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ABSTRACT
Data centers are increasingly becoming larger and dynamic due
to virtualization. In order to leverage the performance modeling
and prediction techniques, such as Palladio Component Model or
Descartes Modeling Language, in such a dynamic environments, it
is necessary to automate the model extraction. Building and main-
taining such models manually is not feasible anymore due to their
size and the level of details. This paper is focused on traffic mod-
els that are an essential part of network infrastructure. Our goal
is to decompose real traffic dumps into models suitable for per-
formance prediction using Descartes Network Infrastructure mod-
eling approach. The main challenge was to efficiently encode an
arbitrary signal in the form of simple traffic generators while main-
taining the shape of the original signal. We show that a typical 15
minute long tcpdump trace can be compressed to 0.4− 15% of its
original size whereas the relative median of extraction error is close
to 0% for the most of the 69 examined traces.

1. INTRODUCTION
Modern IT data center systems have increasingly complex lay-

ered architectures composed of loosely-coupled components de-
ployed in virtualized environments. The use of virtualization pro-
vides increased flexibility and efficiency by enabling the sharing
of resources among independent applications. The computing re-
sources are connected by virtualized network infrastructure that
spans across the virtual machines and servers. However, manage-
ment of the performance of such complex infrastructures is chal-
lenging. It is difficult to follow the dynamic changes of the virtual
infrastructures without any proper representation or model.

The following questions may arise during operation: How the
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user-caused workloads affect the load of the data center network?
How such operations as e.g., migration of VMs, provisioning and
deprovisioning of extra resources affect the performance of data
center network? Which part of the data center network is a bot-
tleneck if any? How a network reconfiguration would affect the
Service Level Agreements (SLAs) provided to the end-user? To
answer such questions it is necessary to predict the network perfor-
mance during operation and observe the influences of the network
to the other parts of the system when the workloads change.

Existing approaches to network performance prediction are mostly
based on coarse-grained performance models, that treat the network
components as black-boxes additionally abstracting the link to the
computing infrastructure and the architecture of the applications
running in the data center. On the other hand, there exist many fine
grained simulation models for network performance but such mod-
els usually capture only selected specific aspects of the network
infrastructure whereas other aspects are abstracted. The Descartes
Network Infrastructures (DNI) modeling approach [11] addresses
the gap between the coarse-grained and simulation models. How-
ever, the process of model extraction remains challenging for a DNI
model as well as for the other network performance models [20].

Usually, a performance model must represent the structure of the
modeled system, its performance-relevant variables, and the work-
load. Building such performance models that capture different as-
pects of system behavior is a challenging, error-prone, and time-
consuming task when applied manually to real-size systems [8].
The data about the network topology, configuration, and deploy-
ment of software may be fragmented between different engineers,
obsolete or not documented at all. Fortunately, both, the static or
slowly-changing parameters, such as: topology, configuration, and
software deployment can be automatically extracted out of a run-
ning system assuming that the access to the system is permitted.
However, the model of the network workload (network traffic) re-
mains the challenging part mainly due to the high dynamism and
large volume of the data transmitted via network in every second.

Techniques for automated model extraction based on observa-
tion of the system at run-time are highly desirable given the high
costs of manual modeling of the network traffic, high dynamism
of network traffic profiles, large volumes of data, and the impor-
tance of the traffic model for performance modeling. To address
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the challenges of network traffic model extraction, in this paper we
contribute:

- a novel tool for workload characterization that is based on
Multi-scale time-series decomposition (MSD),

- a flexible algorithm (MSD) for extracting traffic profiles from
tcpdump traces (practically, from any time series),

- optimization routine, so that the level-of-details of the ex-
tracted model can be tuned,

- set of tools that implement the presented approach and auto-
matically create instances of the DNI model (the traffic part)
out of a set of tcpdump traces.

The main novelties of our approach are the following:
- we do not extract aggregated statistical models, but a set of

deterministic traffic generator models that can be understood
by non-experts,

- the granularity of the extracted model can be defined manu-
ally to fit the level of details required by a given use-case,

- the extracted and optimized traffic model is much compacter
than the original trace so it can be simulated faster and even
manually corrected by human operator if needed,

- the extraction and optimization process (compacting the ex-
tracted model) is automated and does not require human at-
tention,

- the extracted models can be directly used for performance
prediction using automatically-generated simulations (using
DNI model),

- using the extracted information in the traffic generator form
can be used for the purpose of traffic patterns analysis, net-
work dimensioning, or debugging.

The rest of this paper is organized as follows. In Section 2, we
introduce the traffic generator model that we use as an intermedi-
ate step of the extraction. Section 3 describes in detail the MSD
(Multi-Scale-Decomposition) algorithm and the optimizations ap-
plied to the extracted model. The description is enriched with toy
examples and partially evaluated to demonstrate the effects of vari-
ous fine-tuning parameters. In Section 4, we present the robot tele-
maintenance case study that we use for evaluation of the proposed
approach. Also in Section 4, we describe the evaluation procedure,
characterize the traces and present selected representative extrac-
tion results along with discussion. Section 5 presents the related
work in the field of network traffic models and model extraction.
Finally, we conclude the paper and present possible future work
directions in Section 6.

2. EXTRACTED TRAFFIC MODEL
In our approach, the extraction of a network traffic model is di-

vided into two coarse steps: (a) extraction and optimization of the
traffic generators, and (b) transformation of the traffic generators
into an instance of the DNI meta-model. The first step is tailored
to simplify the second step, however the output of the first extrac-
tion step is not bound to the DNI model and can be used for other
models as well. The details about the extraction and optimization
using the proposed Multi-scale Decomposition (MSD) algorithm
are presented later in Section 3.

2.1 Network Traffic Generator Model
Before we explain the extraction pipeline and signal decomposi-

tion, it is necessary to summarize important assumptions about the
network traffic. Typically, in a network traffic dump, we can iden-
tify multiple communicating parties based on IP addresses, ports or
other parameters. For example, inside the communication from a
single server we can identify two applications by the TCP port, al-
beit the IP address is always the same. In this paper, we assume that

a pre-processing step takes place to isolate individual sessions that
are worth modeling. We assume that the network traffic is repre-
sented as a univariate time-series with one-second time granularity
and positive values (packets with negative size do not make sense).

In reality, we may observe regular and periodic data transfers but
also irregular and highly asymmetric signals depending on the ap-
plication. Therefore, our decomposition algorithm has to handle
irregular signals well and to take advantage of regularities when-
ever possible.

The last assumption in our approach concerns the DNI model
and the simulation models that can be automatically generated from
a DNI model. Network traffic in simulators generated by DNI (e.g.,
SimQPN[14] or OMNeT++) has to be modeled as a collection of
traffic generators emitting packets with a certain frequency. The
information about packets emitted is encoded into DNI flows that
are later transformed into entities used in the respective simulation
(e.g., packets in OMNeT++ or tokens in SimQPN). There is not
much room for implementing arbitrary real-value functions, which
also hinders the application of Fourier and Wavelet transforms as
explained further in Section 3.1.

2.1.1 Model of a simple traffic generator
In this paper, we assume the model of a simple traffic generator

as depicted in Figure 1.

Figure 1: Model of a simple traffic generator

A simple traffic generator is a tuple:

Generator = (scale, amplitude, begin, end)

where:
- scale: How frequently the generator emits packets; every
wlen = 2scale seconds.

- amplitude: Size of the packet to be emitted.
- begin: Beginning of the interval when the generator is active.
- end: End of the activity interval.

The extracted set of generators is saved in a text format for fur-
ther processing. We parse the generator descriptions and build a
DNI model but the data can be used also for other models. Fig-
ure 2 demonstrates the idea behind the decomposition into activity
of simple traffic generators and the corresponding fragment of the
DNI model.

2.1.2 Examples of Network Traffic
Figure 3 shows four examples of a recorded network traffic. The

first time-series represents data transfer during 60 minutes of video
streaming with occasional caching. The second example represents
an irregular data transfer with a heat-up phase containing several
small data transfers, followed by a continuous transfer reaching the
link capacity. The third example represents a signal with several
outliers — an example of multiple applications transferring data in
parallel. The fourth time-series represents a regular signal.

2.1.3 Clustering of the traffic
We observe that the traffic rates can be efficiently clustered be-

cause an application usually transfers data in packets of certain
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Figure 2: A toy example: decomposition into traffic generators at
different scales and amplitudes and the corresponding instance of a
DNI traffic model.

sizes. This can be seen in Figure 4. We plotted the kernel den-
sity plot for each of our example traffic dumps showing the amount
of different transfer sizes. In order to compare all the densities,
we applied normalization and plotted them together in a single di-
agram. Each local maximum in the diagram represents a cluster
candidate. From Figure 4 we observed that a good estimate for our
clustering is between 3 and 7 clusters.1 Similar behavior can also
be observed in other network traces, such as those made available
publicly by the LBNL/ICSI Enterprise Tracing Project.2

2.2 Traffic Model in DNI
The generators extracted from the traffic traces are meant to be

represented in DNI model. Here, we revise how the DNI meta-
model represents the network traffic. More information about the
DNI meta-model can be found in [11, 12, 10].

In the DNI meta-model, network traffic is generated by traffic
sources originating from software components that are deployed
on so-called end nodes (e.g., servers, VMs). Each traffic source
generates traffic flows that have exactly one source and possibly
multiple destinations. The flow destinations are software compo-
nents that are located in nodes and can be uniquely identified by a
set of protocol-level addresses. Flows can be composed in a work-
load model that defines how each flow is generated (e.g., with se-
quences, loops, or branches). For the purpose of this paper, we de-
scribe a flow by specifying the amount of transferred data (so called
GenericFlow). Graphically, the traffic part of the DNI meta-model
is depicted in Figure 5.

Besides the network traffic information, the DNI model repre-
sents also the network topology and its configuration. We say, that
the extracted model is partial because we focus on traffic model ex-
traction. In fact, we derive simplified models of network topology

1We also provide an mechanism for estimating the optimal number
of clusters automatically, tailored for a given signal.
2Packet header traces of LBNL’s internal enterprise traffic: ftp:
//ftp.bro-ids.org/enterprise-traces/hdr-traces05/, last accessed Jan-
uary 8, 2016

500 1000 1500 2000 2500 3000 3500

0
40

00
0

80
00

0

Time [s]

Tr
an

sf
er

re
d 

[b
yt

es
]

100 200 300 400 500

0
10

00
0

25
00

0

Time [s]

Tr
an

sf
er

re
d 

[b
yt

es
]

100 200 300 400 500 600

0
15

00
0

35
00

0

Time [s]

Tr
an

sf
er

re
d 

[b
yt

es
]

100 200 300 400 500

0
50

0
15

00

Tr
an

sf
er

re
d 

[b
yt

es
]

Figure 3: Four examples of typical traffic dumps (60, 10, 10, 10
minutes). X-axis represents time in seconds, Y-axis represents
bytes transferred per second.
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Figure 4: Normalized kernel density plots of transferred bytes from
the example traffic dumps.

and the deployment of software on nodes, but this information is
incomplete as its extraction is not the goal of this paper (e.g., in the
extracted model we assume that all nodes are connected with a star
topology which is not always the case in general).

3. APPROACH
In Figure 6, we present the high-level overview of the approach,

i.e. the extraction pipeline. The process starts by recording real
traffic on multiple interfaces within the network (e.g., using tcp-
dump). A single traffic dump (here depicted as tcpdump.log) is
treated as a univariate irregular time-series and goes into the Multi-
scale decomposition step (explained in detail in Section 3.1), which
in turn produces the Decomposition Matrix.

Each row of the matrix is a separate regularized time-series. First
column represent the original signal (for debugging purposes), while
the other columns represent packets emitted by simple traffic gen-
erators operating at different frequencies and amplitudes. The De-
composition Matrix is then further transformed into the Configu-
ration for generators. This is a sequence of tuples in the form of
(scale, amplitude, begin, end) as already explained above. Fi-
nally, the DNI model is produced which reflects the decomposition.

3.1 Multi-scale time-series decomposition
Our Multi-scale time-series decomposition (MSD) is loosly in-

spired by Wavelets, in particular by Discrete Wavelet Transform
(DWT) [16]. In DWT, the signal is processed at multiple scales:
Scales = (1, . . . ,maxscale) where: maxscale = log2|signal|
The DWT software packages, such as wavethresh in R, ex-
pect the input signal length to be a power of two. For each scale
s ∈ Scales, the signal has got half the size of the signal at the pre-
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Figure 5: DNI Meta-model of network traffic

vious scale (s− 1), i.e.: |signals| = |signals−1|/2. Scale 0 rep-
resents the original signal, i.e. signal = signal0. Roughly speak-
ing, at each scale s ∈ Scales, DWT computes the interference
between the signals and a particular wave (stretched and shifted
mother wavelet). This yields a vector of coefficients Coefs =
(cs1, . . . , c

s
|signals|). All scales together form a pyramid which can

be represented as a single linear vector:

Coef =
⋃

s∈Scales

Coefs

The DWT coefficients represent the original signal in a new space
of functions. It should be noted that the time complexity of DWT
is O(|signal|), the length of the original signal and the length of
Coef vector are the same:

|Coef | = |signal|

In a similar way, the original signal can be reconstructed by a
process which uses DWT coefficients Coef and stretched/shifted
wavelets in an inverse manner.

The applications of DWT usually involve manipulation of DWT
coefficients, such as removing all coefficients from a particular
scale Coefs (e.g. for compression). However, there are many
other application areas of science and engineering – noise reduc-
tion, edge detection, time/frequency analysis, . . .

Unfortunately, for the purpose of traffic modeling with DNI3,
we realized that DWT is not particularly useful. Although it makes
frequency analysis at different bands possible, DWT coefficients
cannot be directly mapped to simple traffic generators. Remem-
ber that a DWT coefficient represents the strength of interference
between the signal and a wavelet at a particular time (shift) and
frequency band (scale). A single coefficient can well be a negative

3Currently, DNI supports automated transformation to OMNeT++
simulation and Queueing Petri nets (using SimQPN simulator [14])
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Figure 6: The overview of the extraction pipeline. (Rectangles rep-
resent data, ovals represent actions)

number. This makes sense for inverse DWT, when multiple func-
tions are summed together forming the original signal, but has little
use when modeling a simple traffic generator that can only produce
positive traffic. Even after several attempts, we were not able to get
convincing results with DWT, thus we opted for a custom DWT-
inspired transformation instead — the aforementioned MSD.

Similarly to DWT, the notion of scales is preserved in MSD,
however, the scales are processed in reversed order: maxscale, . . . , 1.
Instead of a pyramid of DWT coefficients, MSD transforms the sig-
nal into a matrix of Emits. Each scale s corresponds to a vector
Emitss of equal length:

|Emits1| = . . . = |Emitsmaxscale| = |signal|

Before the actual MSD loop, the input time-series needs to be
preprocessed as follows:

1. Regularization, i.e. every second should be represented by
a single value. Gaps in the signal are replaced by zeroes,
while multiple values are aggregated using the sum function.
(Figure 7: Read Input)

2. The signal length is padded with zeroes to the nearest power-
of-two (e.g. signal with the size of 4000 samples is padded
to 4096 samples)

3. Values in the signal are clustered. As already explained, we
can efficiently apply clustering of values using k-means. We
can either manually set the number of clusters (e.g. 6 clus-
ters) or we can use an automated estimation approach. (Fig-
ure 7: Estimate Optimal Number of Clusters) We compute
total within-cluster sum of squares for up to 25 clusters. Then
we pick the lowest number such that a higher number would
only differ by less than a preselected cutoff value (10% by
default). After k-means clustering of values, a new signal is
generated where original values are replaced by the cluster
centers.

Such a preprocessed signal then goes into the MSD loop, where
it is passed through a sieve which subtracts certain sub-signal in
each iteration until only “noise” remains. The subtracted sub-signal
(a vector of Emits) is such a traffic that can be generated by a simple
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Figure 7: Multi-scale decomposition algorithm. (Rectangles repre-
sent data, ovals represent actions)

traffic generator with a frequency corresponding to the particular
scale.

An example decomposition of a short signal is depicted in Fig-
ure 8 (without any clustering nor optimization). Signal in this ex-
ample consists of 32 samples which is then processed at 5 scales.
To derive the Emits at each scale, we have to:

1. Split the remaining signal into equal intervals.

2. Extract a single emit candidate from each interval.
(Figure 7: Prepare emit candidates)

3. Optimize the vector of emit candidates.
(Figure 7: Optimize Emits)

Ad. 1, at a given scale s, the working signal is split into intervals
(I1, . . . , Iwtimes) of equal length wlen.

wlen = 2scale

wtimes = |signal|/wlen

Ad. 2, for each interval Ii, a single emit candidate is selected
that has the highest value such that it appears only once inside the
interval.

Emits =

wtimes⋃
i∈1

select(Ii)

If no such a candidate exists, the select function returns 0 as a
candidate.

Ad. 3, the Emits vector is then optimized as follows:

      Progress of the decomposition:   Emits/Activity of generators: 
s=5   00004440222000002224333000003000                                 
S=4   00004440222000002224333000003000                 4444444444444444
s=3   00004440222000002220333000003000                         33333333
s=2   00004440222000002220333000000000                                 
s=1   00004440222000002220333000000000       44  22      22  33        
noise 00004400220000002200330000000000     44  22      22  33          

                 Reconstructed signal: 00004440222000002220333400030000
                      Original signal: 00004440222000002224333000003000
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Figure 8: Example decomposition explained step-by-step.

1. Small sequences of equivalent consecutive emits are removed.
The reason for this is to prevent isolated peaks to become
emits at higher scales. Example:

001100201110→ 000000001110

2. Small gaps are removed in order to achieve higher compres-
sion. Example:

000111211100→ 000111111100

Time complexity of MSD is O(n.log(n)), n = |signal|. Af-
ter Emits from all scales were collected, vector of Emits at each
scale can be further smoothed (This is an optional step, Figure 7:
Smoothing).

3.2 Decomposition of a real signal
We have demonstrated in Figure 8 the result of decomposition

on a toy signal consisting of 32 samples. Let us now take a look
at decomposition of a real network traffic (10 minutes sampled at 1
second, total 600 samples). This signal has already been presented
in Figure 3 (second diagram from the top). Without any optimiza-
tion nor clustering, MSD decomposes the signal into 253 intervals
as depicted in Figure 9.

The top diagram shows the original and reconstructed signal com-
bined. To provide more insight into the decomposition algorithm,
we use three visual tools for comparing signals from the frequency-
content point of view:

1. Periodogram [3] compares spectra of the original signal(solid
line) and reconstructed signal (dashed line) as given by the
Fourier Transform. From left to right are shown densities of
all frequencies (from lower to higher) in the signals’ spectra.

2. Squared Coherency [3] diagram estimates the percentage of
variance in the original signal that is predictable from the
reconstructed signal at the same frequency band. The higher
the value, the more similar the reconstructed signal to the
original is.

3. Scaleograms [17] represent signals in a time/frequency do-
main as given by the continuous wavelet transform using the
Paul mother-wavelet.
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Figure 9: Decomposition example: 10 minutes of traffic without
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When we reconstruct the signal, we can see that it matches its
original with an exception of few isolated peaks and some addi-
tional high-frequency content. Frequency, however, is not the main
criterion for evaluating the quality of the decomposition. More im-
portant is the overall shape of the signal that plays the major role
later in the simulation phase.

With a moderate optimization, as depicted in Figure 10, we were
able to reduce the number of intervals to 33 (i.e., 13%). At the
same time, the reconstructed signal still preserves the shape of the
original. The tradeoff between the reconstruction accuracy and
the model size can be fine-tuned using the following parameters:
(1) Number of clusters, (2) reduction of gaps and isolated peaks in
emit vectors, and (3) final smoothing of emit vectors.

In Section 4, we set the parameters of the extraction process and
further evaluate the quality of extraction on different traffic traces
using a real-world case study.

4. EVALUATION
In Section 3, we evaluated the extraction and optimization method

using selected traces from online repositories to demonstrate the
features of the approach. In this Section, we evaluate the pro-
posed approach using traces from the robot telemaintenance sce-
nario. The traces include mainly two types of network traffic: small
control instructions or sensor readings and large flows of video
streams from cameras that observe the work of a robot. The traces
have been captured in a data center where the devices were con-
trolled from. We have recorded the tcpdump trace from the server
that acting as a switch (see Fig/ 11b). It was equipped with a four
port network card. For the need on the experiment the server was
replacing a standard gigabit data center switch.

4.1 Robot Telemaintenance Scenario
The Industry 4.0 initiated by German government4 comprises

among other things the introduction of the Internet to the manu-
4Similarly Industrial Internet was framed in the US
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Figure 10: Decomposition example: 10 minutes of traffic with
moderate optimization.

facturing process. In the research project MainTelRob[2] different
industry 4.0 approaches have been tested for telemaintenance of a
plant in a working production line [4]. Figure 11 depicts the project
setting. The costumer production site of Braun, which belongs to
Procter & Gamble, consists of a six-axis Cartesian industrial robot
by KUKA Industries, a two-component injection molding system
and an assembly unit. The plant produces plastic parts for elec-
tric toothbrushes. On the upper half there is a telemaintenance
center from which an engineer—the expert—who provides techni-
cal expertise to the local repair personnel (the facility technician).
Next to the plant, the facility contains telemaintenance equipment:
a computer, multiple cameras for video streaming and a mobile
device. Center and facility are connected over the Internet. The
main prerequisite is to provide the expert with a good view of the
situation on-site. This insight can be offered by a specifically or-
chestrated combination of services: Remote access to machinery
data in combination with video streaming and communication ser-
vices, e.g., text chat and Voice-over-IP (VoIP). In addition, visual
Augmented Reality (AR) overlays inserted into the camera pictures
or video view are used to provide guidance. As the targeted envi-
ronment includes the service technician repairing the machinery
on-site, the industrial telemaintenance system should additionally
provide modern means of communication.

4.2 Traffic Modeling in the Telemaintenance
For the presented scenario, the proposed extraction method de-

livered insight in the patterns of the data exchange between the
components of the system. Although the main goal of the proposed
method is to use the extracted models for performance prediction,
here, the robot operator can observe the patterns of traffic. The
analysis of the data exchange patterns may be used (additionally to
the performance prediction) for the following purposes: (1) ana-
lyzing compact representation of control signals for debugging pur-
poses (instead of, e.g., analyzing textual wireshark traces), (2) un-
derstanding the data exchange for network dimensioning.
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Figure 11: Robot telemaintenance scenario. The remote expert and
the local facility technician use mobile devices to observe the pro-
duction facility.

4.3 Assessing Model Extraction Errors
We evaluate the model extraction accuracy by computing the rel-

ative errors for each pair of time intervals in the extracted model
instance and the original trace. We stress, that the maximal model
accuracy and the size of the extracted model are the trade-offs and
the model should not tend towards one of these extremes. During
evaluation of the size of the extracted models, we assume that the
original trace represents as many transmit actions as many lines the
original tcpdump file contains.

We selected 69 traffic traces from the robot telemaintenance sce-
nario. Average trace size was similar among the four types and
amounts about 22000 data samples. The traces were captured within
a 15-minute measurement period. For each trace we picked arbi-
trary parameters of the extraction algorithm (smoothing 0, maximal
number of clusters 25, cut-off for clustering 0.1, and intervals re-
duction parameter to 0.0004). We repeated the analysis of the 69
files 30 times and collected the following metrics: (1) median of
relative error; the error was calculated between the original and ex-
tracted trace for every second (the aggregation function over one-
second bins was sum) (2) mean relative error, (3) relative error of
the total data transmitted in a trace (4) compression of the modeled
signal (the modeled signal requires only x% of generators of the
original signal). For the four metrics, we calculated the 5th, 50th,
and 95th percentiles and presented the results in Table 1.

We divided the traces into four types based on the values of the
obtained metrics. To the first type we account the traces with the
three relative errors lower than 10%. There are 43 traces of this

type what shows that the proposed method can extract models of
the most traces with good accuracy and good compression—the ex-
tracted models are 40–200 times smaller than original (compressed
to 0.4%–2.3% of the original size).

The traces assigned to the second type are characterized with
good relative median error and relative total data error but higher
values of the relative mean error. We investigated the discrepancies
among the traces and the extracted models. The higher mean error
rates are caused mainly by shift in a extracted signal—a workload
peak shifted in time doubles the error: first because a real peak
is not discovered and second because an artificial peak is produced
whereas no peak exists in a real signal. An example of the described
situation is depicted in Figure 12a). Few peaks of type 2 were also
influenced by non-ideal set of extraction parameters of extracted
model (see traces categorized as type 3).

The traces of the third type are described by low errors of rela-
tive total data error but higher relative median and mean. We name
this type “extraction parameters” as the parameters of the extraction
and optimization process were not optimal for the traces (reminder:
for the whole scenario we select parameter values arbitrarily). The
higher errors are caused mainly by two factors: time-shifted peaks
and outliers in the extracted signal caused by lower fit of the ex-
tracted model. We selected one trace affected by lower quality ex-
traction and depicted it in Figure 12b). We observe, that the extrac-
tion was generally correct, but there are several periods where the
data is not generated although the original trace behaves differently.
This low extraction accuracy is caused by the fixed set of parame-
ters selected for the method. One could optimize the accuracy by
fine tuning the algorithm parameters or use less optimization for
the compression. Although the median and mean errors vary from
13% to 30% the total amount of transmitted data is accurate and
the compression ratio is good 7–125. Comparing the traces of type
2 against type 3, we observed that the ratio of time-shifted peaks to
lower quality of extraction is higher in type 2; in type 3 the situation
is opposite: there are more cases of lower quality extraction.

The fourth traces of type four do not fit to any other type. In this
experiment the relative mean error and total data error are above
the arbitrarily selected 10% threshold. The relative median error is
low and the compression ratio vary from 7 to 12. There were only
two traces of type 4 in the dataset. We depicted a selected trace
of type 4 in Figure 12c). The errors are mainly caused by outliers
introduced by suboptimal selection of extraction method parame-
ters. We observe that the main shape of data trace was extracted
correctly.

5. RELATED WORK
As noticed by Adas, “Traffic models are at the heart of any per-

formance evaluation of telecommunications networks” [1]. On the
other hand, the authors of [7] claim that “there is not much work on
measurement, analysis, and characterization of datacenter traffic”
suggesting that more focus should be put to modern data centers
and the intra-data-center traffic characterization.

There exist many related work on modeling general network traf-
fic [5, 9, 6, 13]. However, most of the works focus on probabilistic
models that were meant to approximate the characteristics of net-
work traffic when aggregated or to preserve self-similar nature of
the traffic. Goals of this work are different. We want to represent
the traffic deterministically to analyze the traffic exactly from the
time it was recorded and not to generalize the model to larger time
scales. Due to that, we: (1) decompose the traffic profile into a
set of generators (on-off traffic sources) with defined start and end
of their activity, (2) flexibly compress the model of the network
traffic at the same time being able to control the loss of the charac-

33



Table 1: Results for the 69 analyzed traces divided into 4 groups

Type Traces Relative median error % Relative mean error % Relative total data error % Compressed to %
percentile percentile percentile percentile

.05 .50 .95 .05 .50 .95 .05 .50 .95 .05 .50 .95

1 43 0 0 2.9 0 0.1 8.4 −1.2 0 1.7 0.4 0.8 2.3
2 (shifted peaks) 13 0 0 7.5 12.6 16.4 36.7 −4.4 1.5 6.6 1.6 7.8 15
3 (extraction parameters) 11 13.5 21.8 32.4 13 17.1 23 0 0.3 2.6 0.8 1.6 13.3
4 (rest) 2 0.8 1.2 1.7 24.1 26.1 28.2 10.9 11.7 12.5 8.1 10.9 13.7
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(a) Example of extraction for trace type 2
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(c) Example of extraction for trace type 4

Figure 12: Representative traces of type, 2, 3, and 4 (in grey) and
their extracted models (red).

teristics of the original trace (some simulators cannot accept large
detailed inputs, for example: SimQPN [14]), (3) support any traf-
fic aggregation interval, whereas the trace driven simulations use
usually packet as a smallest unit of traffic and due to that produce
fine-grained models with predefined, constant granularity.

The authors of [19] propose a similar approach to ours. They
propose a tool that extract workload profiles (not network traces
but rather service requests) and decompose them into patterns. The
decomposed traces are stored in an ecore-based models [15] and
are used mainly for workload forecasting and replaying modified
traces in benchmark environments (e.g., replaying an original trace
but with amplified burstiness). Although the approach is similar,
the details clearly separate the work from ours. First, the workload
model that LIMBO extracts is different to DNI Traffic model so the
extraction procedure needs to be different. We extract sets of traffic
generators whereas LIMBO looks for patterns like, for example:
seasonal, trend, burst. Second, we focus on network traffic models
extraction by considering time series of data transferred; LIMBO
defines workload at the level of requests that can be mapped to var-

ious data sizes. And finally, LIMBO depends strongly on season-
ality of the workload as the first step of their extraction procedure
searches for data seasonal patterns (e.g., sine-shape). Our approach
also supports seasonal patterns (see network traffic generator model
in Section 2.1), however any other traffic characteristic can be mod-
eled as well using the network traffic generator representation.

Regarding the approaches to model extraction, the most of the
approaches calculate traffic statistics from the traces and repre-
sent the traffic statistically, for example using packet size distri-
butions and packet inter-arrival times. As already discussed, such
approaches cannot be applied in our case, as we aim to discover
relatively compact set of traffic generators to represent the trace.
Other works, for example [18], do model the structural information
about the traffic, but this is usually represented as users, sessions,
connections and packets causing the approach to be application-
specific. Additionally, in [18], there is no intention for flexibility of
representation of the traffic so that the trade-off between model size
and accuracy of representation cannot be selected. In our approach,
we allow the user to tune the parameters of the MSD algorithm to
provide different level of details in the representation.

6. CONCLUSION AND FUTURE WORK
The nature of the data center network traffic is still not well

known due to large variety of virtualized applications running in
modern environments that can be provisioned and deprovisioned
with resources on the fly. In this paper we addressed the problem of
microscopic deterministic analysis of the network traffic traces for
performance modeling purposes. We provided a flexible algorithm
(MSD — Multi-Scale-Decomposition) for extracting traffic profiles
from any time series (e.g., tcpdump traces). Moreover, we showed
that the extracted traffic models, represented as set of traffic gener-
ators, can be optimized to reduce the size of the model but sill ac-
curately model the characteristics of the original trace. We showed
that the model with reduced size can be as small as about 0.5% of
the original while still accurately represent the original traffic char-
acteristics (relative errors can be as low as 0.1%). Furthermore,
the extraction and the optimization procedure can be fine-tuned to
extract even long and complicated traces—without the fine tuning,
we may observe relative extraction errors up to 30% in the worst
case. The parametrized extraction causes that the procedure is flex-
ible with respect to the demanded level of details in the extracted
models. The models can be larger but more detailed or more com-
pressed but coarser. Finally, we implemented the method as a set
of tools that can be freely used for extraction of the traffic gener-
ator models as well as the DNI meta-model instances. We stress,
that the extracted model in form of the traffic generator model is
not explicitly designed for DNI, but may be also used as-it-is for
traffic pattern analysis, debugging, or network dimensioning pur-
poses. The auxiliary materials (including the MSD decomposition)
are available online under http://go.uni-wuerzburg.de/aux.

As a part of our future work, we see several possible directions.
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First is the improvement of the automatic selection of extraction
parameters (described in Section 3.2) so that more traces can be
analyzed with lower extraction errors automatically. Second, we
think that the approaches to automatic model extraction should be
compared with the manual-built models crafted by humans. In such
evaluation the human caused errors could be compared with the im-
perfections of the MSD extraction algorithm. Such evaluations are
challenging and time consuming (mainly due to the involvement of
the human factor), however the results would be interesting. Fi-
nally, the proposed approach was tailored (but not limited) to ex-
tract traffic models in a DNI-friendly format. The scope could be
extended and also the extraction of other traffic models could be
added.
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