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ABSTRACT

In production environments, runtime performance monitor-
ing is often limited to logging of high level events. More
detailed measurements, such as method level tracing, tend
to be avoided because their overhead can disrupt execu-
tion. This limits the information available to developers
when solving performance issues at code level.

One approach that reduces the measurement disruptions
is dynamic performance monitoring, where the measurement
instrumentation is inserted and removed as needed. Such se-
lective monitoring naturally reduces the aggregate overhead,
but also introduces transient overhead artefacts related to
insertion and removal of instrumentation. We experimen-
tally analyze this overhead in Java, focusing in particular
on the measurement accuracy, the character of the transient
overhead, and the longevity of the overhead artefacts.

Among other results, we show that dynamic monitoring
requires time from seconds to minutes to deliver stable mea-
surements, that the instrumentation can both slow down
and speed up the execution, and that the overhead artefacts
can persist beyond the monitoring period.
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1. INTRODUCTION

Software performance is not only a common term, but also
something of a misnomer, because it suggests performance
is a property of software. In reality, software performance is
a product of executing the software on a particular platform
and neither the software nor the platform alone determines
performance. This is also one of the reasons why perfor-
mance monitoring is used — by observing the actual perfor-
mance, it takes into account the software, the platform and
the workload, something that is difficult to do otherwise.
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Technically, essential tasks of performance monitoring in-
clude data collection and data storage or data processing, or
both. These tasks consume resources, giving rise to monitor-
ing overhead. The overhead can easily range from units of
percent — for example when monitoring selected methods in
an enterprise benchmark application [36] — to orders of mag-
nitude — for example when collecting calling context profile
in standard application benchmarks [29]. This is obviously
a practically significant factor.

Because the monitoring overhead depends on the amount
of data collected, it can be reduced by collecting less data at
fewer locations. Particularly interesting is dynamic monitor-
ing, where individual components of the monitoring infras-
tructure are enabled and disabled, or even inserted and re-
moved, to cater to changing monitoring demands. Dynamic
monitoring support exists in many contexts, from operat-
ing systems [4, 25, 34] to enterprise application monitoring
frameworks [23, 5, 7].

An important influence on dynamic monitoring overhead
is exerted by probes — data collection components that are
inserted directly into the monitored application. Probes
can be inserted either through static instrumentation, which
happens before the monitored application is executed, or
through dynamic instrumentation, which happens during
execution. In the former case, the probe code is always
in place and contains support for enabling or disabling data
collection. In the latter case, the probe code is simply in-
serted or removed as needed. Dynamic instrumentation is
technically more challenging, because it entails modifying an
executing application, but also more attractive, because it
carries the implied promise of achieving zero overhead when
not collecting data.

In this paper, we focus on dynamic performance moni-
toring in the context of Java. Starting with version 1.6,
Java provides a standard support for changing the code of
an executing application through mechanisms called class
redefinition and class retransformation. By operating on
bytecode, these mechanisms are much more portable than
dynamic instrumentation based on machine code manipu-
lation, but also much less transparent where performance
overhead is concerned. We address this issue by presenting
an extensive overhead study focused particularly on dynamic
performance monitoring in Java.

We conduct our overhead study in the broader context of
our research on performance awareness. Our general goal is
to provide developers with information on software perfor-
mance that is timely and relevant — that is, presented at a



time and in a manner that makes it useful rather than dis-
tracting. Towards that goal, we have implemented a frame-
work capable of both static and dynamic performance mon-
itoring, which we use for example to answer performance
related queries in the context of regression testing [3] or
to provide performance information in software documen-
tation during development [12]. Here, we therefore analyze
the overhead of the framework.

The structure of the paper follows our main contributions.
In Section 2, we describe our performance monitoring frame-
work, with focus on dynamic instrumentation as the new fea-
ture. Section 3 contributes a detailed analysis of overhead
sources specific to dynamic instrumentation. In Section 4,
we present the experimental overhead evaluation itself. Re-
lated work discussion and concluding remarks close the pa-
per.

2. MEASUREMENT FRAMEWORK

Figure 1 presents a high level architecture of the perfor-
mance monitoring framework we use throughout this paper.
The framework executes in two virtual machines — the data
collection components reside in the same JVM as the mea-
sured application, the data storage and data processing com-
ponents use a helper JVM. This helps minimize the frame-
work footprint in the application JVM and provides the pos-
sibility of running the helper JVM on a separate host. It also
matches the architecture of the underlying instrumentation
framework we use, called DiSL [21].

The framework uses the launcher component to perform
the necessary initialization and set up the connection be-
tween the application JVM and the helper JVM. Once the
application executes, the measurement coordination compo-
nent decides when a measurement should start — depending
on circumstances, this can be in response to an interactive
developer request, favorable load conditions, or other trig-
gers. The component uses the control connection to de-
liver the instrumentation request to the application JVM,
where the transformation agent fires a class transformation
request. The application JVM reacts by asking the DiSL
agent to transform the measured class, the DiSL agent in
turn uses the DiSL framework in the helper JVM to per-
form the transformation — which in this case takes the form
of inserting probe code. Once the probe code is inserted, it
starts feeding measurements to the data transfer component,
which uses the data connection to deliver the measurements
to the helper JVM for processing. Similar process is used
when removing probe code.

Listing 1 provides a compact pseudocode listing of the
probe code. The code simply collects the time at the entry
to and the exit from the measured method — the somewhat
more complicated listing is due to the need to handle re-
cursion. When the probe is called recursively, only the top
level iteration is measured. The probe state is thread local,
implemented using efficient thread local variables offered by
DiSL. This minimizes synchronization.

We omit other elements of the framework, which are not
essential for the purpose of this paper. These include the
ability to differentiate between invocations of the same meth-
od based on the actual argument values, and the applica-
tions for regression testing and documentation generation.
For more details on the performance regression testing fea-
tures, refer to [3], for performance documentation generation
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Figure 1: High level architecture of the dynamic per-
formance monitoring framework.

features, refer to [12]. The framework is available as open
source at http://d3s.mff.cuni.cz/software/spl.

3. OVERHEAD SOURCE ANALYSIS

A characteristic feature of contemporary computing plat-
forms is the potential for complex interactions across mul-
tiple levels of the hardware and software stack. Dynamic
measurement instrumentation influences these interactions
in many ways, with the collective impact on performance
forming the observed measurement overhead. Here, we dis-
cuss the sources of measurement overhead relevant to Java-
like platforms — that is, platforms with applications written
in a high level language, garbage collected memory, dynamic
class loading and just-in-time (JIT) compilation. The dis-
cussion steers mostly clear of technical detail, available in
platform-specific sources such as [14].

3.1 Probe Presence

The instrumentation inserts probes directly into the ap-
plication, to be executed just before and just after the mea-
sured application code. The probe code consumes processor
resources just as the application code does, introducing ex-
ecution overhead.

As illustrated on Listing 1, the probe code samples time.
The part of the probe code situated between the sampling
points and the application code of interest will be measured
together, introducing systematic measurement error. With
some simplifications, the error is likely to be additive and
can be possibly compensated by calibration. The remaining
probe code, which resides outside the sampling points, is not
measured but still counts towards the application execution
time.

The systematic measurement error can grow when the
measured application code is called recursively. When this
is the case, the error accumulates with the depth of the re-
cursion and, except for the top level iteration, includes the
entire probe code rather than just the part of the probe be-
tween the sampling points. A similar situation arises when
multiple instrumented methods call each other.

When examined in detail, the execution overhead is fur-
ther influenced by interactions inside the processor microar-
chitecture. The probe code may or may not cause or suffer



> Thread local variable
recursion : map String to integer

> Invocation local variables
entryTime : integer
exitTime : integer

name : String

advice at method entry
> Call is converted to constant by DiSL
> at class loading (weaving) time
name < GETCURRENTMETHODNAME
INCREMENT (recursion[name])
> Time sampled close to real entry moment
entryTime <— GETCURRENTTIME

end advice

advice at method exit
> Time sampled close to real exit moment
ezitTime <— GETCURRENTTIME
name < GETCURRENTMETHODNAME
DECREMENT (recursion[name])
if at top level of recursion then
SENDMEASUREMENT (name, entryTime, exitTime)
end if
end advice

Listing 1: Probe pseudocode for dynamic instrumen-
tation.

relatively expensive events such as cache misses or branch
prediction failures, whose occurrence depends on the inter-
action with the surrounding application code. In principle,
applications that are particularly tightly tuned to the pro-
cessor microarchitecture — such as numerical applications
that rely on tiling to efficiently utilize caches [26] — may
be disrupted significantly, however, such tight tuning is not
common on platforms that do not expose memory layout to
applications.

With both the application and the probe written in a high
level language, control over the execution overhead is some-
what limited. Still, it is possible to minimize the overhead
by structuring the probe code so that the sampling points
are close to the measured application code and by avoid-
ing potentially expensive constructs such as synchronization
or polymorphic invocations. Ultimately, the overhead de-
termines practical measurement granularity — if the overall
disruption to application execution is to be reasonable, the
measured application code should execute orders of magni-
tude longer than the probe code.

3.2 Code Manipulation

The code manipulation associated with inserting and re-
moving probes also consumes resources. The instrumenta-
tion needs to parse the application class to be measured,
insert the probe code, and have the virtual machine load
the instrumented application class. In general, these are op-
erations that are about as disruptive as other class loading
activity.

As an important consequence, class manipulation during
instrumentation may trigger JIT compilation. If some meth-
ods of the class were JIT compiled before instrumentation,
then these compiled versions are discarded, and may be JIT

277

compiled again after instrumentation. The impact may ex-
tend to methods of other classes whose compiled versions
depend on the instrumented application class, leading to
cascades of JIT compilations that reflect prior inlining deci-
sions.

Depending on circumstances, the virtual machine may ini-
tiate JIT compilation immediately after loading the instru-
mented application class, at some later time, or even never.
Until the JIT compilation completes, those methods whose
compiled versions were discarded can execute less efficiently
or even block, again in effect contributing to overhead. In
general, it is not possible to tell whether some future JIT
compilation will deliver a more efficient compiled version of
a method, it is therefore not possible to minimize the impact
on measurement simply by waiting for the compiled version.
It is, however, possible to wait for JIT compilations that
immediately follow instrumentation to finish — those JIT
compilations should cover most hot code, where the impact
on measurement is also most likely significant.

3.3 Code Optimization

The JIT compilation involves optimization decisions that
may change with instrumentation. This is true even when
the interaction between the probe code and the application
code is kept to a minimum — most importantly, the very pres-
ence of the probe code influences the heuristics that drive
method inlining. Although these heuristics may vary, they
are likely to include a limit on the size of the inlined method.
Inserting probe code increases code size and therefore re-
duces the chance of the measured methods being inlined.

Method inlining is an important optimization because it
impacts the scope of most other optimizations — with JIT
compilation working on methods as compilation and opti-
mization units, inlining one method into another means the
caller and the callee are optimized together. The impact
of inlining on performance experiments was demonstrated
in detail with JMH benchmarks [24] that can selectively
disable method inlining to prevent interaction between the
benchmark harness and the measured method [31]. In very
general terms, we can assume that by reducing the chance of
inlining, instrumentation reduces the opportunity for opti-
mization. We can therefore expect instrumentation to intro-
duce another systematic measurement error, due to observ-
ing possibly less optimized versions of the measured meth-
ods. Keeping probe code small, however, should make this
error less likely.

The optimization decisions made during JIT compilation
also depend on past application execution. Factors such as
method invocation count, loop iteration count, or type vari-
ability are taken into account — it is therefore not guaranteed
that the same method will be compiled in the same way at
different moments in application execution. In particular,
it is not guaranteed that a method will have the same com-
piled version after removing probes as it had before inserting
probes.

3.4 Other Overhead Sources

Significant sources of measurement overhead are also as-
sociated with data storage. Whatever data a probe collects
or aggregates needs to be stored in memory and then ex-
ported outside the measured application. The memory stor-
age overhead begins with allocation — when using the appli-
cation heap, additional allocations will either cause the heap



to expand or the garbage collector to run more often [16,
17]. After allocation, storing data in memory consumes ad-
ditional memory bandwidth, and export similarly incurs ad-
ditional storage or network bandwidth. The magnitude of
these effects grows with the data volume.

Because there is no principal difference between data stor-
age overhead coming from dynamic measurement instrumen-
tation and similar overhead from standard instrumentation
or even application I/O, we do not analyze this overhead
source further. A thorough analysis of the export overhead
and the related measurement framework implementation is-
sues can be found in [37].

4. EXPERIMENTAL EVALUATION

The analysis of potential overhead sources associated with
dynamic measurement instrumentation directly translates
into questions we want to answer using experimental evalu-
ation:

Q1. Given that some part of the probe code is necessarily
situated between the sampling points and the mea-
sured application code, what is the typical difference
between the measured execution time and the actual
execution time ?

Does the difference between the measured execution
time and the actual execution time remain stable ?

Q2.

Q3. Given that the measured code is potentially interacting
with the probe code through code optimization deci-
sions and other channels, is the execution time of the
measured code different from the execution time with

no measurement ?

Q4. Given that the measured code is potentially compiled
differently before and after measurement, does the ex-
ecution time after measurement differ from the execu-

tion time before measurement ?

Q5. What is the typical duration of JIT compilation asso-

ciated with dynamic measurement instrumentation ?

For completeness, we also want to answer the ever present
question associated with instrumentation, even if there is no
reason why the result should be significantly different from
other instrumentation overhead studies:

Q6. What is the total overhead in terms of application per-
formance that can be attributed to dynamic measure-
ment instrumentation ?

4.1 Opverall Design

To answer the overhead related questions, we need to ob-
serve an application both with and without dynamic mea-
surement instrumentation in place — in other words, we need
independent observation capabilities that exist alongside the
dynamic instrumentation. We employ static instrumenta-
tion deployed throughout the measured application to per-
form continuous measurement. From the perspective of the
dynamic instrumentation, the static instrumentation is just
a part of the measured application that provides baseline
measurements, as outlined in Figure 2. Compared to Fig-
ure 1, the application is now augmented with the static
probe code, which relies on the static measurement agent
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Figure 2: High level architecture of the experiment.

to record the baseline measurements in local storage. An
experiment coordination component is introduced to direct
when a measurement should start and stop, but the dynamic
instrumentation remains otherwise unchanged.

With both static and dynamic instrumentation available,
we pretend that we perform dynamic measurements on an
application that also produces baseline measurements for
comparison. We structure the experiment to model a situa-
tion where a developer chooses to observe the execution time
of an arbitrary application method using dynamic instru-
mentation, and use the static instrumentation to measure
the overhead associated with the dynamic instrumentation.
To collect a representative sample, we repeatedly choose the
observed methods at random. In individual steps, outlined
in Figure 3, the experiment proceeds as follows:

S1. Before launch, we use static instrumentation to aug-
ment the application. The statically instrumented ap-
plication continuously reports the execution times of
all methods considered in the experiment and the pro-
cessor utilization.

S2.

We launch the application and wait for the warmup
period to pass before commencing measurement.

S3. We measure and record the execution time of all meth-
ods considered in the experiment using the static in-
strumentation. This data describes the performance

before all dynamic measurements.

S4. We choose one of the methods considered in the exper-
iment at random to be the observed method. We use
dynamic instrumentation to insert the probe code at
the start and the end of the observed method and mea-
sure the time it takes the JIT compilation associated

with the code manipulation to complete.

S5. At all times between inserting and removing the probe
code, we measure and record the execution time of the
observed method using the dynamic instrumentation.

This data is the dynamic measurement sample.

S6. We measure and record the execution time of all meth-
ods considered in the experiment using the static in-
strumentation. This data describes the performance

during dynamic measurement.
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Figure 3: Control flow of the experiment.

S7. We use dynamic instrumentation to remove the probe
code at the start and the end of the observed method
and measure the time it takes the JIT compilation as-
sociated with the code manipulation to complete.

S8. We measure and record the execution time of all meth-
ods considered in the experiment using the static in-
strumentation. This data describes the performance

after dynamic measurement.

S9. We continue with step S4 until enough methods are

observed.

S10. Finally, we again measure and record the execution
time of all methods considered in the experiment using
the static instrumentation. This data describes the

performance after all dynamic measurements.

The individual steps provide data to answer the over-
head related questions — by comparing the measurements
from steps S5 and S6, we evaluate the dynamic measure-
ment accuracy ; relating the measurements from steps S6
and S8 reveals the dynamic measurement overhead ; com-
paring steps S3 and S10 identifies any permanent perfor-
mance changes due to inserting and removing probe code,
and so on.

4.2 Technical Specifics

The complete experiment implementation and configura-
tion is available as open source, as is the performance mon-
itoring framework. Here, we provide selected technical de-
tails necessary for interpreting the experiment results.

4.2.1 Static Probes

The static instrumentation is implemented independently
of the dynamic measurement framework. AspectJ™ [1] is
used to insert the probe code in the form of a before advice
and an after advice. Both pieces of advice consist of a sin-
gle JNI call to the actual probe code implemented natively,
with statically assigned integer method identifier as the only
argument. Listing 2 provides a compact pseudocode listing.

Implementing most of the static instrumentation natively
provides more technical advantages including dynamic mem-
ory allocation independent of the application heap. We also
obtain access to JVM state information, such as notifications
about JIT compilation.
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> Thread local variable holding execution times of
> individual methods
data : array of record
> Individual samples
samples : array of record
generation : integer
entryTime : integer
exitTime : integer
end record
> Index into samples
nextFree : integer
> Pending call data
recursion : integer
entryTime : integer
end record

procedure STARTMEASUREMENTJNI(id : integer)
> Time sampled close to what dynamic probe perceives
> as real entry
now < GETCURRENTTIME
INCREMENT(data[id].recursion)
if at top level of recursion then
datalid].entryTime + now
end if
end procedure

procedure ENDMEASUREMENTJNI(id : integer)
DECREMENT (data[id].recursion)
if not at top level of recursion then

return

end if
i < datalid].nextFree
> Generation indicates data validity
INCREMENT(dataid].samples[i].generation)
datalid].samples|i].entryTime < data[id].entryTime
> Time sampled close to what dynamic probe perceives
> as real exit
datalid].samples|i].exitTime + GETCURRENTTIME
INCREMENT(datalid].samples[indez].generation)
> Overwrite oldest data if necessary
MODULOINCREMENT(data[id].nextFree, 256)

end procedure

Listing 2: Probe pseudocode for static instrumenta-
tion.

To avoid excessive synchronization between the probe code
and the static measurement agent, which records the mea-
surements in thread local storage, we use versioning as in
sequential locks [2]. Each measurement updates the gen-
eration counter twice, the agent records only measurements
whose generation counter was odd and the same both before
and after access. We also take care to use the same clock
source in both the static and the dynamic instrumentation
(clock_gettime with CLOCK_MONOTONIC). This makes it possi-
ble to pair the static and the dynamic measurement of the
same method invocation, which is used in some parts of the
evaluation.

Keeping the Java part of the static probe code as simple
as possible is essential to preserve a realistic interaction be-
tween the application code and the dynamic probe code that
the experiment examines. We note that AspectJ™ does not
simply inline the JNI call at the method entry and method



exit points, but uses a somewhat more complex invocation
sequence that first locates the (singleton) aspect and then
invokes the aspect method which contains the JNI call. The
code involves monomorphic invocation and predictable con-
ditional branching, which should optimize reasonably well.
The use of JNI carries some overhead as well [10].

4.2.2  Measured Application

Because the potential overhead sources depend on inter-
action between the application code, the probe code, and
the execution platform, we need to conduct the experiment
in a reasonably realistic context. We have chosen the SPEC-
jbb2015™ benchmark [33], a Java server business benchmark
that approximates a business information system of a super-
market company.

In the experiment, we consider methods that reside in the
main JAR file of the benchmark as methods that the de-
veloper of the application would be likely to observe. As a
technical necessity, we omit methods of anonymous classes,
which cannot be selected by static instrumentation point-
cuts. This leaves us with 5628 statically instrumented meth-
ods in 957 classes. For the dynamic instrumentation, we se-
lect methods that are invoked frequently enough to provide
some data in 60s of measurement. To do this, we run the
benchmark with static instrumentation for 40 min and select
methods called at least 100 times in the last 10 min. This
yields 1286 methods.

4.2.3 Workload Generation

The SPECjbb2015™ benchmark uses an elaborate work-
load generation mechanism that first identifies the request
rate bounds and then generates requests with gradually in-
creasing rate to identify the benchmark score. For our ex-
periment, the changing workload is not practical because
individual measurements would be collected at different re-
quest rates — we therefore execute the benchmark with a
fixed request rate. We choose the rate to be close enough to
maximum rate to maintain high utilization, because that is
where the instrumentation overhead is easily visible, but low
enough to make overload situations rare. On the experiment
platform, this is 4000 req/s.

The workload generation mechanism of SPECjbb2015™
implements an open workload model, where individual re-
quests arrive at the configured rate regardless of the request
processing speed (except for overload situations, which are
detected and reported). Hence, the instrumentation over-
head does not necessarily translate to changes in request
rate — instead, the processor utilization rises so that the con-
figured request rate can be maintained. Similarly, request
queueing and thread scheduling effects may mask changes in
response time [22]. We therefore monitor changes in proces-
sor utilization as an indication of instrumentation overhead.

Technically, we monitor processor utilization using the
processor accounting subsystem of the process control group
associated with the application JVM running the bench-
mark. This provides accurate information at nanosecond
granularity, which we express as percentage of full utiliza-
tion — 0 % means no processor was executing the application
JVM threads in the measurement period, 100 % means all
processors were exclusively executing the application JVM
threads in the measurement period.
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4.3 Experiment Platform

We perform the measurements on an Intel Xeon machine
with 32 logical processors (E5-2660, two packages, 8 cores
per package, 2 hardware threads per core). The proces-
sors are running at 2.2 GHz, the frequency is fixed for all
measurements because frequency scaling and turbo boost
would otherwise distort the processor utilization measure-
ments that we use as an indication of the instrumentation
overhead. The operating system is Fedora 20, 64 bit kernel
3.19.8, OpenJDK 1.7.0-79, AspectJ 1.8.6, DiSL 1.0.

The machine has 48 GB RAM in 2 NUMA nodes. We use
the default configuration for heap size and force a garbage
collection cycle before each processor utilization measure-
ment to avoid including garbage collection in data intended
to characterize instrumentation overhead. As a consequence,
JVM arrives at a stable heap size of less than 5 GB that
reflects the allocation rate between the utilization measure-
ments.

We use a 5min warmup period before collecting mea-
surements, taking care to also exercise probe code during
warmup, and restart the experiment every 2 h to randomize
the initial conditions [13]. Figure 4 shows the initial pro-
cessor utilization, indicating that by the end of the 5min
period, the benchmark execution is stable, the same is indi-
cated by the JIT log.
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Figure 4: Processor utilization during warmup.

In the experiment steps that collect measurements using
the static instrumentation — S3, S6, S8 and S10 — we collect
the processor utilization for 30s and the execution time of
all methods for 60s with cyclic buffers of 256 elements per
thread. In the steps that wait for the JIT compilation to
complete — S4 and S7 — we consider the JIT compilation
complete when no new compiled method appears for 20s,
with a timeout of 60s. We also insert a random delay of 30s
to 90s in step S9 to prevent inadvertent synchronization
between the experiment and the application.

4.4 Measurement Results

We examine the measurement results in the same order
as the overhead questions. Question Q1 deals with the mea-
surement accuracy, that is, the difference between the mea-
sured and the actual time. Figure 5 answers with a distri-
bution of the average difference between the time reported
using the static and the dynamic instrumentation in steps S5
and S6. In numbers, the minimum average difference was
observed to be 76 ns, the median was 1.34 ps, the maximum
was 166.09 ms.
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Figure 5: Difference between measurements reported
by static and dynamic instrumentation. We (1) pair
static and dynamic measurements of the same invoca-
tion, (2) compute paired difference, (8) compute average
difference per method, (4) plot distribution of the aver-
ages.

Note broken scale in the top plot, the bottom plot pro-
vides a zoom in view. Results closer to zero indicate
more accurate dynamic measurement, but not necessar-
ily zero disruption due to dynamic measurement, which
is examined later.

Figure 6 offers an alternative view, plotting the average
ratio between the time reported using the static and the
dynamic instrumentation, relative to the method execution
time. The figure suggests that the relative measurement
accuracy sharply declines for methods shorter than about
10 ps to 20 ps.

Figures 5 and 6 also relate to question Q2. The interquar-
tile range of average differences is 3.33 ps, more than two
times the median difference. This suggests the overhead is
far from stable and therefore not easy to compensate by
subtracting the average difference. We have also used one-
way ANOVA to decide whether the choice of the measured
method is an important factor. When ignoring the few meth-
ods with average difference over 10pus, ANOVA returns p
close to 1, suggesting that the variability does not depend
on which method is measured.

Questions Q1 and Q2 concern different observations of the
same invocations. In contrast, the remaining questions con-
cern observations of different invocations, we can therefore
only talk about effects on average behavior. As a conse-
quence, outliers and fluctuations have more influence over
the results. To compensate for outliers, we compute aver-
ages after discarding 2.5 % of the smallest and 2.5 % of the
largest measurements for each method.

Figure 7 is related to question Q3, examining the effect
of repeated JIT compilation on dynamic measurement. The
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Figure 6: Ratio between measurements reported by

static and dynamic instrumentation. We (1) pair static
and dynamic measurements of the same invocation, (2)
compute ratio of dynamic to static measurement, (3)
compute geometric average ratio per method, (4) com-
pute average static measurement per method, (5) plot
the averages of ratios relative to the averages of static
measurements.

The bottom plot provides a zoom in view. Results
closer to one indicate relatively more accurate dynamic
measurement, helping to identify the minimum method
ezecution time where the relative accuracy is acceptable.

figure shows how the average method execution time, as
measured by the static instrumentation, changes during dy-
namic measurement. Although the median rate of 1.014 in-
dicates an intuitively reasonable small slow-down, the vari-
ability is again large, with 25% of methods exhibiting a
slow-down of more than 1.23, and, more surprisingly, 25 %
of methods exhibiting a speed-up of more than 0.84. To
distinguish the effects of instrumentation from normal ex-
ecution time variability, we employ statistical testing with
t-test — the slow-down is statistically significant at @ = 0.05
for 13.2 % of methods, and the speed-up for 18.0 % of them.

To provide more detail, Figure 8 shows a typical behaviour
during dynamic measurement, from initiating the measure-
ment in step S4 to concluding the measurement in step S8.
Upon inserting the probe code, the method execution time
jumps up because the compiled version of the instrumented
class, and possibly other related methods, is discarded. Soon
after that, the executed code is compiled again and the per-
formance returns to normal levels. Similar behavior appears
upon removing the probe code. The few other outliers that
are visible throughout the measurements appear at random
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Figure 7: Ratio between measurements reported by
static instrumentation on methods during and after dy-
namic instrumentation. We (1) compute average static
measurement per method from step S6, (2) compute av-
erage static measurement per method from step S8, (3)
compute ratio of the dynamic average to the static av-
erage, (4) plot distribution of the ratios.

Note broken scale in the top plot, the bottom plot pro-
vides a zoom in view. The gray bars denote statistically
significant differences at o = 0.05. Results smaller than
one indicate methods that run faster when instrumented
and vice versa.

and are probably not due to instrumentation. We have ob-
served this behavior with most methods.

Figure 9 is related to question Q4, examining the effect of
repeated JIT compilation on application outside measure-
ment. Here, the figure shows how the average method ex-
ecution time changes from near the start to near the end
of the benchmark, with dynamic measurement performed in
between. The median rate of 0.994 indicates a reasonably
stable performance, however, at the end of the benchmark
25 % of methods are slower by a factor of over 1.12, and
25% of methods are faster by a factor of over 0.87. The
slow-down is statistically significant at o = 0.05 for 8.9 % of
methods, and the speed-up for 15.0 % of methods.

To determine whether the changes of method execution
time in Figure 9 are due to dynamic measurement, Figure 10
shows how the average method execution time changes from
near the start to near the end of the benchmark when no
dynamic measurement is done. The median rate of 1.003,
as well as the lower and upper quartiles of 0.76 and 1.16,
are similar, however, the extreme values are further apart
in Figure 9 than in Figure 10. We conclude that although
the benchmark exhibits long term changes in the average
method execution time all by itself, dynamic measurement
increases the magnitude of the most extreme changes. When
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no dynamic measurement is done, the slow-down is statisti-
cally significant at o = 0.05 for 12.3 % of methods, and the
speed-up for 16.2 % of methods.

By observing JIT compilation in steps S4 and S7, we also
obtain statistics on the temporary disruptions due to code
manipulation. Asshown on Figure 11, JIT compilation takes
more than 6.4s to complete in 50 % of the probe insertion
operations, and more than 3.7s to complete in 50 % of the
probe removal operations. Between 1% and 2 % of code ma-
nipulation operations kept JIT compilation active for more
than 60s.

We conclude with Figure 12, which provides an answer to
question Q6 about the total overhead associated with dy-
namic measurement instrumentation. The figure plots the
distribution of processor utilization without dynamic instru-
mentation, observed in step S6, and the distribution of pro-
cessor utilization with dynamic instrumentation, observed
in step S8. Both cases are very similar, confirming earlier
findings that small scale instrumentation does not incur sig-
nificant overhead — in fact, the average utilization is 73.03 %
without dynamic instrumentation and 72.17 % with dynamic
instrumentation, with the difference statistically significant
at o = 0.05.

4.5 Threats To Validity

We close our results with discussing threats to validity.
We focus on the threats to statistical validity, internal va-
lidity and external validity as the most relevant validity cat-
egories.

4.5.1 Statistical Validity

To guard against threats to statistical validity, we re-
port detailed statistical properties alongside summary re-
sults. We also provide complete data at http://d3s.mff.cuni.
cz/resources/icpe2016.

The statistical analysis is complicated by the fact that,
for reasons inherent to the SPECjbb2015™ benchmark im-
plementation, the individual observations of the method ex-
ecution times are not necessarily independent. As a partic-
ular consequence, if too many methods exhibit sufficiently
large phases in behavior, then the conclusions on the sta-
tistical significance of the results may be distorted due to
observing method behavior in different phases.

4.5.2 Internal Validity

When examining internal validity, we are concerned with
the possibility that the observed overhead is not due to dy-
namic instrumentation, and the possibility that the dynamic
instrumentation introduces overhead that is not observed.
Here, most dangerous are effects that can synchronize with
dynamic measurement, because such effects can introduce a
systematic error when measuring the overhead. We believe
such systematic synchronization is unlikely, because we ran-
domize both the choice of the measured method and the de-
lay between measurements. Effects due to events inherent to
dynamic measurement, such as dynamic code manipulation,
are obviously part of the overhead by definition.

Measuring the total overhead as a change in processor
utilization similarly ensures we observe all processor over-
head. The benchmark is configured to perform a constant
amount of work per unit of time, anything that changes the
processor demand per unit of work is bound to change the
processor utilization. This deserves some attention — while
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Figure 8: Detailed measurement for the getArray method of the Data class in transport package.

demonstrate typical behavior. Note logarithmic scale.

the benchmark does maintain a stable request rate, brief pe-
riods of increased overhead are likely to be compensated by
queueing inside the benchmark. Because we perform every
dynamic measurement for more than a minute, we believe
we are likely to exhaust any queues that might mask the
measurement overhead entirely.

As noted, we force a garbage collection cycle before each
processor utilization measurement, and therefore influence
the garbage collection overhead. Because utilization mea-
surements happen much less frequently than young garbage
collection cycles, we are not likely to influence the young
collection overhead directly. We do make the full collection
cycles more frequent, with multiple consequences — the total
time spent in full collections is likely to be longer and the
young collections may become more efficient because the ref-
erences between generations are more likely to be live [17].
We believe this influence to be minor because no dynamic
measurement instrumentation is likely to keep significant
amounts of live data on the application heap for long, and
the young collection overhead — which we are less likely to
influence — should therefore dominate.

4.5.3 External Validity

External validity is concerned with how much the ob-
served overhead generalizes to other dynamic instrumen-
tation frameworks, other applications and other platforms.
Much of the dynamic instrumentation framework revolves
around the ability to redefine and retransform classes, frame-
works that use the same mechanism are therefore likely to
induce the same overhead due to code manipulation and
code optimization. We note that this is pretty much the
only reasonably portable dynamic instrumentation method
currently available for Java, differences therefore should not
be big.

Other dynamic instrumentation frameworks can also differ
in their data storage and data processing implementation.
There are many ways how this implementation can be op-
timized [37], we believe our implementation is reasonably
straightforward to keep the results comparable with other
probes written in Java.

To generalize to other applications, we must ask how much
our measured application resembles other applications in
those features that are relevant to dynamic instrumentation.
Assuming the SPECjbb2015™ benchmark is reasonably rep-

Time [s]
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Method picked to

resentative, we have to account for the differences introduced
by static instrumentation:

— The instrumentation slows the benchmark down rough-
ly by a factor of four. The effect is somewhat sim-
ilar to using a slower platform, but the overhead is
not distributed evenly — by adding similar overhead
to each method, we slow down shorter methods more
than longer ones in relative terms. With the measured
application becoming faster, the dynamic instrumen-
tation overhead will become relatively smaller.

— The instrumentation increases the size of all methods
by a small constant amount, making compilation and
inlining somewhat less likely. Examining the JIT log,
we see a total of 520kB in 24k inlined methods and
7k failed inline attempts for the original benchmark,
and a total of 750kB in 36 k inlined methods and 21k
failed inline attempts for the benchmark with static
instrumentation.

— The instrumentation inserts JNI calls, whose impact
on compiler behavior may depend on subtle memory
model implementation details [15]. Hypothetically, JNI
calls may require optimization barriers, leading to more
conservative optimization of the measured application.
We have not included a specific evaluation of this pos-
sibility into our experiment.

Given the platform specific character of our experiment,
we do not make any specific claims outside our platform.
We believe the platform is representative enough to account
for a large percentage of existing systems, however, different
platforms — especially different JVM implementations — may
behave in an arbitrary manner, yielding entirely different
dynamic instrumentation overhead.

S. RELATED WORK

Instrumentation overhead is an obvious concern for any
measurement framework. Instrumentation can interact with
the measured system, making the measured performance dif-
ferent from the performance exhibited otherwise. This prob-
lem is carefully explained by Malony in [18] — in this sense
our work is an experimental study of performance intrusion
and performance perturbation due to dynamic instrumenta-
tion in Java.
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Figure 9: Ratio between measurements reported by

static instrumentation on methods before and after dy-
namic instrumentation. We (1) compute average static
measurement per method from step S3, (2) compute av-
erage static measurement per method from step S10, (3)
compute ratio of the initial average to the final average,
(4) plot distribution of the ratios.

Note broken scale in the top plot, the bottom plot pro-
vides a zoom in view. The gray bars denote statisti-
cally significant differences at o = 0.05. Results smaller
than one indicate methods that run faster at experiment
startup than teardown and vice versa.

Malony and Shende have investigated the measurement
overhead issues especially in the context of the Tau Per-
formance System [30]. In [19], they describe a method for
compensating the measurement overhead by subtracting the
execution time added by the instrumentation from the in-
dividual measurements. The method assumes the compu-
tation is calibrated for particular application and platform.
Our experiment is a case of such calibration that highlights
the limits of accuracy in a system where the overhead of
the same probe code can vary depending on the measured
method, the call site, or even ephemeral compilation de-
cisions. Our experiment extends the overhead investigation
towards dynamic instrumentation, Tau focuses on more het-
erogeneous platforms and more distributed applications [20].

Technologically, our work is related to Java performance
monitoring frameworks that collect data through instrumen-
tation. A prominent representative is the Kieker Frame-
work [36], which can use multiple aspect oriented instrumen-
tation frameworks. Detailed experiments with AspectJ™ in-
strumentation are in [35], where a microbenchmark consist-
ing of a single method with known execution time is used
to measure the overhead of the individual instrumentation
components, and two real life monitoring tasks are reported
to have no observable overhead.
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Figure 10: Ratio between measurements reported by
static instrumentation on methods at benchmark startup
and before benchmark teardown without dynamic instru-
mentation. We (1) compute average static measurement
per method from step S8, (2) compute average static
measurement per method from step S10, (3) compute
ratio of the initial average to the final average, (4) plot
distribution of the ratios.

Note broken scale in the top plot, the bottom plot pro-
vides a zoom in view. The gray bars denote statisti-
cally significant differences at oo = 0.05. Results smaller
than one indicate methods that run faster at experiment
startup than teardown and vice versa.

We extend the results reported in [35] in multiple direc-
tions. Some are related to the differences between static and
dynamic instrumentation — in particular, we measure and
examine dynamic instrumentation effects, which the static
instrumentation constrains to the warmup period where the
measurements are discarded. On the overall design level,
we consider multiple threads, and we preserve realistic con-
ditions for interaction between the probe code and the ap-
plication code. In contrast, the microbenchmark in [35] en-
forces method timing by observing virtual thread time and
waiting for a computed deadline [37]. This solution masks
possible application timing changes due to instrumentation.

Kieker overhead experiments in [35] and [37] also very
much complement our results — we do not deal in detail with
overhead sources that are not unique to dynamic measure-
ment instrumentation, in particular data storage and data
processing. These are examined in detail especially in [37].

Another performance monitoring framework where our re-
sults are likely to apply is SPASS-meter [32]. SPASS-meter
supports dynamic instrumentation, which can be used to-
gether with configurable monitoring scopes to restrict the
instrumentation to relevant locations and therefore reduce
overhead. Experiments that measure the instrumentation
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overhead are presented in [8], where SPECjvm2008™ is used
as the benchmark application and processing overhead is
defined as the change in the combined benchmark score.
Again, we complement these experiments by providing a
much more detailed look at the dynamic instrumentation
effects, and we consider our results complemented by these
experiments where the more general overhead issues are con-
cerned.

Some monitoring framework experiments [27, 9] analyze
overhead in terms of average changes to application through-
put or response time, which is certainly reasonable with
static instrumentation and enterprise application context.
Our results are generally compatible as far as the overhead
magnitude is concerned.

Instrumentation overhead is analogous to overhead intro-
duced through aspect weaving, which is examined and at-
tributed to particular code constructs in [6]. The need for
overhead analysis in dynamic aspect weaving is advocated
in [11], however, the authors performed only a limited set of
experiments for dynamic aspect features supported at that
time. A study examining the use of aspects for profiling of
heap usage, object lifetime and execution time on the SPEC-
jvm2008™ benchmark is available in [28], again with static
instrumentation — in this context, we contribute experimen-
tal results relevant to dynamic aspect weaving.
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Figure 12: Distribution of processor utilization with
and without dynamic instrumentation.
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6. CONCLUSION

Dynamic performance monitoring is a promising method
of reducing monitoring overhead. Coupled with dynamic in-
strumentation, it carries the promise of achieving zero over-
head when not monitoring, because the probes that collect
the monitoring data can be inserted and removed at will.
On the other hand, dynamic instrumentation can interact
with the execution platform in complex ways that give rise
to new sources of overhead. We investigate these sources in
the context of a dynamic measurement framework for Java.

Using experiments on a modified version of the SPECjbb-
2015™ benchmark, we first show that the loss of measure-
ment accuracy due to instrumentation overhead is not con-
stant. On our platform, this limits practical measurements
to methods whose execution time exceeds tens of microsec-
onds, and also impacts the overhead compensation methods
described in [19].

Next, we show that dynamic instrumentation can change
the execution time of the instrumented method even when
the overhead due to probes is not considered. This change
can both slow down and speed up the method, sometimes
significantly. We also show that the duration of the changes
can vary, with short periods corresponding to compilation
bursts on one end of the spectrum and periods spanning
entire application execution on the other.

Looking at the compilation bursts, we show that although
the code manipulation operations due to dynamic instru-
mentation are fast, the associated JIT compilation can last
from several seconds to more than a minute. Any dynamic
measurement framework looking to avoid disruptions due to
JIT compilation should expect these effects to delay data
collection.

Finally, we confirm that the total overhead in terms of
application performance remains negligible when small scale
instrumentation is deployed.

Our work is provided together with complete data and
tools, available at http://d3s.mff.cuni.cz/resources/icpe2016.
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