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ABSTRACT
Concurrent programming has become a necessity in order
to benefit from recent advances in processor design. How-
ever, implementing correct and scalable locking for accessing
shared resources remains a challenge. Examining lock con-
tention in an application at runtime is vital to determine
where more sophisticated but error-prone locking pays off.

In this paper, we present a novel approach for analyzing
lock contention in Java applications by tracing locking events
in the Java Virtual Machine. Unlike common methods, our
approach observes not only when a thread is blocked on
a lock, but also which other thread blocked it by holding
that lock, and records both their call chains. This reveals
the causes of lock contention instead of showing only its
symptoms. We describe the techniques which we use to
efficiently record trace events, metadata, and call chains.
We present a versatile tool for the analysis of the traces
which enables users to identify locking bottlenecks and their
characteristics in an effective way. We implemented our
approach in the widely used HotSpot Virtual Machine, and
with a mean runtime overhead of 7.8%, we consider it efficient
enough to monitor production systems.

Keywords
Locking, Contention, Tracing, Java, Concurrency, Paral-
lelism, Threading, Synchronization, Profiling, Monitoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE’16, March 12–18, 2016, Delft, Netherlands.
c© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2851559

1. INTRODUCTION
Over decades, increasing processor clock speeds have pro-

vided software developers with almost effortless performance
improvements until finally, problems with heat dissipation,
power consumption and current leakage have brought this
development to a halt [19]. Since then, the focus has shifted
toward multi-core processors, which have become the norm
from server-class machines to phones. While additional cores
continue to increase the computing power of processors, soft-
ware developers need to write explicitly concurrent code to
benefit from these improvements.

The main challenge in concurrent programming is the syn-
chronization of accesses to shared resources, which is typically
done with locks. Subtle mistakes can cause anomalies that
are difficult to detect and to debug, favoring coarse-grained
locking which is easier to implement correctly. However,
coarse-grained locking tends to suffer from lock contention
and can neutralize any gains from parallelization. During
development, it is difficult to judge in which cases more fine-
grained locking would significantly improve performance and
in which cases it would just make the application more com-
plex and error-prone. Therefore, analyzing lock contention
at runtime is vital to measure its effect on the performance
of an application and to identify bottlenecks where more fine-
grained locking would be worth the additional complexity.

Lock contention analysis is valuable not only during de-
velopment, but also in production. Server applications in
particular are deployed on machines with significantly more
cores and memory than a developer workstation has, and
must handle workloads that are often orders of magnitude
larger than the workloads used for testing. Under such con-
ditions, concurrent code can behave very differently, making
it difficult to reproduce and to debug bottlenecks in locking
on a smaller scale. A lock contention analysis approach that
is feasible for use in a production environment should have
minimal overhead while still providing information suitable
to identify and comprehend bottlenecks in an effective way.

In this paper, we expand on our novel approach to Java
lock contention analysis that we outlined in an earlier work-
in-progress paper [7]. Our approach provides developers with
exhaustive information to understand and resolve locking
bottlenecks in an application, yet incurs very low overhead
which makes it feasible for production use. Most notably, our
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approach not only records the call chains of threads that are
blocked, but also accurately reports the call chains of threads
that block other threads by holding a requested lock. We are
capable of efficiently collecting this information because we
implemented our approach directly in the OpenJDK HotSpot
Virtual Machine, a popular high-performance Java Virtual
Machine (VM).

The main contributions of this paper are:

1. We describe an approach for efficiently tracing fine-
grained lock contention events in a Java VM, and as-
pects of our implementation in the HotSpot VM. Unlike
other approaches, the collected traces show not just
where contention occurs, but also where it is caused.

2. We describe a versatile approach for analyzing and
visualizing the collected events that enables users to
recognize locking bottlenecks and their characteristics
in an effective way.

3. We provide an extensive evaluation of our implementa-
tion on a server-class machine, studying its overhead,
the amount of generated data, the composition of traces,
and the effectiveness of specific optimizations. We show
that our approach has such low overhead that it is typ-
ically feasible to use it in a production environment.

The rest of this paper is organized as follows: Section 2 pro-
vides an introduction to locking in Java. Section 3 describes
which events we trace and how we record them efficiently.
Section 4 characterizes the analysis of our traces and the
versatile aggregation and visualization of lock contentions.
Section 5 evaluates the runtime overhead and other charac-
teristics of our approach. Section 6 examines related work,
and Section 7 concludes this paper.

2. LOCKING IN JAVA
Java has intrinsic support for locking, but it also provides

the java.util.concurrent package that contains explicit locks
and advanced synchronization mechanisms.

2.1 Intrinsic Locks (Monitors)
Each Java object has an intrinsic mutual-exclusion lock

associated with it, which is also called the object’s monitor.
Developers can insert synchronized blocks in their code and
specify an object to use for locking. That object’s lock is
then acquired before entering the block and executing its
statements, and released when exiting the block. When
threads contend for a lock, that is, when one thread has
acquired a lock by entering a synchronized block, and other
threads are trying to enter a synchronized block using the
same lock, those threads are blocked until the owner exits
its synchronized block and releases the lock. Developers can
also declare methods as synchronized, which then acquire
the lock of the this object when called, and release it again
when returning. A notable property of synchronized blocks
and synchronized methods is that a lock is guaranteed to
be released in the same method and scope in which it was
acquired, even when an exception is thrown.

Intrinsic locks further support conditional waiting with
the wait, notifyAll and notify methods. These methods may
only be called on an object while holding its lock. The wait
method releases the lock and suspends the calling thread.

class BlockingQueue {
private final List<Object> q = new LinkedList<>();
void enqueue(Object item) {

synchronized(q) {
q.add(item);
q.notifyAll();

}
}
Object dequeue() {
synchronized(q) {

awaitNotEmpty();
return q.remove(0);

}
}
void awaitNotEmpty() {

while (q.isEmpty()) {
try {

q.wait();
} catch (InterruptedException e) { }

}
}

}

Figure 1: Blocking queue with Java intrinsic locks

When another thread calls notifyAll on the same object,
all threads that are waiting on its lock are resumed. Each
resumed thread then attempts to acquire the lock, and once
successful, it continues execution. In contrast to notifyAll,
the notify method wakes up only a single waiting thread. This
mechanism is typically used in producer-consumer scenarios,
such as threads in a thread pool that wait for tasks to execute.

Figure 1 shows an example of using intrinsic locks to
implement a thread-safe blocking queue. The field q holds
the list of queue items, and the list object’s intrinsic lock
is used to ensure mutually exclusive queue accesses. The
enqueue method has a synchronized block to acquire the
lock of q before it appends an item and calls notifyAll to
resume any threads waiting on q. The dequeue method
also uses a synchronized block and calls awaitNotEmpty,
which invokes wait on q as long as the queue is empty. The
wait method releases the lock of q and suspends the calling
thread until another thread resumes it by calling notifyAll
from enqueue. Alternatively, when the thread is interrupted
while waiting, wait throws an InterruptedException, which we
catch. In either case, wait attempts to reacquire the lock of
q and once successful, execution continues in awaitNotEmpty,
which checks again whether the list is not empty. When
awaitNotEmpty finally returns, the list is guaranteed to be
not empty, and dequeue can remove and return an item.

The semantics of intrinsic locks are implemented entirely in
the Java VM, usually in a very efficient way so their use only
incurs significant overhead when threads actually contend
for locks [1, 15]. Implementations are typically non-fair and
allow threads to acquire a recently released lock even when
there are queued threads that requested that lock earlier.
This increases the throughput by reducing the overhead from
suspending threads, and by better utilizing the time periods
between when one thread releases a lock and when a queued
thread is scheduled and can acquire the lock [4].

2.2 The java.util.concurrent package
Java 5 introduced the java.util.concurrent package with

classes that provide useful synchronization mechanisms, such
as concurrent collections and read-write locks [10]. Most of
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these classes do not use Java’s intrinsic locks, but rather rely
on the newly introduced LockSupport facility, which provides
a park method that a thread can call to park (suspend) itself,
and an unpark method which resumes a parked thread. Using
these two methods as well as compare-and-set operations,
the semantics of java.util.concurrent classes can be imple-
mented entirely in Java. The AbstractQueuedSynchronizer
class further provides a convenient basis for implementing
synchronization mechanisms with wait queues. Because these
classes are public, application developers can also implement
custom synchronization mechanisms on top of them.

ReentrantLock is an example of a mutual exclusion lock in
java.util.concurrent that is semantically similar to intrinsic
locks, but is implemented entirely in Java on top of Abstract-
QueuedSynchronizer. Code that uses ReentrantLock must
explicitly call its lock and unlock methods to acquire and
release the lock. ReentrantLock also supports conditional
waiting by calling await, signalAll and signal on an associ-
ated Condition object. Unlike intrinsic locks, an arbitrary
number of such condition objects can be created for each
lock. Moreover, ReentrantLock has a fair mode which guar-
antees first-come-first-serve ordering of lock acquisitions and
conditional wake-ups. This mode reduces the variance of lock
acquisition times, typically at the expense of throughput.

3. LOCK CONTENTION EVENT TRACING
Analyzing lock contention in an application requires ob-

serving individual locking events and computing meaningful
statistics from them. Maintaining those statistics in the
synchronizing threads interferes with the execution of the
application, and requires synchronization as well, so it can
become a bottleneck itself. Instead, we decided to only record
those events in the application threads and to analyze them
later. In this section, we describe how we efficiently record
events and metadata, which events we record, and how we
reconstruct thread interactions from the recorded events.

3.1 Writing and Processing Events
Figure 2 shows an overview of how we write and process

trace data in our approach. Naturally, we trace locking events
in different application threads, and writing those events to
a single shared trace buffer would require synchronization
and could become a bottleneck. Therefore, each application
thread Ti allocates a thread-local trace buffer where it can
write events without synchronization. When the trace buffer
is full, the thread submits it to the processing queue and
allocates a new buffer. A background thread retrieves the
trace buffers from the queue and processes their events. In
the depicted scenario, it merges them into a single trace file.
This trace file can be opened in an analysis tool for offline
analysis and visualization.

We encode the events in an efficient binary representation
to facilitate fast writing, to reduce the amount of generated
data and to keep the memory usage of the trace buffers low.
Because each buffer is written by just a single thread, we
can store that thread once per buffer instead of recording it
in each event. Submitting a full buffer to the queue requires
synchronization, but we assign a random size between 8 KB
and 24 KB to the individual buffers, which is large enough
so that this is an infrequent operation. The randomization
avoids that threads which perform similar tasks try to submit
their buffers at the same time and contend for queue access.

Our design supports writing a trace file for offline anal-

Background
Thread

Tn

Processing QueueT1

Trace
File

Analysis Tool

Merge

Figure 2: Writing and processing trace events

ysis as well as analyzing the recorded events online. We
implemented the event processing in Java, and use a thin
native code interface to dequeue the trace buffers from the
processing queue and to wrap them in DirectByteBuffer ob-
jects, which can be read from Java without copying memory.
To write trace files, we use the Java NIO subsystem [11],
which can use the DirectByteBuffer objects directly. We also
support fast compression of the trace data by using a Java
implementation of the high-performance LZ77-type compres-
sion algorithm Snappy [5, 18]. Our online analysis mode
currently generates a text file with statistics, but it could be
extended to provide an interface for the Java Management
Extensions (JMX, [13]) to configure analysis parameters and
to access the produced statistics.

3.2 Tracing Intrinsic Locks
Locking causes a major performance impact when threads

contend for a lock. Threads that fail to acquire a lock are
suspended and cannot make progress, and a thread that
releases a contended lock must also do extra work to resume
a blocked thread as its successor. However, locking itself is
not expensive in the HotSpot VM. An available intrinsic lock
can be acquired with a single compare-and-set instruction
in many cases. When a thread holds a lock only briefly,
another thread that requests that lock can often still acquire
it through spinning without suspending itself. Therefore,
we chose to record only lock contention with our approach
instead of recording all lock operations.

Conceptually, each Java object has an intrinsic lock as-
sociated with it. This lock stores its current owner thread,
the threads that are blocked trying to acquire it, and the
threads that are waiting for notifications on it. However, in
a typical application, most Java objects are never used for
locking. Therefore, the HotSpot VM assigns a lock to an
object only when threads start using that object for locking.
Even then, biased locking can avoid allocating an actual lock
as long as the object is never used by more than one thread.

The act of assigning a lock to an object is called lock
inflation. Intrinsic locks in HotSpot are data structures
in native memory which are never moved by the garbage
collector and can therefore be uniquely identified by their
address. Whenever lock inflation happens, we record an
inflation event with the lock’s address, the object that the
lock is being assigned to, and that object’s class. In the trace
events that follow, we record only the lock’s address. When
analyzing the trace, we are thus still able to infer the lock’s
associated object and its class from the inflation event.

When a thread cannot enter a synchronized block or
method because it cannot acquire a lock, we record a con-
tended enter event with the lock’s address, a timestamp, and
the call chain of the thread. Recording the call chain is ex-
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Figure 3: Events in three contending threads

pensive, but the impact on performance is moderate because
the thread is unable to make progress either way. When the
thread later acquires the lock, we record a contended entered
event with only a timestamp.

With those two events, we can determine which threads
were blocked when trying to acquire a lock, how long they
were blocked, and what call chains they were executing.
However, this information only reveals the symptoms of
locking bottlenecks and not their causes. To determine the
causes of contention, we record events not only in those
threads that are blocked, but also in those threads which
block other threads by holding a contended lock. We modified
all code paths in the VM that release a lock when exiting a
synchronized block or method so that they check whether
any threads are currently blocked on that lock. If so, we
write a contended exit event with a timestamp and the call
chain. We delay recording the call chain and writing the
event until after the lock has been released to avoid causing
even more contention.

Figure 3 shows an example of events that we trace for three
threads T1, T2 and T3 that are executing in parallel and are
contending for a single intrinsic lock. First, T1 acquires the
lock without contention, so we do not record an event. Next,
T2 tries to acquire the lock, but the lock is held by T1, so
T2 writes a contended enter event in its trace buffer and
suspends itself. T3 then also fails to acquire the lock and also
records a contended enter event. When T1 finally releases
the lock, it sees T2 and T3 on the lock’s queue of blocked
threads, so it resumes thread T2 and writes a contended exit
event. T2 acquires the lock and writes a contended entered
event. When T2 later releases the lock, it sees T3 on the
lock’s queue, resumes T3 and writes a contended exit event.
T3 then acquires the lock and writes a contended entered
event. When T3 releases the lock, no threads are queued,
and T3 continues without writing an event. When the trace
analysis later examines the events of all threads, it can infer
from the contended exit events that T2 and T3 were being
blocked by T1 holding the lock, and that T3 was subsequently
being blocked by T2. It can further compute the duration of
those periods from the timestamps in the events.

Event ordering.
The trace analysis needs to arrange all events for a specific

lock in their correct order to analyze them. For this purpose,
we introduced a counter in HotSpot’s intrinsic lock structure.
When we write an event for a lock, we atomically increment

the lock’s counter and record its new value in the event
as its per-lock sequence number. Unlike timestamps, these
sequence numbers have no gaps between them, which enables
the analysis to determine whether it can already analyze a
sequence of parsed events, or whether there are still events
in a trace buffer from another thread that it has not parsed
yet. This considerably simplifies and speeds up the analysis.
However, when a thread records an event and then does
not submit its trace buffer for a long time, it still delays the
analysis of subsequent events. For this reason, we also reclaim
the trace buffers of all threads during garbage collections and
add them to the processing queue. The threads subsequently
allocate new buffers to write further events.

Sequence numbers are also more reliable than timestamps
for correctly ordering events. Although we retrieve the times-
tamps from a monotonic system clock, this clock typically
uses a timer of the CPU or of the CPU core on which the
thread is currently executing. When the timers of differ-
ent CPUs or CPU cores are not perfectly synchronized, the
recorded timestamps are not accurate enough to establish
a happened-before relationship, while our atomically incre-
mented sequence numbers always guarantee a correct order.

Conditional waiting.
The wait method temporarily releases a lock and suspends

the calling thread until another thread wakes it up. When the
released lock is contended, we also need to write a contended
exit event with a call chain. However, wait may be called
in a different method than the one that acquired the lock,
as is the case with awaitNotEmpty in Figure 1. In this case,
recording the current call chain would misrepresent the source
of contention. Instead, we generate and record a forward
reference to the call chain of the method that acquired the
lock. We store the reference in the lock structure and when
that method releases the lock later, we record a separate
event that resolves the reference to that method’s call chain.

When a thread is unable to reacquire a lock after waking
up from waiting, we also record a contended enter event, but
this form of contention is not necessarily critical. Often, only
the first of several notified threads can make progress, while
the other threads will find that the condition that they have
been waiting on is again not met, and thus continue waiting.
Therefore, we use an extra flag in the event to indicate when
contention was preceded by conditional waiting. This allows
us to classify this type of contention differently in analysis.

3.3 Tracing Park/Unpark Synchronization
Most synchronization mechanisms in java.util.concurrent

are implemented entirely in Java. To trace them, we could
instrument each class individually and generate custom trace
events that are specific to the semantics of the class in ques-
tion. However, what these classes have in common is that
they rely on the park and unpark methods that the VM
provides through the LockSupport class.

Figure 4 shows an outline of the LockSupport class. The
park method parks (suspends) the calling thread. A parked
thread remains suspended until another thread calls unpark
on it. The methods parkNanos and parkUntil suspend the
calling thread until the thread is unparked, or until a timeout
has elapsed or a deadline is passed, whichever comes first.
The callers of the park methods pass a blocker object which
represents the entity that caused the thread to park. The
blocker object is typically the synchronization object itself
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class LockSupport {
static void park(Object blocker);
static void unpark(Thread thread);
static void parkNanos(Object blocker, long timeout);
static void parkUntil(Object blocker, long deadline);
// ... variants of park without blocker argument ...

}

Figure 4: Methods of the LockSupport class

or an object associated with it. For example, ReentrantLock
passes an instance of its inner class NonfairSync (or FairSync).
Although passing a blocker object is optional, implementers
are strongly encouraged to do so for diagnostic purposes.

When a thread cannot acquire a lock, it calls park to
suspend itself and passes a blocker object that represents
the lock. When a thread releases a contended lock, it calls
unpark to resume a parked thread that has requested the lock.
Therefore, we decided to trace the individual park and unpark
calls in all threads. The class of the blocker object reveals the
used type of lock (or other synchronization mechanism) and
enables us to infer the exact semantic meaning of the park
and unpark calls, so we can correlate them with each other
and determine which threads blocked which other threads.

We also need to arrange the events for the park and unpark
calls in their correct order to analyze them. Ideally, we would
also generate separate sequence numbers for each lock so
that the events from different locks can be ordered and
analyzed independently. However, the lock is represented
by the blocker object, which is only passed to park, not to
unpark, and is therefore unknown when writing an unpark
event. Therefore, we assign a global sequence number to
each event, which establishes a definitive happened-before
relationship between all park and unpark calls in all threads.
We further use the global sequence number of an event to
refer to that event from other events.

When a thread calls park, we record a park begin event with
a sequence number, a timestamp, the identity of the blocker
object, the object’s class, and the call chain. Moreover, we
include whether a timeout or deadline was specified upon
which the thread would resume even without being unparked.

When a thread calls unpark to resume a parked thread, we
record an unpark event with a sequence number, a timestamp,
the identifier of the unparked thread, and the call chain.
Moreover, we store the unpark event’s sequence number to a
thread-local structure of the unparked thread.

As soon as the unparked thread resumes its execution, we
write a park end event with a sequence number and a times-
tamp. We retrieve the sequence number of the corresponding
unpark event from the thread-local structure and also include
it in this event, so the analysis can easily match the two
events. Because a call to park can also end due to a timeout,
we also record in the event whether this was the case.

Figure 5 shows an example of events that we record in
four contending threads that use a non-fair ReentrantLock.
Initially, T1 is able to acquire the lock without contention.
Next, T2 tries to acquire the lock and fails, so it enters the
queue of the lock and parks, and thus, we record a park begin
event. T4 then also fails to acquire the lock, enters the queue
and parks, so we record another park begin event. When T1

releases the lock, it unparks T2 as its successor and we write
an unpark event. However, T3 is able to acquire the lock
before T2 resumes its execution. T2 writes a park end event,

bl. by T2blocked by T3blocked by T1

blocked by T1

blocked by T3

T1

T2

T3

unpark T2

park begin

park end

(lock)

(lock) unpark T2

park end

park begin

(lock)

T4

park begin

Figure 5: Park/unpark events in contending threads

but finds that the lock is still unavailable, so T2 parks again,
and we write another park begin event. Finally, T3 releases
the lock and unparks T2 as its successor. When T2 resumes
its execution, we record a park end event, and T2 is finally
able to acquire the lock. T4 remains parked.

During the analysis of the trace, we examine the first park
end event of T2, which leads us to the unpark event of T1.
Because a blocker object of class ReentrantLock.NonfairSync
was recorded, we can infer that the unpark call was the
consequence of an unlock operation, and that T1 held the
lock before the unpark event. The same applies to the the
second unpark call, where T3 held the lock. We can then
account for the contentions in T2 as being caused by T1 and
T3 and their recorded call chains. Thread T4 was also blocked
by T1 and T3, but unpark was called only on T2. However,
because T4 specified the same blocker object as T2 when
parking, we can infer that it was blocked by the same lock
owners and also account for its contention as being caused
by T1 and T3. Because the time between an unpark event
and a park end event cannot be precisely attributed to the
previous or to the next lock owner, we simply attribute such
typically very short time periods to an unknown lock owner.

3.4 Metadata
Our traces contain a significant amount of repetitive data,

such as the identities of threads, classes and objects, as well
as call chains. Therefore, we want to collect and encode
such data as efficiently as possible. However, for the data
to be valuable for a user, we need to provide a meaningful
representation, such as the name of a thread instead of just
its numeric identifier. We decided to address this issue with
metadata events. When we encounter an entity (such as a
thread or a class) for the first time, we record a metadata
event with a unique identifier for the entity and include
information that is meaningful to a user. In the events that
follow, we refer to that entity with only its identifier.

When the application launches a new thread, we record a
thread start event with the thread’s name and the numeric
identifier that the Java runtime assigned to the thread. In
future events, we refer to the thread only with that identifier.
When the name of a thread is changed later, we record a
thread name change event with the new name.
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When we encounter a specific Java class for the first time,
we write a class metadata event with the fully-qualified name
of the class. HotSpot stores the metadata of a class in a data
structure with a constant address, so we use that address as
the unique identifier of the class. We introduced an additional
field in the class metadata structures that we use to mark a
class as known. Because two threads might race to write a
class metadata event, we atomically update that field before
writing an event, and the thread that succeeds in updating
the field then writes the event.

Finding a unique identifier for Java objects is difficult.
Because objects are moved by the garbage collector, their
address is not suitable as an identifier. Instead, we refer to
an object by recording its identity hash code and its class in
our events. In HotSpot, the identity hash code of an object is
a 31-bit integer that is randomly generated and stored with
the object. In rare cases, two different objects of the same
class can be assigned the same identity hash code, so that
the two objects would be indistinguishable during analysis.
We consider this to be an acceptable tradeoff compared to a
more complex approach that involves tracking objects.

When recording call chains, we also refer to individual Java
methods. Like classes, HotSpot stores the metadata of Java
methods in data structures with constant addresses, which
we use as unique method identifiers. When we encounter a
method for the first time, we write a method metadata event
with its identifier, the identifier of the method’s class, the
method’s name, and the method’s signature. We also use a
newly introduced field to mark known methods.

Although the thread which first encounters an entity records
a metadata event for it, some other thread may submit its
trace buffer before that thread does. The trace analysis must
be able to handle situations where events refer to an entity
whose metadata event has not been processed yet, and must
be able to resolve such references later.

Call chains.
We consider call chains to be vital for understanding lock-

ing bottlenecks, but walking the stack and storing them is
expensive. Therefore, we have devised several techniques to
record call chains more efficiently.

In a typical application, the number of call chains which
use locks is limited, and many of the events that we record
share identical call chains. To reduce the amount of data, we
maintain a hash set of known call chains. When we record a
call chain for an event, we look it up in that set. If it does
not exist, we assign a unique identifier to it, insert it into the
set, and write a call chain metadata event with its identifier
and its methods. If the call chain already exists in the set, we
can just record its identifier. We compute the hash code of
a call chain from the instruction pointers from its methods.

Because multiple threads can access the set of call chains
concurrently when recording events, those accesses require
synchronization. We minimized the risk that the hash set
becomes a bottleneck by implementing its operations in a
lock-free way: when we record a call chain, we first walk the
collision chain for its hash code without using any synchro-
nization. If the call chain is found, we simply use its identifier.
Otherwise, we generate a unique identifier for the call chain,
and attempt to insert it into the set using a compare-and-set
operation. If that operation succeeds, we record a call chain
metadata event. If the compare-and-set fails, some other
thread has inserted a call trace in the same collision chain,

so we start over and check if the collision chain now contains
the call chain in question. Therefore, we keep the overhead
of insertion to a minimum, and looking up an existing call
chain incurs no synchronization overhead at all.

We also optimized the stack walk itself. A JIT-compiled
Java method usually has several of its callees inlined into
its compiled code, and walking the stack frame of such a
method typically entails resolving which methods are inlined
at the current execution position. In HotSpot, this requires
decoding compressed debugging information from the com-
piler. Instead, we perform light-weight stack walks which do
not resolve the inlined methods, and also store call chains
without the inlined methods in our hash set. We resolve the
inlined methods only when we encounter a new call chain for
which we write a call chain metadata event.

Finally, we devised a technique to reuse parts of a call chain
that were recorded earlier in the same thread. We derived
this technique from our earlier research on incremental stack
tracing [8]. When we walk the stack of a thread to construct
its call chain, we cache the resulting call chain in a thread-
local structure. We also mark the stack frame that is below
the top frame by replacing its return address with the address
of a code snippet, and retain the original return address in a
thread-local structure. When the marked frame returns, the
code snippet is executed and simply jumps to the original
return address, and the marking is gone. However, as long
as the marked frame does not return, we can be certain that
the frames below it have not changed. When we walk the
stack again later and encounter a marked frame, we can stop
the stack walk and complete the call chain using the frames
of the cached call chain. This technique is intended to reduce
the overhead of stack walks when recording multiple events
in the same method, such as a contended enter event and a
contended exit event, or multiple park begin events.

Unloading of classes and compiled methods.
We refer to classes and methods by using the constant

addresses of their metadata structures as identifiers. However,
when HotSpot’s garbage collector detects that a class loader
has become unreachable, it unloads all classes loaded by
that class loader and reclaims the memory occupied by their
metadata. When other metadata is loaded into the same
memory, the addresses that we used as identifiers in earlier
events become ambiguous during the analysis of the trace.

Therefore, we need to record when identifiers become in-
valid. We extended the class metadata event to include the
class loader, which we also identify by the address of its
metadata structure. When a class loader is unloaded during
garbage collection, the application is at a safepoint, which
means that all application threads are suspended and cannot
write trace events. At this point, we first reclaim the trace
buffers of all threads, which can still contain references to
classes that are about to be unloaded, and add them to
the processing queue to ensure that they are processed first.
Then we acquire a new buffer, write a single class loader
unload event with the identifier of the class loader, and im-
mediately submit the buffer to the processing queue. When
the trace analysis processes this event, it forgets all class,
method and call chain metadata that refers to the unloaded
classes. Finally, we let HotSpot unload the classes.

Compiled methods are also frequently unloaded, for ex-
ample when assumptions that were made during their com-
pilation turned out to be wrong. Other code can then be
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Figure 6: Processing events to identify contentions

loaded into the same memory. Because we store addresses of
compiled methods in our call chains, these addresses can then
become ambiguous, so we purge call chains with unloaded
methods from our set of known call chains.

4. TRACE ANALYSIS
In order to identify synchronization bottlenecks effectively,

we need to compute meaningful statistics from the recorded
events. We accomplish this in two phases: first, we correlate
events from different threads with each other to identify in-
dividual lock contentions. In the second phase, we aggregate
these contentions by user-defined criteria.

4.1 Correlation and Contention Analysis
Figure 6 shows the process of extracting contentions from

a trace. The event parser processes one trace buffer at a time.
It parses the events in the buffer and forwards each event
to the metadata resolver. The metadata resolver extracts
all metadata from metadata events and keeps them in data
structures. It replaces the metadata identifiers in all types of
events with references to those data structures so that later

phases can access those data structures directly. The meta-
data resolver then passes the events to the event rearranger,
which reorders them according to their sequence numbers.
The event rearranger maintains one queue per intrinsic lock
and passes each intrinsic lock’s events in their correct order
to the intrinsic lock dispatcher. For park/unpark events with
a global sequence number, the event rearranger uses a single
queue and passes the events to the park thread dispatcher.

The intrinsic lock dispatcher creates a lock analyzer for
each intrinsic lock that it encounters in the events, and passes
the events of that lock to its analyzer. The analyzer replays
the events and keeps track of which threads were blocked and
which thread held the lock, and finally generates contention
objects. These contention objects store the duration of the
contention, the thread that was blocked, the thread’s call
chain, the lock’s associated object, and that object’s class.
Most importantly, the contention objects also store the cause
of the contention, that is, the thread that held the lock and
that thread’s call chain. These contention objects are then
submitted to aggregators that compute statistics, which we
describe in Section 4.2.

For the park/unpark mechanism, the analysis is more com-
plex. The park thread dispatcher creates a thread analyzer for
each thread that parked or was unparked, and forwards the
events of that thread to its analyzer. The thread analyzer
replays the events and creates bundles of related park begin,
unpark and park end events. It submits those bundles to the
park blocker dispatcher, which creates a blocker analyzer for
each blocker object that occurs in those bundles. We im-
plemented different types of blocker analyzers to handle the
different synchronization semantics of java.util.concurrent
classes. The park blocker dispatcher chooses which type of
blocker analyzer to create based on the blocker object’s class.
The blocker analyzer examines the event bundles that are
passed to it, tracks the state of the blocker, and creates con-
tention objects that it submits to the aggregator hierarchy.
We have implemented blocker analyzers for ReentrantLock
and for ReentrantReadWriteLock. ReentrantLock is very
similar to intrinsic locks, and its analyzer processes events
as described in the discussion of Figure 5. With a Reen-
trantReadWriteLock, multiple readers can share the lock at
the same time without calling park or unpark, so we do not
record events for those readers. Only the last reader that
releases the lock calls unpark on a blocked writer and records
an event. Therefore, our analyzer for ReentrantReadWrite-
Lock cannot determine all readers which blocked a writer,
but it still accurately determines which writers blocked which
readers, and which writers blocked each other.

4.2 Aggregation of Contentions
To enable users to find and examine locking bottlenecks

in an effective way, we devised a versatile method to aggre-
gate the individual contentions by different aspects. These
aspects of contentions are the contending thread, the con-
tending call chain (or method), the lock owner thread, the
lock owner’s call chain (or method), the lock object (an in-
trinsic lock’s associated object, or a park blocker object),
and that object’s class. As another aspect for aggregation,
we categorize contentions into groups for intrinsic locks and
for park/unpark synchronization. The user selects one or
more of these aspects in a specific order. We then build a
hierarchy of selectors and aggregators that break down all
contentions by those aspects. An aggregator computes the
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total duration of all contentions that it processes. A selector
distinguishes contentions by a specific aspect and forwards
them to a specific aggregator according to their values.

Figure 7 shows an example in which contentions are first
aggregated by the lock object’s class, and then by the lock
owner’s call chain. When the trace analysis produces a con-
tention object, it submits it to the hierarchy’s root selector,
which distinguishes contentions by the lock object’s class.
The selector has a factory that it uses to create an aggregator
for each distinct lock object class that it encounters. Assum-
ing that the submitted contention has java.util.Hashtable as
its lock object class, the selector forwards the contention
to the aggregator for that class. The aggregator then adds
the contention’s duration to its total duration. Because we
aggregate by the lock owner’s call chain next, each aggre-
gator on this hierarchy level is coupled with a selector that
distinguishes a contention by the lock owner’s call chain after
the aggregator has processed it. The selector also has a fac-
tory (denoted by F), which it uses to create aggregators for
each encountered call chain and then forwards contentions to
them. Assuming that the contention matches the call chain
of aggregator Σn, the selector forwards the contention to that
aggregator, which then adds the contention’s duration to its
total duration. Because there are no more aspects to aggre-
gate by, the aggregators on that level are not coupled with
selectors. The final result of aggregating multiple contentions
is the tree of aggregators and the total contention times that
they computed. In this example, a user might recognize from
that tree that there is significant contention with Hashtable
object locks, and that there are two call chains that cause
most of these contentions. The user could then choose to
optimize the code that these two call chains execute, or also
select a different data structure or implementation, such as
ConcurrentHashMap.

4.3 Interactive Visualization
In order to enable users to perform a comprehensive offline

analysis of the generated traces, we built an interactive
visualization tool. Figure 8 shows a screen capture of this
tool displaying a trace file from the avrora benchmark, which
simulates a network of microcontrollers. The main window
is divided into three parts: a drill-down selection panel at
the top, an aggregation tree in the center, and a detail view
for the selected entry in the aggregation tree at the bottom.

In this example, the drill-down panel is configured to
aggregate contentions first by group, then by the lock object’s

class, next by individual lock objects, then by the lock owner’s
method, and finally by the lock owner’s call chain. Therefore,
the root level of the tree displays the different groups that we
categorize events in. The first entry represents contentions
from intrinsic locks, and the Total Duration column displays
that it makes up 100% of all contentions. It also shows an
absolute value of 37 seconds, which is the total time that all
threads spent being blocked on intrinsic locks. The entries on
the next two tree levels break down that time by lock object
classes and further by individual objects, and show that
99.78% of the contention comes from locking java.lang.Class
objects, and that all of that contention involves a single
Class instance with identity hash code 49abf544. The two
tree levels below that display owner methods and owner
call chains. With 99.32%, SimPrinter.printBuffer is almost
always the owner of the lock when a contention occurs. The
multiple owner call chains show that this method is called
from more than one location, and that the amount of caused
contention varies significantly by call chain. Call chains are
typically too long to fit into a single line, so we show [+n]
to denote that n calls have been omitted. However, a user
can select a specific entry to view the entire call chain in the
detail view below the tree.

We examined the source code of avrora and found that
SimPrinter.printBuffer is used to log simulation events and
that it calls certain static methods of class Terminal. To
avoid that the output from different threads is interleaved,
printBuffer acquires the intrinsic lock of the Class object
of Terminal, which poses a locking bottleneck. In Figure 8,
we see two call chains that cause 72.75% and 11.41% of all
contention, and in both of them, printBuffer is called by
fireAfterReceiveEnd. This method logs when a simulation
node receives a network packet, which is the most frequently
logged event, and its output is very large because it includes a
hexadecimal representation of the packet’s data. To mitigate
this bottleneck, contention could be reduced by logging fewer
details or fewer events, or also by queueing log events and
asynchronously writing them to a file in a background thread.

Figure 8 demonstrates that our tool enables users to see
the methods and call chains that caused contentions, unlike
common approaches that show only which methods and
call chains were blocked. However, by choosing different
aspects for aggregation, users can also extract a wealth of
other information, such as whether some threads caused
or suffered more contention than other threads, which call
chains held the lock when a specific call chain was blocked
and for how long, or which contended locks were used by a
specific thread, method, or call chain.

5. EVALUATION
We implemented our approach for OpenJDK 8u45 and

evaluated it with synthetic workloads from a purpose-built
test suite, and with real-world benchmarks.

5.1 Synthetic Workloads and Correctness
In order to verify that our approach accurately depicts the

locking behavior of an application, we devised a test suite that
generates predictable synthetic locking workloads. We built
this test suite using the Java Microbenchmark Harness [12].
In our tests, we vary the number of threads and the number of
call chains. Most importantly, we vary how long the different
threads or call chains hold a lock, which changes how much
contention each of them causes. We implemented those
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Figure 8: Visualization of a bottleneck in the avrora benchmark

tests for intrinsic locks and for java.util.concurrent locks
and found that our generated traces match the expected
amounts of contention for each test. Moreover, we verified
that the recorded call chains are correct when the code throws
exceptions, when the compiler inlines code, and when the
code uses wait and notify.

5.2 Benchmarking
We evaluated our approach with the DaCapo 9.12 bench-

mark suite [2] and with the benchmarks of the Scala Bench-
marking Project 0.1.0 [16]. Both suites consist of open
source, real-world applications with pre-defined, non-trivial
workloads.1 We chose to execute 45 successive iterations
of each benchmark in a single VM instance, and to discard
the data from the first 35 iterations to compensate for the
VM’s startup phase. We tracked the start and the end of
the benchmark iterations to extract the execution time and
other metrics per iteration, and reinitialized event tracing
at the start of each iteration. We further executed more
than 10 rounds of each benchmark (with 45 iterations each)
to ensure that the results are not biased by optimization
decisions which the VM makes in its warm-up phase.

We performed all tests on a server-class system with two
Intel Xeon E5-2670v2 processors with ten cores each and with
hyperthreading, and thus, 40 hardware threads. The system
has a total of 32 GB of memory and runs Oracle Linux 7. To
get more reproducible results, we disabled dynamic frequency
scaling and turbo boost, and we used a fixed Java heap size

1We did not use the DaCapo suite’s batik and eclipse bench-
marks because they do not run on OpenJDK 8.

of 16 GB. With the exception of system services, no other
processes were running during our measurements.

5.3 Runtime Overhead
We measured the benchmark execution times with tracing

when writing an uncompressed output file, when writing a
compressed output file, and when analyzing the events online.
The online analysis executes in parallel to the benchmark
and aggregates the contentions by lock object class, then by
contending call chain, and then by the lock owner’s call chain.
We compare these execution times to those of an unmodified
OpenJDK 8u45 without tracing.

Figure 9 shows the median execution times of each bench-
mark, normalized to the median execution times without
tracing. The error bars indicate the first and third quar-
tiles. We categorized the benchmarks into multi-threaded
and single-threaded benchmarks. The G.Mean bars show
the geometric means of each category, and their error bars
indicate a 50% confidence interval. For the multi-threaded
benchmarks, the mean overhead of generating a trace file
is 7.8%, both with and without compression. With online
analysis, the mean overhead is 9.4%. For the single-threaded
benchmarks, the mean overhead of generating a compressed
trace file is 0.8%, and with online analysis, it is 1.2%. The
overhead for single-threaded benchmarks is caused in part
by the trace buffer management, and in part because the
JDK itself uses multi-threading and synchronization, which
we trace as well.

The overheads of the individual benchmarks correlate
directly with the amount of contention that they exhibit.
The benchmarks with the highest overhead are actors and
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xalan. actors is a concurrency benchmark with many fine-
grained interactions between threads, and tracing them re-
sults in an overhead of 22%. Online analysis increases it to
42%, which is caused by the benchmark’s extensive use of
java.util.concurrent synchronization, for which the analysis
is more complex and thus slower. The xalan benchmark
transforms XML documents. It distributes work to as many
threads as there are hardware threads, but all threads access
a single Hashtable instance. This causes a substantial num-
ber of short contentions on our machine with 40 hardware
threads, and tracing them incurs an overhead of around 80%.

For some benchmarks such as scaladoc or tmt, tracing even
slightly improves the benchmark’s performance. We attribute
this to the delays that are introduced by recording events and
call chains. David et al. found that HotSpot’s locks saturate
the memory bus, and that delays in lock acquisition reduce
memory bus contention, which can increase performance [3].
Also, after we write a contended enter event, HotSpot’s
implementation of intrinsic locks retries to spin-acquire the
lock while it adds the thread to the queue of blocked threads.
A delay before that can increase its chances of being successful
instead of suspending the thread. Additionally, the activity
of the background thread in which we write the trace file or
analyze the trace data influences the behavior of the garbage
collector and of the thread scheduler, which can also have
small beneficial effects.

The runtime overhead of our tracing is below 10% for all
but three benchmarks. We consider this to be feasible for
monitoring a production system. On a quad-core workstation,
we measured even lower mean overheads below 3%. In future
work, we intend to address cases in which the overhead is
higher, in particular when tracing a substantial number of
short contentions. We plan to support enabling and disabling
tracing at runtime, which would allow users to analyze lock
contention on a production system on demand, while causing
little to no overhead when tracing is not active.

5.4 Generated Amount of Data
The amount of generated trace data is also an important

factor for production use. Figure 10 shows the mean amount
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Figure 10: Trace data generated per second

of generated trace data per second for the multi-threaded
benchmarks, with and without compression. Tracing xalan,
actors and avrora generates the most uncompressed trace data
at 26.3 MB/s, 14.7 MB/s, and 8.6 MB/s, respectively. For the
other benchmarks, our approach generates less than 6 MB of
uncompressed data per second. For those benchmarks that do
not exhibit significant contention, we record less than 50 KB
per second. Our on-the-fly compression typically reduces the
amount of data by between 60% and 70%, and decreases the
data rate of xalan to around 10 MB/s. Therefore, 60 minutes
of trace data from a xalan-type application require less than
40 GB of disk space and should be more than sufficient to
analyze performance problems.

We also inspected the memory footprint of the trace buffers,
which have a mean capacity of 16 KB. We found that we
typically use fewer than 100 buffers at any time, and hence
occupy less than 2 MB of memory with trace buffers.

5.5 Trace Composition
We further examined the composition of the generated

traces. Figure 11 shows the relative frequencies of individ-
ual events for the multi-threaded benchmarks. We grouped
all types of metadata events for brevity. The actors and
apparat benchmarks are the only ones that predominantly
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rely on java.util.concurrent synchronization, with tmt, tom-
cat, tradebeans and tradesoap using it to some extent. As
would be expected, there are typically equal numbers of park
begin events, park end events, and unpark events. Surpris-
ingly, we record only unpark events for some benchmarks,
such as jython. This is because these benchmarks call the
Thread.interrupt method, which always implicitly performs
an unpark operation, regardless of whether the interrupted
thread is currently parked.

With intrinsic locks, we record an equal number of con-
tended enter and contended entered events, but always a
significantly higher number of contended exit events. The
difference is particularly large with benchmarks that acquire
locks only very briefly, such as luindex. The reason for that
is non-fair locking, with which a thread can instantly acquire
an available lock even when there are queued threads, but
when that thread releases the lock, it must write a contended
exit event. When one of the queued threads has already been
resumed and cannot acquire the lock, we do not write any
additional events in that thread. With park-based synchro-
nization, we would record another park begin event and park
end event in that case, which is why the number of the three
types of park events is more balanced.

For some benchmarks, metadata constitutes a relatively
large portion of the trace data. Most of these benchmarks
exhibit low contention, so that the amount of metadata that
we record for that contention becomes relevant. In contrast
to those benchmarks, scalatest and tomcat exhibit significant
contention, but they generate many Java classes at runtime
which use locks, so we record a large number of different call
chains. avrora heavily uses conditional waiting with intrinsic
locks, and to collect correct call chains, we must record an
additional metadata event when a lock is finally released.

5.6 Call Chain Optimizations
In order to assess how much of our overhead comes from

recording call chains, we also measured the tracing overhead
when not recording call chains. Figure 12 compares the
overheads of tracing with and without recording call chains
for the multi-threaded benchmarks when writing an uncom-
pressed trace file. When not recording call chains, the mean
overhead decreases from 7.8% to 6.4%. Hence, our method
of recording call chains typically constitutes less than 20% of
the tracing overhead. The overhead for tracing xalan (which
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is cut off in the chart) is reduced from 79% to 73%.
We further examined the effectiveness of reusing call chains.

In all benchmarks for which we recorded more than 10,000
call chains per second, we could reuse more than 99.5% of all
call chains from the set of known call chains (pmd is the sole
exception at 89%). This reduces the amount of metadata
in the trace and requires only light-weight stack walks for
the lookups in the set. With our technique of marking stack
frames, we further save examining between 10% and 50% of
all stack frames for those same benchmarks.

6. RELATED WORK
Tallent et al. [20] describe a sampling profiler which, like

our approach, identifies which threads and call chains block
other threads and call chains by holding a contended lock.
The profiler associates a counter with each lock and peri-
odically takes samples. When it samples a thread that is
blocked on a lock, it increases that lock’s counter. When a
thread releases a lock, the thread inspects the lock’s counter,
and if it is non-zero, the thread “accepts the blame” and
records its own call chain. The profiler was implemented
for C programs and is reported to have an overhead of 5%,
but determines only which threads and call chains blocked
other threads. Our approach also records which threads and
call chains were blocked by a specific thread or call chain,
which we consider to have diagnostic value when reasoning
about performance problems that occur in a specific part of
an application.

David et al. [3] propose a profiler that observes critical
section pressure (CSP), a metric which correlates the progress
of threads to individual locks. When the CSP of a lock over
a one-second period exceeds a threshold, the profiler records
the identity of the lock and a call chain from one thread that
was blocked. They implemented their profiler in HotSpot and
report a measured worst-case overhead of 6%. We consider
this approach complementary to ours because the CSP can
be computed from the events that we record.

Inoue et al. [9] describe a sampling profiler in a Java VM
which uses hardware performance counters to observe where
the application acquires locks and where it blocks. It con-
structs call chains with a probabilistic method that uses the
stack depth. The profiler is claimed to have an overhead of
less than 2.2%, but it does not determine which threads and
call chains block other threads and call chains.

Java Flight Recorder (JFR, [6]) is a commercial feature of
the Oracle JDK that efficiently records performance-related
events in an application. It collects information on blocked
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threads, their call chains, and the classes of lock objects. To
keep the overhead low, JFR records only long contentions
(more than 10ms) by default. JFR also records which thread
most recently owned a lock before it could be acquired after
a contention. However, although more than one thread can
own a lock over that time, it considers the entire time that
is spent blocking to be caused by that thread. Unlike our
approach, JFR does not record call chains for threads that
block other threads. It also only provides contention statistics
for intrinsic locks and not for java.util.concurrent locks.

The Java VM Tool Interface (JVMTI, [14]) provides func-
tionality to observe contention from intrinsic locks. Profilers
can register callbacks for contention events and then examine
the thread, the lock’s associated object, and the call trace of
the blocked thread. However, those events cannot be used to
determine the thread which holds the lock or that thread’s
call chain. JVMTI also does not provide events to observe
contention from java.util.concurrent locks.

Stolte et al. [17] describe Polaris, a system for analyzing
and visualizing data in multidimensional databases. Po-
laris provides a visual query language for generating a range
of graphical presentations, which enables users to rapidly
explore the data. We believe that such a system would com-
plement our visualization tool, and we consider implementing
an export feature for the trace analyis results to a format
that can be used with such systems.

7. CONCLUSIONS AND FUTURE WORK
We presented a novel approach for analyzing locking bot-

tlenecks in Java applications by efficiently tracing lock con-
tention in the Java Virtual Machine. We trace contention
from both Java’s intrinsic locks and from java.util.concurrent
locks. For the analysis of the traces, we devised a versatile
approach to aggregate and visualize the recorded contentions.
Unlike other methods, our approach shows not only where
contention occurs, but also where contention is caused. Nev-
ertheless, our implementation in the HotSpot VM incurs a
low mean overhead of 7.8%, so we consider it feasible to use
our approach for monitoring production systems.

In future work, we intend to focus even further on the ac-
tivities of lock owner threads while their locks are contended,
for example by taking periodic samples of their call chains.
We also plan to extend our analysis approach to identify
connections between lock contentions, such as when a thread
holds a contended lock and is then blocked when trying to
acquire another lock. We further intend to collect more in-
formation about lock objects, such as the call chain where
a lock object was allocated. This could provide additional
information when locks are stored with data objects that are
propagated to different parts of an application. Finally, we
consider analyzing conditional waiting with both intrinsic
locking and java.util.concurrent mechanisms. This could
reveal problems such as when threads wait for each other to
finish related tasks, but some tasks take significantly longer
than others, leaving some threads idle.
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