estimate
xi can be represented as the sample mean

xi = Xi =
1

n

n∑
k=1

Xi,k. (4)

An uncertainty component obtained by a Type A eval-
uation is represented by statistically estimated standard
deviation σi of the sample mean, equal to the positive square
root of the statistically estimated variance σi

2 and the associ-
ated number of degrees of freedom vi. For such a component,
the standard uncertainty is ui = σi.
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u(xi) = ui = σi =

(
1

n(n− 1)

n∑
k=1

(Xi,k −Xi)
2

) 1
2

. (5)

If multiple quantities X1,X2, . . . , XN are involved in the
calculation of estimate y, the combined standard uncertainty
of measurement results, denoted by σ(y), and representing
the estimated standard deviation of the result, is the positive
square root of the estimated variance σ2(y) obtained from,

σ2(y) =

N∑
i=1

(
∂f

∂xi

)2

σ2(xi) + 2

N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
σ(xi, xj).

(6)
Equation (6) is based on a first-order Taylor series ap-

proximation of the measurement equation Eq. (1) and is
referred to as the law of propagation of uncertainty. The
partial derivatives of f w.r.t. the Xi are called sensitivity
coefficients, and are equal to the partial derivatives of f w.r.t
the Xi evaluated at Xi = xi. σ(xi) is the standard uncer-
tainty associated with the input estimate xi; and σ(xi, xj) is
the estimated covariance associated with xi and xj . If the
input estimates xi of the input quantities Xi can be assumed
to be uncorrelated, then the second term vanishes.

As mentioned in [4], if the probability distribution char-
acterized by the measurement result y and its combined
standard uncertainty σ(y) is approximately normal (Guas-
sian), and σ(y) is a reliable estimate of the standard deviation
of y, then the interval y − σ(y) to y + σ(y) is expected to en-
compass approximately 68% of the distribution of values that
could reasonably be attributed to the value of the quantity
Y of which y is an estimate. This implies that it is believed
with an approximate level of confidence of 68% that Y is
greater than or equal to y − σ(y) and less than or equal to
y + σ(y) which is commmonly written as Y = y ± σ(y).

2.2 Adjusted Speedup Equation
Let us assume that the average (mean) execution time for

Algorithm A and Algorithm B is t̄A and t̄B , respectively. Let
us denote the standard deviations σA and σB , and assume
that execution times for Algorithm A and Algorithm B
are independent of each other. Typically, speedup S of
Algorithm B over Algorithm A is calculated as a ratio of the
two execution times:

S =
t̄A
t̄B
. (7)

The uncertainly component, associated with t̄A and t̄B con-
tributes to the calculation of combined standard uncertainty
of the measurement result S. As t̄A and t̄B measures are
uncorrelated, according to Eq. (6), the combined standard
uncertainty σ of the measurement result S is

σ2 =
1

t̄2B
σA

2 +
t̄2A
t̄4B
σB

2. (8)

Note that σ, just as the speedup S, is dimensionless while
the standard deviations associated with execution times are
dimensionful. We propose that speedup is reported with its
uncertainty,

Sadj = S ± σ, (9)

which, combining Eq. (8) and Eq. (9), yields adjusted
speedup equation in terms of observables t̄A, t̄B , σA, σB :

Sadj =
t̄A
t̄B

±
1

t̄B

√
σA

2 +
t̄2A
t̄2B
σB

2. (10)

3. OVERVIEW OF SSSP ALGORITHMS
Large scale graph processing requires distribution of the

graph across multiple nodes and employing a distributed
algorithm. Performance engineering for distributed graph
algorithms is inherently difficult due to the irregular memory
access patterns [18]. Graph algorithm performance depends
not only on the algorithm logic but also on factors such as the
runtime system, synchronization, lock-free data structure,
processing order, etc. In this paper, we demonstrate the
usefulness of including uncertainty measurement with the
example of single source shortest path problem solved by two
different distributed algorithms: ∆-stepping and KLA.

Conceptually, all data driven graph algorithms can be
described as an Abstract Graph Machine (AGM) [16]. The
primitive unit of processing in AGM is a work item, which is a
tuple that has a vertex or an edge together with several graph
properties. For example, a SSSP work item will have a vertex
and distance. AGM comprises of a work item processor and
a work item ordering component. The processor executes
basic algorithm logic (e.g., the “relax” operation in SSSP).
The ordering component partitions work items into ordered
equivalence classes and feeds the smallest partition back into
the processor.

Definition 1. An Abstract Graph Machine(AGM) is a
5-tuple (G, WorkItems, PF, <wis , S), where

1. G = (V, E) is the input graph,

2. WorkItems ⊆ (V × P0 × P1 · · · × Pn) where each Pi

represents a graph property,

3. PF : WorkItems −→ P (WorkItems) is the processing
function,

4. <wis - Strict weak ordering relation defined on
WorkItems

5. S (⊆WorkItems) - Initial WorkItems set.

The AGM processing is driven by the WorkItems. The
initial WorkItems set, WIS0 = S. Let WIS current be the
currently processing WorkItems set, then we calculate the
next active WorkItems set as follows;

Input to the processing function :–
WIS in = Ordering(WIS current)

Let, SPF (⊆WorkItems) = ∪
wj∈WISin

PF (wj)

Now we calculate next WorkItems set as follows;
WISnext = SPF ∪ (WIS current −WIS in)

The AGM terminates when WISnext = {}.

Figure 1 depicts how ordering and processing functions
interact with each other. Next we describe KLA and ∆-
stepping algorithm in terms of AGM. Interestingly, most
of the algorithms share a common processing function. In
general the SSSP processing function (SSSP PF ) can be
defined as follows:
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Processing Function

Ordering

Figure 1: An Overview of Abstract Graph Machine

Figure 2: How ∆-stepping algorithm works

Definition 2. SSSP PF : SSSP WorkItems −→
Partition P (SSSP WorkItems)

SSSP PF (w) =



{wk|wk[0] ∈ neighbors(w[0]) and

wk[1] = w[1] + weight(w[0], wk[0])}
if w[1] < distance(w[0])

{} else

3.1 ∆-Stepping Algorithm
∆-Stepping [19] arrange tasks into distance ranges (buck-

ets) of size ∆(∈ N) and execute buckets in order. Within a
bucket, tasks are not ordered, and can be executed in any
order ( Fig. 2 ). Processing a bucket may produce extra work
for the same bucket or for the successive buckets.

Definition 3. <∆ is a binary relation defined on SSSP
WorkItems as follows; Let w1, w2 ∈ SSSP Workset, then
w1 <∆ w2 iff bw1[1]/∆c < bw2[1]/∆c

∆-Stepping algorithm partition SSSP WorkItems set based
on relation <∆ (<∆ is a strict weak ordering relation.)

Proposition 1. ∆-Stepping Algorithm is an instance of
AGM where

1. G = (V, E) is the input graph

2. WorkItems = SSSP WorkItems

3. PF = SSSP PF

4. Strict weak ordering relation <wis = <∆

5. S = {<vs, 0>} where vs ∈ V and vs is the source
vertex.

3.2 KLA SSSP Algorithm
The KLA SSSP algorithm [13] requires both Distance

property and Level property in the WorkItems set. The
Level property is needed to track the number of levels, k,

Figure 3: How algorithms progress in KLA paradigm

asynchronously processed ( Fig. 3 ). Therefore, we define
SSSP KLA WorkItems ⊆ (V ×Distance× Level).

The processing function for KLA SSSP is defined in Defi-
nition 4.

Definition 4. KLA PF : SSSP KLA WorkItems −→
P (SSSP KLA WorkItems)

KLA PF (w) =



{wk|wk[0] ∈ neighbors(w[0]) and

wk[1] = w[1] + weight(w[0], wk[0])

and wk[2] = w[2] + 1}
if w[0] < distance(w[0])

{} else

The strict weak ordering relation for SSSP KLA is defined
in Definition 5:

Definition 5. <sssp kla is a binary relation defined on SSSP
KLA WorkItems as follows:
Let w1, w2 ∈ SSSP KLA WorkItems, then;
w1 <sssp kla w2 iff bw1[2]/kc < bw2[2]/kc

Note, the definition of <sssp kla is quite close to the defini-
tion of <∆.

KLA SSSP algorithm partition SSSP WorkItems set based
on relation <sssp kla (<sssp kla is a strict weak ordering rela-
tion.)

Proposition 2. KLA SSSP Algorithm is an instance of
AGM where;

1. G = (V, E) is the input graph

2. WorkItems = SSSP WorkItems

3. PF = KLA PF

4. Strict weak ordering relation <wis = <sssp kla

5. S = {<vs, 0>} where vs ∈ V and vs is the source
vertex.

4. OVERVIEW OF THE RUNTIMES
We implemented two SSSP algorithms in two different

runtime systems, AM++ [24] and HPX-5 [2]. HPX-5 is a
high performance runtime library whose implementation is
based on the the ParalleX execution model [6] targetted for
exascale computing. AM++ is our legacy system centered
around active messaging of the Active Pebbles [25] model.
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HPX-5 comprises of a set of main components: localities,
global memory, Lightweight threads and actions, Lightweight
Control Objects (LCO) and parcels. These components along
with the scheduler and network transport drive program ex-
ecution in HPX-5. HPX-5 is intended to enable dynamic
adaptive resource management and task scheduling. It cre-
ates a global name and address space (Partitioned Global
Address Space (PGAS) and Active Global Address Space
(AGAS) ) structured through a hierarchy of processes, each
of which serve as execution contexts and may span multiple
nodes. It is event-driven, enabling the migration of continua-
tions and the movement of work to data, when appropriate,
based on sophisticated local control synchronization objects
(e.g., futures, dataflow). HPX-5 is an evolving runtime sys-
tem being employed to quantify effects of latency, overhead,
contention, and parallelism. These performance parameters
determine a tradeoff space within which dynamic control
is performed for best performance. It is an area of active
research driven by complex applications and advances in
HPC architecture.

AM++ supports fine-grained parallelism of active messages
with communication optimization techniques such as object-
based addressing, active routing, message coalescing, message
reduction, and termination detection. While less feature-
rich than HPX-5, active messages share the fine-grained
parallelism approach with HPX-5. In addition, AM++ is
a relatively well-optimized implementation to balance the
competing needs of quick delivery of work vs. minimal
communication overhead.

While AM++ and HPX-5 share some features and goals,
there are important differences between them. AM++ is
designed for bulk processing of distributed messages, while
HPX-5 is a complete system providing inter and intra-node
parallelism. HPX-5 provides global address space while
AM++ provides only a lightweight object-based addressing
layer. In HPX-5 work is divided into first-class tasks with
stacks, while AM++ only executes message handler functions
on the incoming message data. These features result in
significant differences in scheduling.

5. INSIGHTS FROM THE STANDARD DE-
VIATION

In this section we illustrate how including standard devia-
tions provides additional insight that is not evident from the
averaged quantities alone. We present weak scaling perfor-
mance measurements obtained during development of HPX-5
runtime, to indicate how this way of looking at data can
aid in development process. For comparison, we run the
same experiments under a different, less feature rich, but
comparatively well optimized runtime, AM++. We imple-
mented KLA and ∆-stepping algorithms in these runtimes.
Both of these algorithms combine asynchronous processing
with a global synchronization barrier. The degree of asyn-
chrony is regulated by a parameter (k in KLA and ∆ in
∆-stepping). For the results presented here for HPX-5, we
used k = 2 and ∆ = 1 which minimize the asynchronous
work.1 Even with these choices, depending on the input data,
KLA can be expected to perform more asynchronous work
than ∆-stepping.

1 The reader is reminded that we wanted to document how the pro-
posed methodology aids in development. We are not attempting
to achieve optimal performance or to test the algorithms.

Figure 4: Weak scaling results for KLA (top) and ∆-stepping
(bottom) on HPX-5 with standard deviations for 5 runs. The
central point for each run is the average time for the run;
the error bars show the standard deviation. Maximum edge-
weight for the input graph is 255.

5.1 Experimental Setup
We conducted our experiments on Indiana University’s

BigRed 2 Cray XE6/XK7 supercomputer [1]. The compute
nodes are connected with Gemini interconnect. Each com-
pute node contains two AMD Opteron 16-core Abu Dhabi
x86 64 CPUs and 64 GB of RAM. We used 16 threads per
compute node for both AM++ and HPX-5. We compiled our
program with gcc version 4.9.3 compiler with optimization
flag O3 enabled.

For input graph generation process, we used Graph500
specification [5] with RMAT generator. Edge weights are
assigned based on a pseudo-random number generator. For
both AM++ and HPX-5 weak scaling results in terms of
execution time and speedup, we used 1, 2, 4, 8 and 16
computing nodes for scale 14, 15, 16, 17 and 18, respectively.
By scale x, we mean there are 2x vertices in the generated
graph.

Each data point at a given scale shows one run encom-
passing 8 different problem instances. Problem instances
correspond to different starting points (sources). Both al-
gorithms exhibit some sensitivity to the starting point. We
find that the sensitivity appears to be consistent, and thus,
an inconsistency suggests occurrence of a systemic effect. As
evident from the figure, we measured 5 runs for each scale.
We calculated the speedup by taking the ratio of execution
time for KLA to ∆-stepping algorithm.

5.2 Reporting Speedup Uncertainty

5.2.1 On HPX-5 Runtime
Figs. 4 and 6 show weak scaling results on HPX-5 run-

time for ∆-stepping and KLA SSSP algorithms with two
different input graphs with maximum edge weight of 255
and 100, respectively. We chose two different graph inputs
to verify whether the anticipated speedup plots (discussed
later) have similar trends. The error bars shown correspond
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Figure 5: Adjusted speedup (ratio of KLA and ∆-stepping ex-
ecution time) on HPX-5 with calculated standard deviations.
Maximum edge-weight for the input graph is 255.

Figure 6: Weak scaling results for KLA (top) and ∆-stepping
(bottom) on HPX-5 with standard deviations for 5 runs. The
central point for each run is the average time for the run;
the error bars show the standard deviation. Maximum edge-
weight for the input graph is 100.

Figure 7: Adjusted speedup (ratio of KLA and ∆-stepping ex-
ecution time) on HPX-5 with calculated standard deviations.
Maximum edge-weight for the input graph is 100.

to the standard deviations of the average execution times. ∆-
stepping algorithm is faster than KLA. The figures show that
in comparison to ∆-stepping, the standard deviations from
the average execution time are larger for KLA algorithm.

Although this observation is intuitive and is incorporated
in practice to-date, the next related question to ask ourselves
is what speedup can we anticipate when comparing the ex-
ecution times for both algorithms on different runtimes or
even across different runs on the same runtime? Is there a
way to quantify the observable uncertainty in speedup by in-
corporating simple measurement like combining uncertainty
measures for average execution times for both algorithms?
Is saying that an algorithm runs “five times” faster good
enough? We address these questions next in connection
to Sec. 2.2, where we presented an equation to calculate
adjusted speedup. Figures 5 and 7 present the speedup plots
with standard deviations, calculated from Eq. (10). In all
5 runs, we use the same input and problem instances for a
particular scale. As can be seen from the figure, the speedup
can be expected to vary significantly within the approximate
range of 3 to 11. But interestingly all the averages across
different runs lie within the range indicated by the standard
deviations for all 5 runs. For example, in Fig. 5, we can see
that average speedup for run 1 centers around 6 for most
cases except for scale 15, due to distributed execution on 2
nodes. But as we increase the number of nodes, the speedup
again settles around 6 due to increasing network latency.
Additionally, we can see that speedups across different runs
cluster together pretty well. This is helpful in conjunction
with the calculated deviation for speedup (Eq. (8)). Assum-
ing that the combined uncertainty for speedup is normally
distributed, Figs. 5 and 7 shows us the expected range of
speedups with approximate level of confidence of 68%. More-
over Figs. 5 and 7 both show similar speedup behaviour for
two different graph inputs.

5.2.2 On AM++ Runtime
Figure 8 and Fig. 9 show weak scaling results on AM++.
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Figure 8: Weak scaling results for KLA and ∆-stepping on
AM++ with standard deviations for 5 runs. The central point
for each run is the average execution time for the run; error
bars show the standard deviation. Maximum edge-weight
for the input graph is 100.

Figure 9: Adjusted speedup (ratio of KLA and ∆-stepping ex-
ecution time) on AM++ with calculated standard deviations.
Maximum edge-weight for the input graph is 100.

As both ∆-stepping and KLA algorithms execute faster on
AM++, the standard deviations of the average of the execu-
tion time is small in AM++ compared to HPX-5. Since the
execution times for both of the algorithms are significantly
less, the speedup variability is also small in AM++, as can
be seen from Fig. 9. This is particularly true as we increase
the scale, for example scale 17 and 18.

5.2.3 Comparing Speedup Across Runtimes
More importantly, including speedup variability can give us

additional information about the performance of ∆-stepping
and KLA across two different runtimes AM++ and HPX-5.
From Fig. 5 we can see that the speedup on HPX-5 centers
around 6 and varies approximately within the range of ±3.
From Fig. 9 we see that the speedup on AM++ is around
2 with an approximate range of ±1. So the variability in
speedup is roughly 50% in both cases.

5.2.4 Usefulness of Relative Standard Uncertainty
We also calculate relative standard uncertainty (RSU)

from Eq. (3). We plot the calculated RSUs in Figs. 10
to 12. These plots, based on standard deviation calculation
are also useful.

For example, in Fig. 11, for scale 17 with 8 nodes, the RSU
for KLA algorithm for run 2 is about 0.5. We investigated
why this is the case and found out that problem instance
7 took 50% more time compared to the average execution
time. Then, we looked into the execution time for problem
instance 7 from other runs (for example Table 1 compares
KLA algorithm execution time from run 2 and run 5). We
saw that, with KLA, problem instance 7 consistently took
longer time to finish across different runs. But it took the
maximum time in run 2. This additional insight lend problem
instance 7 for further investigation. We would have lost this
valuable information if we only considered average execution
time. Computing standard deviation and taking it into
consideration as a measure for uncertainty empowers us with
supplementary information.

We can also see that all the datapoints with maximum
RSUs belong to KLA algorithm executions. This is an indi-
cation that KLA implementation in HPX-5 exercises certain
runtime scheduling and network communication patterns
which stress the runtime. It also tells us that KLA algorithm
is more sensitive to the starting point (source vertex) of a
SSSP problem. Based on this observation, we took a second
look at the execution time of each individual SSSP problem
instance for both ∆-stepping and KLA algorithms. We found
out that ∆-stepping algorithm solves each problem instance
within an average execution time of 15 seconds, having small
variability in execution time for each problem instance. On
the other hand, KLA execution time varies hugely among
different problem instances. It is anticipated that, based
on the problem instance (source) and graph input, different
problem instance will take unequal time. But the execu-
tion time for ∆-stepping algorithm suggests that there is a
better way to schedule tasks within runtime. This insight
can be useful to optimize KLA algrithm’s execution time
by gathering statistics about number of exchanged network
messages, scheduling polcies like number of work stealing,
thread yielding, queue size of workitems etc. We leverage
instrumentation infrastructure in HPX-5 for this purpose.

We have another interesting observation with reference
to Fig. 12. Again, on AM++ for scale 17 with 8 nodes, we
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Figure 10: Relative standard uncertainty of execution time
in HPX for ∆-stepping and KLA algorithms. Maximum
edge-weight for the input graph is 255.

Figure 11: Relative standard uncertainty of execution time
in HPX for ∆-stepping and KLA algorithms. Maximum
edge-weight for the input graph is 100.

see that the RSUs are quite close for both algorithms. This
also calls for further investigation.

6. RELATED WORK
Several researchers pointed out the shortcomings of pre-

sented results in computer science literature. Mytkowicz
et al. [20] showed that seemingly innocuous experimental
setup details, such as the UNIX environment size or the
benchmark link order, can introduce a significant measure-
ment bias in a system evaluation. Harji et al. [12] discussed
about bugs and performance regressions that result as the

Figure 12: Relative standard uncertainty of execution time
in AM++ for ∆-stepping and KLA algorithms. Maximum
edge-weight for the input graph is 100.

Linux kernel evolves. For a comprehensive summary of re-
lated research see [8, 14].

A lot of attempts and proposals have been made to make
computer and computational science experiments reproducible.
Guerrera et al. [11] partitioned the space of computational
experiments into problem, method, and system. Based on
this partitioning, they bring forth a taxonomy for stencil
benchmark results and categorized them as replicable, re-
computable, and reproducible. Hunold and Träff [15] also
urged for reproducible parallel computing research. Several
researchers [21–23] advocated for including statistical anal-
yses in computer science experiments. de Oliveira et al.
[7] successfully demonstrated the use of quantile regression
instead of ANOVA for non-normally distributed data to con-
duct performance evaluation. Very recently, Hoefler and Belli
[14], coined the term interpretability and recommended a
set of guidelines for scientific benchmarking based on statis-
tical analyses. Their recommendation is based on the fact
that algorithms designed for supercomputers heavily rely on
particular architectures and execution environments, thus
making reproducibility harder.

7. CONCLUSION
Performance engineering hinge on understanding results of

conducted experiments. The key is to identify the bottlenecks
and then put a concerted effort in removing these bottle-
necks and optimize runtime parameters. For distributed
algorithms, where complex machine architecture, network
and system environment are integral part of execution, un-
predictable behavior can always happen in any part of the
system stack. We should account for uncertainty involved
during the experiments. In this paper, we proposed a new
equation to calculate speedup and showed how inclusion of
standard deviation provide some insights about uncertainties
associated with performance of algorithms. Under additional
assumptions about the underlying distribution, the formula
we introduced can become powerful tool to compare perfor-
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Table 1: Execution time for KLA for different problem instances

Run
Problem Instances

1 2 3 4 5 6 7 8
2 67.1721137 69.1144691 58.2407584 95.0383578 81.5043034 66.1346017 196.359002 71.0783083
5 68.2187308 64.6999926 73.1340169 66.5868368 111.286377 78.3502649 127.3131639 96.6814628

mance across different set of parameters such as runtimes,
algorithms etc. Any further interpretation of combined un-
certainty is subject to future investigation.
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