
Automatically Detecting “Excessive Dynamic Memory

Allocations” Software Performance Anti-Pattern

Manjula Peiris
Dept. of Computer and Information Science

Indiana University-Purdue University
Indianapolis

Indianapolis, IN, USA
tmpeiris@cs.iupui.edu

James H. Hill
Dept. of Computer and Information Science

Indiana University-Purdue University
Indianapolis

Indianapolis, IN, USA
hillj@cs.iupui.edu

ABSTRACT
This paper presents a methodology for automatically detecting the
excessive dynamic memory allocation software performance anti-
pattern, which is implemented in a tool named Excessive Mem-
ory Allocation Detector (EMAD). To the best of author’s knowl-
edge, EMAD is the first attempt to detect excessive dynamic mem-
ory allocation anti-pattern without human intervention. EMAD
uses dynamic binary instrumentation and exploratory data analy-
sis to determine if an application (or middleware) exhibits exces-
sive dynamic memory allocations. Unlike traditional approaches,
EMAD’s technique does not rely on source code analysis. Re-
sults of applying EMAD to several open-source projects show that
EMAD can detect the excessive dynamic memory allocations anti-
pattern correctly. The results also show that application perfor-
mance improves when the detected excessive dynamic memory al-
locations are resolved.

Keywords
excessive dynamic memory allocation, software performance anti-
pattern, dynamic binary instrumentation, detection

1. INTRODUCTION
Dynamic memory allocation [1] is the process of allocating mem-

ory “on the fly” at program runtime. In contrast to static memory
allocation, programmers do not need to know the exact amount of
space or the number of items (e.g., size of an array) at compile
time. Dynamic memory allocation operates by using heap, or the
free store, of a program to allocate memory instead of the stack
storage of a function. Because the heap is global to all scopes of a
program (e.g. classes, functions, and loops), objects created using
dynamic allocations can be shared between different scopes.

Even though dynamic memory allocations provide software de-
velopers with memory flexibility at runtime, it is an expensive op-
eration [2]. Allocation and deallocation (i.e., the process of releas-
ing dynamically allocated memory) using standard memory alloca-
tion/deallocation functions like malloc/free (in the case of C) and
new/delete (in the case of C++) require system calls. Too many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’16, March 12–18, 2016, Delft, Netherlands.

© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851553.2851563

dynamic memory allocations can have negative consequences on
software performance. For example, Smith et al. [3] detailed how
excessive dynamic memory allocations is a software performance
anti-pattern. Software performance anti-patterns [3, 4], which we
just call anti-patterns from this point forward, are common designs
that have a negative impact on software performance.1

Since excessive dynamic memory allocation can negatively im-
pact performance, there are methods to detect it. Unfortunately, the
most prominent (and reliable) method for detecting and resolving
excessive dynamic memory allocation—and actually any software
performance anti-pattern—is (manual) source code analysis [5].
This approach, however, requires expert domain knowledge. More
importantly, it requires access to the original source code to sup-
port the necessary analysis. As we know, source code may not
be readily available when dealing with closed-source applications
and/or third-party middleware. Lastly, software performance anti-
patterns like excessive dynamic memory allocations are typically
visible when a software application is running and placed into a
certain state. It is therefore hard to identify, evaluate, and resolve
the anti-pattern using source code alone.

There are also approaches for detecting software performance
anti-patterns without source code. These approaches are either ar-
chitecture dependent [6] or rule-based [7, 8]. Unfortunately, they
do not consider the behavior of software performance anti-patterns
at runtime. This makes it hard to detect implementation-level anti-
patterns like excessive dynamic memory allocations [6].

Solution approach! Analysis supported by dynamic binary
instrumentation (DBI). Dynamic-binary instrumentation (DBI) [9]
is the process of instrumenting a software application at runtime
as opposed to recompiling the software application with the in-
strumentation software. DBI does not require the source code of
the system being instrumented because instrumentation logic is in-
jected into the target application while the program’s binary is ex-
ecuting. DBI also allows tracing an application and therefore cap-
turing its behavior. DBI therefore allows us to overcome the chal-
lenges mentioned above. The remaining challenge now is under-
standing how to apply DBI to actually detect excessive dynamic
memory allocations in an existing application, or middleware. Our
proposed technique is based on the intuition that excessive dynamic

1The author Hill experienced this as a visiting researcher at EBay,
Inc in 2007. The author was responsible for optimizing the back-
end search engine for EBay, Inc to address known performance
issues. The proposed solution was to remove excessive dynamic
memory allocations that were requesting 0 bytes of memory. The
solution resulted in 99% improvement in performance for test sce-
narios that were missing their deadline and 10-15% improvement
in performance for scenarios that were not missing their deadline.

237

memory allocations occur when the software application has many
short-lived, high-frequent dynamic memory allocations.

The main contributions of this paper therefore are as follows:

• It presents a method for detecting excessive dynamic mem-
ory allocations software performance anti-pattern that has
been realized in an open-source tool named Excessive Mem-
ory Allocation Detector (EMAD);

• It presents an algorithm to construct a dynamic call graph of
a program using an execution trace, which may be missing
messages representing routine exit events correspnds to tail
calls. This dynamic call graph is used to detect the excessive
dynamic memory allocations anti-pattern.

• It showcases how we can apply the K-means clustering algo-
rithm [10] and simple outlier detection techniques to the data
collected from DBI to detect excessive dynamic memory al-
locations anti-pattern;

• It is the first attempt, to the best of the authors knowledge,
of a tool that can automatically detect the excessive dynamic
memory allocations software performance anti-pattern; and

• It is the first attempt, to the best of the authors knowledge, of
using DBI to detect a software performance anti-pattern.

We have applied EMAD to several real open-source projects. Our
results from applying EMAD to these open-source projects show
that EMAD can report the correct results when the system either
exhibits or does not exhibit the excessive dynamic memory alloca-
tions anti-pattern. The results also show that when EMAD reports
the existence of the anti-pattern, common solutions can be used to
resolve the anti-pattern and improve the performance.

Paper organization. The remainder of this paper is organized
as follows: Section 2 discusses the challenges associated with de-
tecting excessive dynamic memory allocations anti-pattern. Sec-
tion 3 discusses the intuition and functionality of EMAD; Section 4
showcases the validity of our approach by applying EMAD to open
source software projects. Section 5 discusses related works; and
Section 6 provides concluding remarks.

2. MOTIVATION FOR EMAD
Excessive dynamic memory allocation is a common problem

that can degrade the software performance. Because of this rea-
son, many software systems and libraries adopt solutions that amor-
tize the cost of allocating/deallocating memory, such as allocating
memory from memory pools or free lists [11]. Another solution
is to use the Flyweight software design pattern [12]. Although
these promising solutions are available, it is hard to apply them
if one cannot detect the excessive dynamic memory allocation anti-
pattern. Unfortunately, detecting the excessive dynamic memory
allocation anti-pattern poses several challenges:

1. Inapplicability of source code analysis techniques. As
mentioned in Section 1, the prominent approach for detecting
a software performance anti-pattern is source code analysis.
Understanding dynamic memory allocations by just analyz-
ing the source code, however, is hard. This is because key
information like frequency of object allocation, the size of
the object being allocated, and the lifetime of an object are
hard to determine at compile time. Moreover, such analysis
requires time-consuming code analysis involving experts of
complex software systems [13].

Another limitation of this approach is that it requires source
code to be available. Nowadays, most software systems are
built using off the shelf software components and libraries. It
is therefore ill-conceived to assume that source code is avail-
able for analysis at every situation. Even if the source code
is available (as with open-source projects), one must still be
able to understand the source code (and its intent) in order to
search for excessive dynamic memory allocations.

2. Limitations of software performance anti-pattern detec-
tion techniques based on architectural models. Another
approach for detecting software performance anti-patterns
is defining rules on performance metric data (e.g., response
time and throughput) and/or resource usage data (e.g., CPU
and network usage) and then detecting rule violations [6–8].
These rules are defined on architectural models of the sys-
tem and rule violations are analyzed by simulating the ar-
chitectural models. Excessive dynamic memory allocation,
however, happens at software implementation level. Unfor-
tunately, it is hard to model the implementation details within
architectural models [6].

On the other hand, resource usage data (e.g., high memory
footprint) is not a direct indicator of excessive dynamic mem-
ory allocations. This is because a function can do a large
allocation at once (e.g., a memory pool) and then use it sub-
sequently throughout the entire application lifetime.

3. Ill-defined excessive dynamic memory allocation problem.
The problem of detecting excessive dynamic memory alloca-
tions is ill defined compared to other dynamic memory as-
sociated problems like memory leak detection and invalid
memory access detection. For example, memory leak de-
tection can be defined as finding dynamic memory alloca-
tions that are no longer accessible to the program [14]. Like-
wise, memory access errors can be defined as detecting in-
valid reads/writes from/to memory locations.

1 s t r u c t Foo {
2 i n t x ;
3 } ;
4
5 i n t main (i n t argc , char * a rgv []) {
6 Foo * foo = new Foo () ;
7 / / Do s o m e t i n g w i t h f o o
8
9 re turn 0 ;

10 }

Listing 1: A simple program that has a potential memory leak.

Lisiting 1 illustrates a simple program that has a potential
memory leak. As shown in the program, we can conclude
that a memory leak exists by examining whether the object
foo is, or is not, released when the main function returns. Al-
though this examination process can be complex, the prob-
lem of detecting the memory leak is well defined.

1 s t r u c t Foo {
2 i n t x ;
3 } ;
4
5 i n t main (i n t argc , char * a rgv []) {
6 f o r (i n t i = 0 ; i < 1000000; i ++) {
7 Foo * foo = new Foo () ;
8 / / Do s o m e t h i n g w i t h f o o
9 d e l e t e foo ;

10 }
11 re turn 0 ;

238

12 }

Listing 2: A simple program that has a potential excessive dy-
namic memory allocation.

Excessive dynamic memory allocations, however, cannot be
defined in such a precise manner. The word “excessive” de-
pends heavily on the context of the allocation. For example,
Listing 2 illustrates a simple program that has a potential
excessive dynamic memory allocation issue because of the
high frequency at which foo is being created and deleted. It,
however, is hard to determine whether this simple example
exhibits excessive dynamic memory allocations by only ex-
amining the number of times object foo is being created and
deleted. This is because excessive dynamic memory alloca-
tion is not only based on how many allocations/deallocations
occur, but also on the lifetime of those allocated objects.

As discussed above, these challenges make it hard to create au-
tomated approaches for detecting excessive dynamic memory allo-
cation anti-pattern. The reminder of this paper will therefore dis-
cuss how EMAD helps address these challenges–providing soft-
ware developers with an improved approach to detect the excessive
dynamic memory allocation anti-pattern. This will allow software
developers to detect and resolve the anti-pattern problem faster and
improve the performance of their software application.

3. THE DESIGN OF EMAD
Figure 1 illustrates EMAD’s workflow for detecting the exces-

sive dynamic memory allocations anti-pattern. As shown in the
figure, the process consists of 3 major steps: (1) instrumenting the
software application using DBI to collect an execution trace; (2)
constructing a call graph of the software from the collected execu-
tion trace; and (3) analyzing the call graph to detect excessive dy-
namic memory allocations. We discuss each step in detail through-
out the remainder of this section.

!"#$

%&'()*+$),,-".)/&#$

0123$!"#$4&&-$ 5*).+$

6+#+*)4+$

0123$$

07.+88"9+$
:+:&*;$
)--&.)/$

<8+$
<8+$

=#9&>+$
=#9&>+$?T*@.4$

2#)-;A+$

B+,&*4$

?)--$C*),D$

E$

F$

G$

Figure 1: Conceptual overview of EMAD’s workflow.

3.1 Instrumenting the Software Application
EMAD uses Pin [9] along with Pin++ [15] as the underlying DBI

framework to instrument an application and collect the needed exe-
cution trace. Sidebar 1 provides a brief overview on Pin and Pin++.
EMAD uses Pin++ to implement a Pintool that instruments a pro-
gram at routine level. The Pintool instruments each routine call
at start and at exit. The Pintool then generates an execution trace

where each message in the execution trace contains the following
information:

• Thread id. The thread id is a unique identifier of the thread
calling the routine under analysis. This is important because
the caller-callee relationships between routines is determined
on a per thread basis when constructing the call graph. The
thread id therefore is used to uniquely identify the thread.

• Routine id. The routine id is a unique id of the routine as-
signed by Pin. This information is important because the
routine name is not unique if the same routine is in different
image or if it is overloaded in the same class. This allows
EMAD to uniquely identify each routine it instruments.

• Event name. The event name represents the type of event
that is occurring. For EMAD, the event name is either start
or exit. Start represents the beginning of a routine call and
exit represents the return of a routine call. This informa-
tion is important because it determines what subprocedures
(i.e., the sub-procedure for receiving a start event or the sub-
procedure for receiving an exit event) to call in Algorithm 1.

• Name. The name represents the undecorated name of the
routine under instrumentation (or being analyzed). This piece
of information is important because this allows EMAD to re-
port the human readable name of a routine when it identifies
the location(s) of excessive dynamic memory allocations.

Sidebar 1: Pin and Pin++
Pin is a DBI tool for IA-32 and X86-64 instruction-set architecture.
Pin provides a framework to implement analysis tools called Pin-
tools. Pintools analyze different aspects of a program, such as pro-
gram faults, program behavior, root causes, and performance pro-
filing. Pintools can also analyze a program at different levels of
granularity: binary image level, routine level, and instruction level.

Even though Pin provides several facilities to instrument pro-
grams, the Pintools implemented using Pin are fragile, rigid, hard
to extend/reuse, and difficult to understand [15]. Pin++ provides
an object-oriented, template meta programming approach to writ-
ing Pintools that handle the above mentioned software engineering
issues. Moreover, Pintools implemented using Pin++ have a reduc-
tion in cyclomatic complexity, do not induce additional overhead,
and improves the Pintools performance in certain cases. For exam-
ple, Hill et al. [15] has shown that Pin++ can have a 54% reduction
in complexity, increase modularity, and up to 60% reduction in in-
strumentation overhead when compared to traditional Pintools.

Because EMAD eventually constructs a call graph (see Section 3.2)
that records dynamic memory allocations and deallocations, EMAD
assumes signatures with the patterns shown in Listing 3 for dy-
namic memory allocation and deallocation routines. The patterns
in this listing are the common signatures for most of the general-
purpose memory allocation/deallocation routines in both standard
libraries (e.g., malloc/free and new/delete) and third-party libraries
that implement custom memory management.
1 / / P a t t e r n e x p e c t e d f o r memory a l l o c a t i o n r o u t i n e .
2 void * [a l l o c a t i o n _ m e t h o d] (s i z e _ t s i z e) ;
3
4 / / P a t t e r n e x p e c t e d f o r memory d e a l l o c a t i o n r o u t i n e .
5 void [d e l l o c a t i o n _ m e t h o d] (void * l o c a t i o n) ;

Listing 3: Allocation/Deallocation method signatures.

EMAD also collects the following additional details for alloca-
tion/deallocation routines in the execution trace:

239

• Allocation size. This is the input parameter at the start of the
allocation routine, which is the size of the allocation. It is
used to characterize the memory allocation.

• Address of the allocation. This is the return value at the
exit of the allocation routine, which is the allocated memory
location address. It is used to correlate memory allocations
and deallocations.

• Allocation timestamp. This is the exiting timestamp from
the allocation routine, and specifies the time when the mem-
ory allocation was active. It is used to calculate the lifetime
of the corresponding memory allocation.

• Deallocation timestamp. This is the exiting timestamp from
the deallocation routine, and specifies the time when the mem-
ory allocation was deactivated. It is used to calculate the life-
time of the corresponding memory allocation.

The execution trace (i.e., the data discussed above) is recorded by
the Pintool while the program under instrumentation is executing.
Listing 4 shows a portion of an example execution trace the EMAD
Pintool will generate. Once the execution trace is recorded, the
remainder of EMAD’s analysis is done offline.

1 0 19 s t a r t main
2 0 20 s t a r t I n i t i a l i z e
3 0 22 s t a r t m a l l o c 32
4 0 22 e x i t m a l l o c 842 c008 141677579
5 0 20 e x i t I n i t i a l i z e
6 0 34 s t a r t o p e r a t i o n 1
7 0 22 s t a r t m a l l o c 64
8 0 22 e x i t m a l l o c 9786 cd0 14167757886
9 0 35 s t a r t o p e r a t i o n 2

10 0 23 s t a r t f r e e 9786 cd0
11 0 23 e x i t f r e e 14167757928
12 0 23 s t a r t f r e e 842 c008
13 0 23 e x i t f r e e 14167757928
14 0 35 e x i t o p e r a t i o n 2
15 0 34 e x i t o p e r a t i o n 1
16 0 19 e x i t main

Listing 4: Example execution trace generated by EMAD

3.2 Constructing the Call Graph
EMAD uses the execution trace collected during the instrumen-

tation step (see Section 3.1) to construct a call graph [16] of the
program. The constructed call graph is a weighted directed graph.
Each node in the graph represents an executed routine in the ap-
plication. Each edge represents a caller-callee relationship. The
edge weights represent the frequency of each routine call. The Fig-
ure 2 illustrate the call graph EMAD will be constructing for the
execution trace shown in Listing 4.

Ini$alize)

main)

Opera$on1)

malloc)

free)

Opera$on2)

1)
1)

1) 1)

2)

1)

Figure 2: Call Graph for the execution trace in Listing 4.

Algorithm 1 General algorithm for constructing the call graph
1: procedure CONSTRUCTCALLGRAPH(ET)
2: ET : set of routine start/exit messages from execution trace
3:
4: CG : Call graph
5: CS : Set of stacks of called routines, one per each thread
6:
7: for all ETi 2 ET do
8: j extract_thread_id(ETi)
9: R extract_routine(ETi)

10: if ETi is a routine start trace then
11: HandleRoutineStartTrace(CG,CSj , R)
12: else if ETi is a routine exit trace then
13: HandleRoutineExitTrace(CG,CSj , R)
14: end if
15: end for
16:
17: for all k 2 thread ids do
18: while CSk is not empty do
19: R Top(CSk)
20: HandleRoutineExitTrace(CG,CSk, R)
21: end while
22: end for
23:
24: end procedure

The constructed call graph is also a condensed graph [17]. This
is because EMAD is not representing every call to a routine as its
own node and edge as in a detailed call graph. Instead, EMAD
is capturing how many times a routine is called. The condensed
call graph reduces the amount of resources needed to construct the
needed call graph of an application. More importantly, we have
learned that a detailed call graph makes it hard to perform the nec-
essary analysis to detect excessive dynamic memory allocations.

Algorithm 1 details EMAD’s process for constructing the call
graph from an execution trace. The algorithm consists of two sub-
procedures. The first sub-procedure handles routine start messages
(line 11). The second sub-procedure handles routine exit messages
(line 13). It is worth noting that Algorithm 1 maintains a called
routine stack for each thread in the application being instrumented.
This is because caller-callee relationships are maintained on a per
thread basis when using the condensed graph approach [17]. There,
however, will be one call graph that is updated using the relation-
ships maintained in each call stack.

The sub-procedure for handling routine start messages is shown
in Algorithm 2. Whenever a routine start message is found, the cor-
responding routine object is pushed onto the stack. A node repre-
senting the routine object is also added into the call graph. Because
EMAD is constructing a condensed call graph, the AddNode state-
ment (line 7) only adds a node to the call graph if and only if the
node is not in the call graph.

Algorithm 2 Procedure that handles a routine start trace.
1: procedure HANDLEROUTINESTARTTRACE(CG, cs,R)
2: CG : Call graph
3: cs : The routine stack of a thread
4: R : The routine
5:
6: Push(cs,R)
7: AddNode(CG,R)
8: end procedure

240

The sub-procedure for handling routine exit messages is not as
straightforward when compared to the sub-procedure for handling
routine start messages. This is because the instrumentation of rou-
tine exits does not work reliably in the presence of tail calls or when
return instructions cannot reliably be detected under Pin [18]. From
our experience, a majority of the routine exit messages for the cor-
responding routine start messages can be found in the execution
trace. When a routine exit message cannot be found in the exe-
cution trace, EMAD uses Algorithm 3 to resolve the missing exit
message problem.

Algorithm 3 Procedure that handles a routine exit trace.
1: procedure HANDLEROUTINEEXITTRACE(CG, cs,R)
2: CG : Call graph
3: cs : The routine stack of a thread
4: R : The routine
5:
6: if cs is not empty then
7: if Top(cs) = R then
8: Pop(cs)
9: if cs is not empty then

10: AddEdge(CG, Top(cs), R)
11: end if
12: else
13: while Top(cs) 6= R do
14: r Top(cs)
15: Pop(cs)
16: if cs is not empty then
17: AddEdge(CG, Top(cs), r)
18: end if
19: end while
20:
21: Pop(cs)
22: if cs is not empty then
23: AddEdge(CG, Top(cs), R)
24: end if
25: end if
26: end if
27:
28: end procedure

As shown in this algorithm, it first checks whether the routine
object at the stack top is the same as the routine object represented
from the message. If this condition holds true, then this implies that
the routine object has both start and exit messages in the execution
trace. It also implies that the caller of the routine should be the
stack top element once the current stack top is removed. EMAD
therefore creates an edge between the two routines with the correct
directionality (line 7-10) if an edge does not already exist. If an
edge already exists, its weight is increased by 1. The AddEdge
(line 17) implements this logic.

When the routine object at the top of the stack and the routine
object correspond to routine exit message mismatches, it implies
that the routine exit message for the routine object at the top of
the stack is missing. The allocation object’s caller should be cur-
rent stack top’s adjacent routine object. EMAD therefore saves the
stack top, pops an element from the stack, and connects the new
stack top with the previous stack top. EMAD continues this pro-
cess until it finds the routine object represented by the current rou-
tine exit message. The sub-procedure for handling routine exit mes-
sages therefore guarantees that the correct caller-callee relationship
is preserved even when routine exit messages are missing in the ex-
ecution trace.

Once all messages in the execution trace are processed, there can
still be routine objects remaining on the stack. EMAD explicitly
calls the HandleRoutineExitTrace routine (line 20 of Algorithm 1)
while iterating through call stacks of each thread. This is necessary
because the routine exit messages of the remaining routine objects
is missing. Explicitly calling HandleRoutineExitTrace will com-
plete the call graph with any missing edges.

As mentioned in Section 3.1, the start/exit messages for allo-
cation/deallocation routines contain extra details such as parame-
ter/return values and timestamps. Algorithm 1 and its sub-procedures
discussed above will extract and store this additional information in
allocation/deallocation routine objects during the execution trace
processing. The data associated with the allocation/deallocation
routines is used to create allocation objects. An allocation object
has three attributes, the size of the dynamic memory allocation; the
routine that calls the memory allocation routine to allocate mem-
ory; and the routine that calls the memory deallocation routine. In
EMAD, each dynamic memory allocation during the lifetime of the
application is represented using an allocation object.

An allocation object is distinguishable from another allocation
object if any of its attributes is different. One would think it should
be possible to use the address of the memory allocation to uniquely
represent an allocation object. This, however, is not possible be-
cause the same memory address can be reallocated several times
during the lifetime of the application. The memory address of an
allocation is therefore not unique once we consider the entire life-
time of the application. EMAD therefore only uses the memory
address of an allocation to match the caller of the allocation routine
and caller of the deallocation routine.

Each allocation object also has a frequency. The frequency spec-
ifies how many times an allocation object (with same values for
above three attributes) occurs throughout the software application
lifetime. For each allocation object, we can also calculate its life-
time as follows:

Tl = Td � Ta (1)

where Tl represents the lifetime of the allocation object; Td repre-
sents the timestamp of the deallocation exit message; and Ta rep-
resents the timestamp of the allocation exit message. Each distinct
allocation object stores its average lifetime. Lastly, EMAD uses the
two attributes of an allocation object, i.e. its frequency, its calcu-
lated average lifetime, and the constructed call graph to detect the
excessive dynamic memory allocation anti-pattern.

3.3 Detecting Excessive Dynamic Memory Al-
locations

As mentioned in Section 1 our analysis technique for detecting
excessive dynamic memory allocations is based on the intuition that
this anti-pattern occurs when the software application has many
short-lived high-frequent allocation objects. Our intuition comes
from studying the two main solutions used to resolve the excessive
dynamic memory allocation software performance anti-pattern [3].

The most common solution to resolve this anti-pattern is to use
a custom memory allocator [19]. The basic idea of a custom mem-
ory allocator is to use a memory pool. When using a memory pool,
a large chunk of memory is allocated during the software applica-
tion initialization phase. The subsequent requirements for mem-
ory allocations are fulfilled by obtaining memory from this mem-
ory pool—thereby eliminating the system calls to allocate memory.
When the allocated memory is no longer needed, it is released into
the memory pool—thereby eliminating the system calls to deallo-
cate memory.

The custom memory allocations approach will not be effective

241

if the allocation objects are in use for long periods of time. This
is because when there are many such objects, eventually the mem-
ory pool will not be able to fulfill the allocation requests. This
will result in acquiring memory from the operating system and the
expected performance gain may not be achieved. When the soft-
ware application has high-frequent short-lived allocation objects,
however, the memory pool regains the memory it has given to the
application. This improves the performance by rarely allocating
memory using general purpose memory allocators.

The other solution for the excessive dynamic memory allocation
anti-pattern is to use the Flyweight software design pattern [20].
The Flyweight software design pattern is similar to using a cus-
tom memory allocator. Its strategy is also based on reusing the
already allocated objects. The only difference is the Flyweight
design pattern applies the solution at a higher level of abstraction
such as reusing particular types of objects. It is also effective only
when there are high-frequent short-lived object instances that are
reusable.

Based on this intuition, EMAD’s main goal in the detection pro-
cess is to identify short-lived, high-frequent allocation objects. EMAD
analyzes the frequency and average lifetime of the allocations ob-
jects annotated with the allocation/deallocation routines in the con-
structed call graph. To understand the analysis process, we intro-
duce a frequency-lifetime diagram as illustrated in Figure 3. Each
point in the diagram represents a unique allocation object. The x
value represents the frequency of the allocation and y value repre-
sents the average lifetime of the allocation. We consider points that
fall in the low-right quadrant to correspond to short-lived, high-
frequent dynamic memory allocations. These are the set of points
we want to identify in our analysis.

!"#$%%&'$()*+,-&#(
-$-./*(,00.#,1.+%(

2'$/,3$(0&4$1-$(5-%6(

7/89+#*(

Figure 3: Frequency-lifetime diagram.

Because frequency and lifetime of allocation objects are depen-
dent on each software application, it is hard to define thresholds to
filter high-frequent, short-lived memory allocations. EMAD there-
fore provides two different exploratory data analysis techniques:
one using K-means clustering, and the other using an outlier detec-
tion technique to identify high-frequent, short-lived memory allo-
cations.

3.3.1 Using K-means clustering
Clustering is a non-supervised technique that can be used to par-

tition objects based on the quantitative values of their attributes.
The goal of clustering is to partition regions of points that have
similarities. To accomplish this task, EMAD uses popular K-means
algorithm [10] to cluster the allocation objects based on their fre-
quency and average lifetime.

Once the allocated objects are clustered, EMAD then checks
whether there is a cluster C that satisfies all the following con-
ditions:

1. The average frequency of C’s members is the highest com-
pared to the other clusters. This information is important
because if the frequency is high, then there is a potential ex-
cessive dynamic memory allocation issue.

2. The average lifetime of C’s members is the lowest compared
to the other clusters. This information is important because
when the allocation object is a short lived object there is a
potential excessive dynamic memory allocation issue.

If EMAD can find a cluster that satisfies both the conditions
above, then it reports that software application has excessive dy-
namic memory allocation anti-pattern. The report may contain all
the members of that cluster, or a user-defined number n of mem-
bers. In the latter case, EMAD will report first n members in the
descending order of frequency. Because the allocation objects con-
tains the caller information of the allocation, EMAD can also report
call hierarchy of the allocation similar to other dynamic memory
analysis tools (e.g., Valgrind [14]). By providing the call hierar-
chy software developers can quickly locate the excessive dynamic
memory allocations anti-pattern in the source code—eliminating
tedious and time consuming source code analysis.

On the other hand, if EMAD cannot find a cluster that satisfies
the conditions above, then EMAD reports that the software appli-
cation does not have the excessive dynamic memory allocations
anti-pattern. This is because the partitioning indicates that most of
the high-frequent allocation objects have a longer lifetime, or short
lived allocation objects are not frequent.

Because EMAD’s analysis is based on a clustering technique,
the user has to configure the parameter that controls the number of
clusters. This parameter, in turn, controls the number of partitions
EMAD has to create from the dataset. Unfortunately, this is one
of the limitations in cluster analysis [21, 22]. Likewise, identifying
the correct number of clusters may require some trial and error.

3.3.2 Using outlier detection
In this technique, we convert the two dimensional dataset into a

one dimensional dataset by calculating the ratio between frequency
and average lifetime of each allocation object.

Therefore, the ratio R is defined as:

R =
frequency

lifetime
(2)

According to the above equation the value of R is larger when
the frequency is high and lifetime is low. Therefore we consider
allocation objects that have relatively high values as potential ex-
cessive dynamic memory allocations. Based on this intuition we
consider extreme outliers of this one dimensional dataset as po-
tential excessive dynamic memory allocations. We only consider
positive outliers that have larger values for R, not the outliers with
lower values. To identify these extreme values we use Interquartile
Range (IQR) based outlier detection technique [23]. We adopt this
technique instead of standard score based outlier detection tech-
niques because we observed that the data in our datasets are not
normal distributions [24]. We consider allocation objects that have
a value greater than the value obtained from the following expres-
sion as potential dynamic excessive memory allocations.

Q3 + µ⇥ IQR (3)

Here Q3 is the third quartile, IQR is the Interquartile Range,
and µ is a user provided parameter. If we increase the value of µ,

242

EMAD may miss potential excessive dynamic memory allocations;
and a lower value for µ may cause EMAD to report several false-
positives. Therefore, the user has to provide a reasonable value for
µ which may requires some trial and error. A good initial value
for µ is the value obtained for IQR. Another way to decide on
a value for µ is to first view the datasets and see how the value
of R is deviating from normal. EMAD outputs this value during
the analysis. EMAD also ranks the excessive dynamic memory
allocations based on the value of R. Therefore, users can get an
idea about the relative significance of excessive dynamic memory
allocations after seeing the results. EMAD also provide facilities
to view both two dimensional (i.e. frequency and lifetime) and one
dimensional datasets (i.e., value of R) of allocation objects.

4. EVALUATION OF EMAD
This section illustrate how we validate EMAD’s methodology by

applying it to several real world open source systems. Validating
EMAD’s technique is challenging, because once EMAD reports
excessive dynamic memory allocations we need to make sure it is
an actual excessive dynamic memory allocation, which has an im-
pact on system performance. We therefore validated EMAD with
following types of experiments: (1) known released software ver-
sion that has the anti-pattern and then a newer version of the same
software without the anti-pattern; (2) software that have the anti-
pattern, which is previously unknown; (3) an anti-pattern induced
software version to see whether EMAD can detect the induced anti-
pattern; and (4) software that does not have the anti-pattern to see
if EMAD does not identify any problems. Lastly, we evaluated
performance before and after resolving the anti-pattern for all ex-
perimental scenarios.

4.1 Experimental Setup
We used the following open-source projects in our experiments:
1. SQLite (www.sqlite.org) is a SQL database engine primarily

used in embedded devices, such as mobile phones and web
browsers. We selected SQLite for our experiments because
we searched its release history and identified versions that
were impacted by the excessive dynamic memory allocation
anti-pattern. This project will evaluate if EMAD is able to
identify the routine that is the source of the problem.

2. TAO (www.cs.wustl.edu/~schmidt/TAO) is an implementa-
tion of the CORBA specification used in distributed real-time
and embedded systems. We selected TAO because its appli-
cation domain values small percentages in performance im-
provements. Also the excessive dynamic memory allocation
was not reported in TAO before applying EMAD.

3. Axis2-C (axis.apache.org/axis2/c/core) is a web services frame-
work that is implemented in C using the popular Axis2 SOAP
processing architecture. Axis2-C is used in some of the mod-
ern cloud computing infrastructure middleware and also in
scripting language based web services engines [25]. We se-
lected Axis2-C because we could induce the dynamic mem-
ory allocations anti-pattern. This will evaluate if EMAD can
detect the induced anti-pattern.

4. Xerces-C++ (xerces.apache.org/xerces-c) is a C++ frame-
work for manipulating XML documents. We selected Xerces-
C++ because it allows developers to integrate custom mem-
ory allocators to improve performance.

All experiments were conducted on an Intel core 2 Duo 3.33 GHz
processor, with 4GB memory and running 32-bit Ubuntu 14.04 op-
erating system. We also used Pin 2.13 and Pin++ 1.0.0-beta.

4.2 Experimental Results for SQLite
We used the Northwind database [26] for our SQLite experi-

ments. We used a single SQL file that contained SQL statements
for table creation, data insertion, table updating, and data querying.
The SQLite command line interface was used to interpret the SQL
file. Lastly, performance was measured by recording total time to
process the Northwind database SQL file.

According to the SQLite [27] release history, SQLite had the
excessive dynamic memory allocations software performance anti-
pattern prior to version 3.6.1. Such versions created many number
of short-lived memory allocations in each database connection. The
SQLite documentation states the following related to this excessive
dynamic memory allocations problem2:

These small memory allocations are used to hold things
such as the names of tables and columns, parse tree
nodes, individual query results values, and B-Tree cur-
sor objects. There are consequently many calls to mal-
loc and free—so many calls that malloc and free end up
using a significant fraction of the CPU time assigned
to SQLite.

As a solution to this issue, SQLite developers implemented a
custom memory allocator called lookaside allocator that preallo-
cates a large chunk of memory and divides it to fixed size small
slots inside each database connection. We therefore applied EMAD
against SQLite 3.5.9. We did not use SQLite 3.6.0 because it was
not a stable release.

4.2.1 Experimental results using clustering
In our experiments, EMAD detected 3 locations where SQLite

3.5.9 was performing excessive dynamic memory allocations. The
3 locations are shown in Table 1. EMAD also generated the call-
tree for routines in Table 1. For example, Listing 5 illustrates the
call-tree for the sqlite3DbMallocRaw routine. The call-tree shows
the routine name and frequency (inside parentheses) of each caller-
callee relationship. Although there are several call-trees for the
sqlite3DbMallocRaw routine,Listing 5 only shows the call frequen-
cies with maximum edge weights. Due to space limitations we dis-
carded the other call-trees for sqlite3DbMallocRaw routine.

1 s q l i t e 3 _ c o l u m n _ n a m e (1 0 6 5 9)
2 s q l i t e 3 _ s t e p (1 4 0 9 8)
3 s q l i t e 3 V d b e E x e c (6 0 8 0 0)
4 s q l i t e 3 B t r e e N e x t (3 7 8 6 0 0)
5 sq l i t e3VdbeMemRelease (7 8 8 1 8 6)
6 s q l i t e 3 _ p r e p a r e (3 4 5 0)
7 s q l i t e 3 L o c k A n d P r e p a r e (3 4 5 0)
8 s q l i t e 3 P r e p a r e (3 4 5 0)
9 s q l i t e 3 R u n P a r s e r (1 0 2 3 2 2)

10 s q l i t e 3 P a r s e r (2 6 4 3 6)
11 s q l i t e 3 E x p r (2 6 7 6 5)
12 sq l i t e3DbMal locRaw (4 5 8 5 8)

Listing 5: Partial Call-tree for the routine sqlite3DbMallocRaw.

As described in the SQLite documentation, routines like sqlite3_step
and sqlite3_column_name contribute to excessive dynamic mem-
ory allocations in SQLite3. As shown in Listing 5, EMAD is able to
report these routines in the call-tree for sqlite3DbMallocRaw rou-
tine as a source of the excessive dynamic memory allocations.

Figure 4 shows the frequency-lifetime diagram for this experi-
ment, which supports the reported excessive dynamic memory al-
locations. As shown in Figure 4, the 3 allocation objects that corre-
spond to excessive dynamic memory allocations have high-frequency
2More on the quote can be found at the following location: www.
sqlite.org/malloc.html#lookaside

243

Table 1: Excessive dynamic memory allocation locations in SQLite-3.5.9 identified by clustering method
Caller Size Destroyer Freq. Avg. Lifetime

sqlite3DbMallocRaw 68 sqlite3ExprDelete 29394 929.758
sqlite3DbMallocRaw 32 sqlite3VdbeMemRelease 12918 224.889

pager_write_size 1024 sqlite3BtreeCommitPhaseTwo 6832 1.29202

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 5000 10000 15000 20000 25000 30000

Av
er

ag
e

lif
et

im
e

(M
ill

is
ec

on
ds

)

Call frequency

Frequency-lifetime diagram for SQLite-3.5.9

Figure 4: Frequency-lifetime diagram for SQLite-3.5.9

(as high as 29394) and short lifetime (as low as 1.29202ms) when
compared to the other allocation objects in the figure.

SQLite releases after version SQLite 3.5.9 implement the solu-
tion to the excessive dynamic memory allocations anti-pattern. To
verify this, we applied EMAD to SQLite 3.8.5. In this version,
EMAD identified memjrnlWrite as the only location to perform ex-
cessive dynamic memory allocations. This location is related to an
I/O operation that has no relation with the excessive dynamic mem-
ory allocation problem we found in SQLite 3.5.9. The frequency-
lifetime digram shown in Figure 5 validates the results of EMAD.
As shown in the diagram, there is only one allocation object that
resides in high-frequency, short-lifetime region.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2000 4000 6000 8000 10000 12000

Av
er

ag
e

lif
et

im
e

(M
ill

is
ec

on
ds

)

Call frequency

Frequency-lifetime diagram for SQLite-3.8.5

Figure 5: Frequency-lifetime diagram for SQLite-3.8.5

4.2.2 Experimental results using outlier detection
We applied EMAD to SQLite 3.5.9 after configuring EMAD to

use its outlier detection technique. After using a value of 1000 for
µ in Equation 3, EMAD reported pager_write as the only location
with excessive dynamic memory allocations as shown in Figure 6.

The outlier detection technique did not categorize some of the
high frequency, short-lifetime allocation objects as excessive dy-
namic memory allocations. This is because the IQR of the dataset
is as low as 1.7211 and we had to use a value as larger as 1000 for µ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

Fr
eq

ue
nc

y/
Av

g.
Li

fe
tim

e

Allocation Objects

Frequency-lifetime ration chart for SQLite 3.5.9

Excessive Allocations

Figure 6: Frequency-lifetime ratio chart for SQLite-3.5.9

to filter the outliers. Unfortunately, a lower µ value started produc-
ing false positives. For example, when we lowered the value of µ,
EMAD reported allocation objects that have a frequency of 162 and
an average lifetime of 0.2075 msec as excessive dynamic memory
allocations. Although the average lifetime of the allocation objects
is low, the frequency is also low when compared to frequencies of
excessive dynamic memory allocations. Lastly, we applied the out-
lier detection technique to SQLite 3.8.5. EMAD reported the same
location shown in Figure 5 from the clustering technique.

4.2.3 Resolution and performance improvements
To resolve the identified problem, we used a custom memory al-

locator (as mentioned in the SQLite documentation) to resolve the
performance anti-pattern and improve the performance. According
to SQLite documentation, the custom memory allocator preallo-
cates a chunk of memory during application initialization. To apply
to solution, we re-compiled SQLite-3.8.5 with the custom memory
allocator enabled. We then ran the same experiment with the en-
abled custom memory allocator. For our experiments, the custom
memory allocator improved performance by 10%.

Table 2: Performance of different versions of SQLite
SQLite Version Total Process Time # of mallocs

3.5.9 475.01 ms 184859
3.8.5 338.43 ms 58441

3.8.5 w. custom allocator 308.53 ms 9706

To summarize our performance results, Table 2 shows the total
processing time of the Northwind database SQL file for each ver-
sion SQLite we used in our experiments. As shown in the table,
the performance of SQLite improved after we applied each solu-
tion to the identifed excessive dynamic memory allocation software
performance anti-pattern. For example, SQLite 3.8.5 improved ap-
proximately 30% in performance when compared to SQLite 3.5.9.
Likewise, SQLite 3.8.5 with custom memory allocator improved
approximately 10% when compared to SQLite 3.8.5 without the
custom memory allocation. More importantly, the experiments show

244

EMAD was able to detect the excessive dynamic memory alloca-
tions and can assist developers in improving performance.

Lastly, Table 2 also shows the number of malloc/free routine
calls invoked by each version of SQLite we used in our experi-
ments. We collected this data using a Pintool that counts mal-
loc/free routine calls. Our results show that when the excessive
dynamic allocation anti-pattern is resolved, there are fewer system
calls to malloc/free.

4.3 Experimental Results for TAO
We applied EMAD to TAO while sending 10,000 requests to

its echo service example. EMAD reported two locations with ex-
cessive dynamic memory allocations3: (1) (CORBA::string_alloc,
CORBA::string_free) and (2) (operator », IOP::ServiceContextList:: Ser-
viceContextList). For this experiment, both the clustering and out-
lier detection technique reported the same locations.

The first excessive dynamic memory allocation is coming from
TAO. The second one is coming from the echo service (i.e., the
application) when it is echoing the received string. The frequency-
lifetime diagram in Figure 7 and the frequency-lifetime ratio chart
in Figure 8 confirm EMAD’s findings. Apart from the two exces-
sive dynamic memory allocations, almost all the other allocation
objects have a very low frequency. Because of this, only the two
data points that correspond to the excessive dynamic memory allo-
cations are visible in the Figure 8.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Av
er

ag
e

lif
et

im
e

(M
ill

is
ec

on
ds

)

Call frequency

TAO example

Figure 7: Frequency-lifetime diagram for TAO

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60 70 80

Fr
eq

ue
nc

y/
Av

g
Li

fe
tim

e

Allocation Objects

Frequency/Avg Lifetime of allocation objects

Figure 8: Frequency-lifetime ratio chart for TAO

Our focus was on resolving the identified problem that resided
in TAO because it will impact all the applications that use TAO.
3We are only listing the caller and destroyer location due to space
limitations

This excessive dynamic memory allocation occurs when TAO per-
forms a zero size allocation using operator new to allocate a list
of buffers for service context information. When the same client
sends many requests, however, the buffer can be allocated only for
the first request. Our simple fix was to return immediately before
calling operator new when the requested length is 0.

After this fix we re-evaluated TAO’s performance, and measured
the time it takes to process n requests. We observed a 5-10% per-
formance gain for larger number of requests. The performance re-
sults are shown in the Table 3.

Table 3: Performance of echo service example in TAO.
of Requests Before Fix (sec) After Fix (sec) Gain

10K 2.275431 2.25299 0.98%
20K 4.589058 4.491926 2.11%
30K 6.972080 6.825455 2.1%
40K 9.51474 9.419871 0.99%
50K 11.487203 11.291216 1.7%

100K 22.917998 22.587449 1.44%
200K 52.195151 45.445869 12.93%
300K 68.968680 63.624066 7.74%
400K 91.914805 85.586583 6.88%
500K 115.174436 106.963704 7.12%

We reported our findings to the TAO mailing list. The TAO
developers accepted the patch as it was something they were not
aware of. Although it is not a bug, they were willing to fix the prob-
lem because even a small improvement in performance is valuable
in the context of distributed realtime and embedded systems.

4.4 Experimental Results for Axis2-C
Axis2-C uses Apache’s memory pool routines to dynamically

allocate memory. To induce the excessive dynamic memory allo-
cations anti-pattern, we changed the Axis2-C module to use mal-
loc/free functions. After applying the change, we used Apache
Benchmark tool to send 2,000 SOAP requests to Axis2-C sam-
ple echo service deployed in an Apache Web Server, and instru-
mented the Apache Web Server with Axis2-C while the requests
were processed. Finally, the collected execution trace was analyzed
by EMAD for excessive dynamic memory allocations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

Av
er

ag
e

lif
et

im
e

(M
ill

is
ec

on
ds

)

Call frequency

Axis2-C Frequency-lifetime diagram

Figure 9: Frequency-lifetime diagram for Axis2-C

As shown in the frequency-lifetime (see Figure 9) and frequency-
lifetime ratio (see Figure 10) diagrams, we found several locations
where Axis2-C performs excessive dynamic memory allocations.
The first five locations based on rank for the clustering technique
was axutil_string_create, axiom_node_create, axutil_hash_first, axu-
til_hash_find_entry, and axutil_string_create_assume_ownership.

245

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300

Fr
eq

ue
nc

y/
Av

g
Li

fe
tim

e

Allocation Objects

Axis2-C Frequency-lifetime ratio chart

Figure 10: Frequency-lifetime ratio chart for Axis2-C

Likewise, the first five locations based on rank for the outlier tech-
nique was guththila_get_prefix, axutil_hash_first, guththila_get_prefix,
axutil_strdup, and axutil_stracat.

From our analysis, Axis2-C’s excessive dynamic memory allo-
cations happens mainly because of deep string copies. When used
with Apache Web Server, Axis2-C can still perform deep copy-
ing when necessary without sacrificing performance by leverag-
ing Apache’s memory pools. When using Apache memory pools,
Axis2-C has 8% of performance improvement for processing 1 mil-
lion requests as shown in Table 4. The table also shows there are
96% fewer calls to malloc when processing a single request.

Table 4: Axis2-C performance.
Item w. memory pools w.o. memory pools
1 million requests 280 secs 304 secs
Mallocs/request 370 11032

4.5 Experimental Results for Xerces-C++
We used Xerces-C++ Simple API for XML (SAX) command-

line utility to parse a 117 KB XML file that contained 1,318 ele-
ments and 71,166 characters. We then used EMAD to collect the
execution trace of the SAX command-line utility while it processed
the XML file. Next, we used EMAD to generate the call graph
from the execution trace and detect the presence of the excessive
dynamic memory allocation software performance anti-pattern.

In this experiment, EMAD could not find any excessive dynamic
memory allocations using the clustering or outlier detection tech-
nique. We also checked if previous versions of Xerces-C++ had the
excessive dynamic memory allocation software performance anti-
pattern. We, however, could not find any version reviewing Xerces-
C++ release history.

Since Xerces-C++ supports custom memory allocators, we in-
vestigated whether we could improve Xerces-C++ performance by
implementing a custom memory allocator. By default, Xerces-C++
uses the new/delete operators to allocate/deallocate memory. Our
custom memory allocator is an implementation that uses a free list.
At the beginning, it allocates a large chunk of memory that is parti-
tioned into small user defined chunks. The small chunks are main-
tained as two linked list. The first linked list maintains the memory
chunks that are being used in the program. The second linked list
maintains the freely available memory chunks.

The allocation function returns a memory chunk from the free
list and creates a pointer to that chunk from allocated list. The deal-
location function gives back the deallocated memory chunk to the
free list and removes the corresponding pointer from the allocated

list. Lastly, the memory pool calls the general-purpose memory al-
location function if the allocated memory pool is not large enough
to service the user request.

Table 5: Performance of Xerces-C++ with a custom memory
allocator and default memory allocator.

Xerces-C++ Method Avg. Process Time
w. default memory allocator 159 ms
w. custom memory allocator 155 ms

We measured the overall processing time for the XML file us-
ing the default memory allocator and the custom memory alloca-
tor. As presented in Table 5, even when we plugged in the custom
memory allocator we could not observe much performance gain
(as small as 2.5%). This is an indication that Xerces-C++ does not
exhibit excessive dynamic memory allocations. Figure 11 shows
the frequency-lifetime diagram for our experiments. In this figure,
none of the allocation objects reside in the high-frequent, short-
lifetime region of the graph. EMAD therefore does not report any
excessive dynamic memory allocations.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800

Av
er

ag
e

lif
et

im
e

(M
ill

is
ec

on
ds

)

Call frequency

Frequency-lifetime digram for Xerces-C

Figure 11: Frequency-lifetime ratio chart for Xerces-C

The frequency-lifetime ratio chart in Figure 12 also confirms our
finding. The range of values for frequency-lifetime ratio is as low
as 16. In other applications where we found excessive dynamic
memory allocations, this ratio has a range as high as 150, 000.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

Fr
eq

ue
nc

y/
Av

g
Li

fe
tim

e

Allocation Objects

Frequency-lifetime ration chart for Xerces-C

Figure 12: Frequency-lifetime ratio chart for Xerces-C

4.6 Discussion of results and threat to validity
Our experiments show the validity of EMAD’s approach. EMAD

was able to correctly detect and locate when a software application

246

has, or does not have, excessive dynamic memory allocations. This
kind of analysis will help software developers resolve excessive
dynamic memory allocations faster. More importantly, it will elim-
inate the laborious process of detecting the anti-pattern via manual
source code analysis.

The main advantage of the clustering technique over the outlier
detection method is it does not categorize allocation objects as ex-
cessive dynamic memory allocations when it has a low frequency.
In the outlier detection technique, because we consider frequency-
lifetime ratio as the analytical value, it can still report extreme out-
liers when the frequency is low and lifetime of the allocation object
is short. These low-frequent and short-lifetime values may some-
time beat some high-frequent, short-lifetime objects. With the clus-
tering technique, this kind of false positive is not possible.

When using the clustering technique, EMAD’s users have to pro-
vide the number of clusters to use in the analysis phase. There are
some advanced data mining techniques [22, 28] for learning this
parameter from the dataset itself. EMAD, however, does not em-
ploy those techniques at the moment. Unfortunately, this can cause
EMAD to provide incorrect predictions if the user does not specify
a reasonable number of clusters. If the dataset has very clear sepa-
rable partitions, then the impact of this parameter can still be mit-
igated. On the other hand, when using outlier detection technique,
users have to provide µ, which may need some trial and error.

When using the clustering technique, EMAD performs quanti-
tative analysis and detects excessive dynamic memory allocations
only if high-frequent and short-lived allocation objects resides in
the same cluster. A software developer, however, may still think
that there are excessive dynamic memory allocations in other clus-
ters by looking at the numbers. In this situation, EMAD’s pre-
diction may not be inline with software developer’s expectation.
EMAD, however, can still be helpful because the software devel-
oper can manually analyze the frequency-lifetime diagram or the
frequency-lifetime ratio chart to understand the big picture. A rec-
ommended way for further analysis is to do a comparative analysis
of both two-dimensional and one-dimensional datasets.

5. RELATED WORK
Automated approaches for detecting excessive dynamic memory

allocations cannot be found in literature. Likewise, existing ap-
proaches for detecting software performance anti-patterns have cat-
egorized excessive dynamic memory allocations as an undetectable
software performance anti-pattern [6–8]. Although there are sev-
eral approaches for detecting memory leaks and memory access
errors using DBI [29], the excessive dynamic memory allocation
problem has not been attacked by the research community.

Chen et al. [30] have developed a tool called MemBrush that
can be used to detect memory allocation/deallocation functions us-
ing DBI in stripped binaries. Their approach is useful in detect-
ing memory leaks and memory access errors, but they do not dis-
cuss detecting excessive dynamic memory allocations. However,
by combining the MemBrush approach with our approach, it may
be possible to relax our assumptions about allocation/deallocation
routines as EMAD expects a particular signature for those routines.

Lu et al. [31] have developed a tool called PerfBlower, which
can be used to detect memory related performance problems. They
have developed a domain specific language called Instrumentation
Specification Language (ISL) that is used to specify the memory
related performance issues. The application code is executed on
top of a modified Java Virtual Machine (JVM) where ISL is used to
modify the JVM. Although they have tried to detect several mem-
ory related performance issues, excessive dynamic memory alloca-
tion anti-pattern, related to allocation object’s life time has not been

considered. Moreover their approach requires recompilation of the
JVM whereas our approach does not require any kind of recompi-
lation of the target system.

DBI has been used to identify other root causes of performance
anomalies. For example, Attariyan et al. [32] proposes an approach
to detect root causes of performance anomalies, such as miscon-
figurations, using DBI. Menon et al. [33] uses DBI to diagnosis
performance overheads in Xen virtual machine environments. The
root causes they try to detect are related to I/O handling in virtual
machine environments—particular related to TCP connections.

There are research efforts on finding the object life times in man-
aged languages (e.g. Java) [34]. In managed languages the garbage
collection process can happen at anytime, therefore the timestamp
at which an object is deleted cannot be used alone to approximately
calculate the object lifetime. We believe that by integrating precise
object lifetime calculation techniques, we can extend our technique
for applications created using managed languages.

6. CONCLUDING REMARKS
This paper discussed our work on a tool called EMAD, which

can detect excessive dynamic memory allocations software perfor-
mance anti-pattern. Our experience and results show that EMAD
can correctly report the locations where the software application is
performing excessive dynamic memory allocations. Based on ex-
perience gained from applying EMAD to several widely used open-
source software applications, we have learned that DBI can serve as
a good platform for detecting software performance anti-patterns.
We therefore plan on applying DBI to detect other software per-
formance anti-patterns [3], such as God Class, Single Lane Bridge,
and Circuitous Treasure Hunt. Likewise, EMAD’s current tech-
nique works only with C/C++ software applications. We plan to
investigate if EMAD’s approach will work on applications written
in interpreted languages like Java, Python, PHP, and JavaScript.

EMAD is available in open-source format and has been inte-
grated into the Pin++ distribution: github.com/SEDS/PinPP.

7. REFERENCES
[1] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles,

“Dynamic storage allocation: A survey and critical review,”
in Memory Management. Springer, 1995, pp. 1–116.

[2] D. Detlefs, A. Dosser, and B. Zorn, “Memory allocation
costs in large c and c++ programs,” Software: Practice and
Experience, vol. 24, no. 6, pp. 527–542, 1994.

[3] C. U. Smith and L. G. Williams, “Software performance
antipatterns.” in Workshop on Software and Performance,
2000, pp. 127–136.

[4] ——, “More new software performance antipatterns: Even
more ways to shoot yourself in the foot,” in Computer
Measurement Group Conference, 2003, pp. 717–725.

[5] J. Din, A. B. Al-Badareen, and Y. Y. Jusoh, “Antipatterns
detection approaches in object-oriented design: A literature
review,” in Computing and Convergence Technology
(ICCCT), 2012 7th International Conference on. IEEE,
2012, pp. 926–931.

[6] C. Trubiani and A. Koziolek, “Detection and solution of
software performance antipatterns in palladio architectural
models.” in ICPE, 2011, pp. 19–30.

[7] V. Cortellessa, A. Di Marco, and C. Trubiani, “Performance
antipatterns as logical predicates,” in Engineering of
Complex Computer Systems (ICECCS), 2010 15th IEEE
International Conference on. IEEE, 2010, pp. 146–156.

247

[8] J. Xu, “Rule-based automatic software performance
diagnosis and improvement,” Performance Evaluation,
vol. 67, no. 8, pp. 585–611, 2010.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in Acm Sigplan Notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[10] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A
k-means clustering algorithm,” Applied statistics, pp.
100–108, 1979.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Oopsla 2002:
Reconsidering custom memory allocation,” ACM SIGPLAN
Notices, vol. 48, no. 4, pp. 46–57, 2013.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[13] N. Moha, “Detection and correction of design defects in
object-oriented designs,” in Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming
systems and applications companion. ACM, 2007, pp.
949–950.

[14] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” ACM Sigplan
Notices, vol. 42, no. 6, pp. 89–100, 2007.

[15] J. H. Hill and D. C. Feiock, “Pin++: an object-oriented
framework for writing pintools,” in Proceedings of the 2014
International Conference on Generative Programming:
Concepts and Experiences. ACM, 2014, pp. 133–141.

[16] B. G. Ryder, “Constructing the call graph of a program,”
Software Engineering, IEEE Transactions on, no. 3, pp.
216–226, 1979.

[17] F. Eichinger, K. Böhm, and M. Huber, “Mining
edge-weighted call graphs to localise software bugs,” in
Machine Learning and Knowledge Discovery in Databases.
Springer, 2008, pp. 333–348.

[18] I. Corporation, “Pin 2.14 User Guide,” https://software.intel.
com/sites/landingpage/pintool/docs/67254/Pin/html/.

[19] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing
high-performance memory allocators,” in ACM SIGPLAN
Notices, vol. 36, no. 5. ACM, 2001, pp. 114–124.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1997.

[21] C. Fraley and A. E. Raftery, “How many clusters? which
clustering method? answers via model-based cluster
analysis,” The computer journal, vol. 41, no. 8, pp. 578–588,
1998.

[22] C. A. Sugar and G. M. James, “Finding the number of
clusters in a dataset,” Journal of the American Statistical
Association, vol. 98, no. 463, 2003.

[23] V. J. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artificial Intelligence Review, vol. 22, no. 2,
pp. 85–126, 2004.

[24] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata,
“Detecting outliers: do not use standard deviation around the
mean, use absolute deviation around the median,” Journal of
Experimental Social Psychology, vol. 49, no. 4, pp. 764–766,
2013.

[25] M. Imran and H. Hlavacs, “Provenance in the cloud: Why
and how,” in The Third International Conference on Cloud
Computing, GRIDs, and Virtualization, 2012, pp. 106–112.

[26] M. Cooperation, “Northwind database,”
https://northwinddatabase.codeplex.com/.

[27] SQLite, “Release History,”
http://www.sqlite.org/changes.html.

[28] S. Salvador and P. Chan, “Determining the number of
clusters/segments in hierarchical clustering/segmentation
algorithms,” in Tools with Artificial Intelligence, 2004. ICTAI
2004. 16th IEEE International Conference on. IEEE, 2004,
pp. 576–584.

[29] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Li,
O. Taborskaia, and Y. Wang, “A survey of systems for
detecting serial run-time errors,” Concurrency and
Computation: Practice and Experience, vol. 18, no. 15, pp.
1885–1907, 2006.

[30] X. Chen, A. Slowinska, and H. Bos, “Who allocated my
memory? detecting custom memory allocators in c binaries,”
in Reverse Engineering (WCRE), 2013 20th Working
Conference on. IEEE, 2013, pp. 22–31.

[31] L. Fang, L. Dou, and G. Xu, “Perfblower: Quickly detecting
memory-related performance problems via amplification.”

[32] M. Attariyan, M. Chow, and J. Flinn, “X-ray: automating
root-cause diagnosis of performance anomalies in production
software,” in Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation. USENIX
Association, 2012, pp. 307–320.

[33] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the
xen virtual machine environment,” in Proceedings of the 1st
ACM/USENIX international conference on Virtual execution
environments. ACM, 2005, pp. 13–23.

[34] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley,
and D. Stefanović, “Generating object lifetime traces with
merlin,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 28, no. 3, pp. 476–516, 2006.

248

