
Enhancing Rules For Cloud Resource Provisioning Via
Learned Software Performance Models

Mark Grechanik
University of Illinois at

Chicago,
Chicago, IL, USA

drmark@uic.edu

Qi Luo,
Denys Poshyvanyk

College of William and Mary,
Williamsburg, VA, USA

{qluo,denys}@cs.wm.edu

Adam Porter
University of Maryland
College Park, MD, USA

aporter@cs.umd.edu

ABSTRACT
In cloud computing, stakeholders deploy and run their software ap-
plications on a sophisticated infrastructure that is owned and man-
aged by third-party providers. The ability of a given cloud infras-
tructure to effectively re-allocate resources to applications is re-
ferred to as elasticity. To enable elasticity, programmers study the
behavior of applications and write scripts that guide the cloud to
provision resources for these applications. This is an imprecise, la-
borious, manual and expensive approach that drastically increases
the cost of application deployment and maintenance in the cloud.

We propose an approach, coined as Provisioning Resources with
Experimental SofTware mOdeling (PRESTO), to automatically learn
behavioral models of software applications during performance test-
ing in order to recommend programmers how to improve provision-
ing strategies that guide the cloud to (de)allocate resources to these
applications. We applied PRESTO to two software applications
and our experiments demonstrate that with PRESTO programmers
can create rules for provisioning resources with a high degree of
precision when the performance is about to worsen, so that the ap-
plications maintain their throughputs at the desired level.

Keywords
Cloud computing; Performance testing; Behavioral models

1. INTRODUCTION
In cloud computing, stakeholders deploy their software applica-

tions on a sophisticated infrastructure that is owned and managed by
third-party providers (e.g., public clouds such as Amazon AWS) or
in-house installations. Two fundamental properties of cloud com-
puting include provisioning resources to applications on demand
and charging their owners for pay-as-you-go resource usage [3].
The elasticity of cloud refers to its capacity to scale resources based
on a real workload. Many cloud providers claim that their cloud in-
frastructures are elastic, i.e., they automatically (de/re)allocate re-
sources, both to scale out and up – adding resources as demand
increases, and to scale in and down – releasing resources as de-
mand decreases. Using elastic clouds, stakeholders pay only for
what they use, when they use it, rather than paying up-front and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16, March 12–18, 2016, Delft, Netherlands.
c© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2851568

continuing costs to own and maintain their hardware/software and
supporting technical staff [3, 4, 23].

In practice, even the most elastic clouds are not perfectly elas-
tic [13, 3]. Understanding when and how to reallocate resources
is a hard problem, since it is generally impossible to quickly and
accurately match resources to applications’ needs. A recent article
underscores this point as it describes its state-of-the-art superviso-
ry system that monitors various black box metrics and then directs
the cloud to initiate scaling operations based on that data [10]. As
a result, some elasticity-related problems for cloud computing in-
clude under-provisioning applications so they lack the resources to
provide appropriate quality of service, or over-provisioning applica-
tions so stakeholders end up holding and paying for more resources
than they need. Specifically, although elasticity is a fundamental
enabler of cost-effective cloud computing, existing provisioning s-
trategies (i.e., rules used to (de)allocate resources to applications)
are typically obtained in ad-hoc fashion by programmers who study
the behavior of the application in the cloud. It is a manual, impre-
cise, intellectually intensive and laborious effort.

Our novel idea for Provisioning Resources with Experimental
SofTware mOdeling (PRESTO) enhances cloud elasticity by learn-
ing and refining models of software applications through perfor-
mance testing in the cloud and by using these automatically learned
models to help programmers to craft application-specific resource
provisioning strategies. That is, PRESTO bridges a pure black-box
cloud resource provisioning to software engineering, where behav-
ioral models of the application are re-engineered automatically as
part of performance testing, and programmers use these models to
create rules for provisioning of resources to these applications in
the cloud. This paper makes the following contributions:
• We present a general approach for improving the performance

of cloud-deployed applications by using models and artifacts
automatically derived from application performance testing.

• We rely on performance models of applications and use these
models to guide programmers in developing application- spe-
cific provisioning strategies to improve cloud elasticity.

• We evaluate PRESTO on two software applications. The re-
sults strongly suggest that PRESTO is effective and efficient.
We believe that our work is the successful and early attempt
at achieving precise cloud elasticity by using software en-
gineering artifacts for guiding resource provisioning in the
cloud. All experimental results are available online [28].

2. BACKGROUND AND PROBLEM STATE-
MENT

In this section we provide some background on behavioral mod-
els, resource provisioning and basic scaling operators, present our
hypothesis, and outline the problem statement.

209

Figure 1: Learning performance rules.

2.1 Obtaining Behavioral Models
A performance model of the Application Under Test (AUT) is

learned automatically during performance testing to establish un-
der what loads and the ranges of input values the AUT loses its
scalability. Creating application’s performance models is funda-
mental to our approach for determining effective resource alloca-
tion strategies and for evaluating their costs and benefits. A recent
work, FOREPOST [11], abstracts the AUT as a function that map-
s properties of the input data (i.e., client requests) to the classes
of performance behavior of the AUT. That is, performance tests are
generalized as relations (i.e., performance rules) that map input val-
ues to AUT performance behaviors.

To obtain performance rules automatically during performance
testing, the AUT is executed using a test script with different values
and loads for its inputs, I1, . . . , In as shown in the upper right corner
in Figure 1. As a result of executing the AUT, its execution traces
are collected with different performance counters (e.g., elapsed ex-
ecution time, memory consumption). These traces are summarized
by the Trace Analyzer into a table whose columns represent input
values and numbers of users who use these input values and rows
correspond to the collected execution traces. The last column, C,
designates the performance class of the execution trace, i.e., Good
or Bad, a summary measure of the QoS using the throughput associ-
ated with a given trace. This table is processed by a machine learn-
ing algorithm that computes a decision tree, where nodes represent
the AUT inputs and their counts and the leaves represent quality
of service (QoS)/throughput classes. Directed edges connect nodes
and they are labeled with decisions (e.g., I2 > 20) for taking a spe-
cific edge. This decision tree is translated into performance rules,
examples of which are shown in Figure 1.

2.2 Resource Provisioning for Cloud Apps
In this paper, we focus on client-server data-centric application-

s because of their widespread use. Specifically, the front end of
the application accepts requests from users (i.e., the input data),
the middle tier performs some business logic computations, and
the back-end encapsulates data storage. We term the set of relat-
ed client requests and computations as a work unit or transaction.
Each client request is the input data for an application, and its per-
formance behavior depends on the type and the size of the input da-
ta, among other things. The performance of the application is typ-
ically measured as its throughput, i.e., the number of transactions
per time interval that the application executes. Effective provision-
ing strategies will allocate resources to maintain a desired level of
the throughput for the application.

Depending on the types of resources, their provisioning to appli-
cations has different effect on the throughput. Consider scaling up
this application where more CPUs are added as new users arrive.
Since the application spawns a new thread for each user, adding
CPUs and assigning newly spawned threads to these CPUs will in-
crease the throughput of the application. At the same time, adding
more RAM may not necessarily help. On the other hand, if the
database appears to be a main bottleneck, scaling out this applica-
tion by starting its new instance or a new instance of its database
may increase the throughput by parallelizing transaction process-

ing. Thus, resource provisioning in the cloud is a main technique
for maintaining a desired level of the throughput to guarantee some
quality of service for applications.

2.3 Scaling Operators of Cloud Computing
In a cloud computing model, software components run inside vir-

tual machines (VMs), which provide emulated physical machines
[32]. In general, the cloud allocates different amounts of resources
to different VMs and these resources have different costs. For ex-
ample, if a VM contains more components that involve computa-
tionally intensive operations, the cloud scales it up by assigning
more CPUs and memory units. Alternatively, the cloud can scale
out this application by replicating VMs, thus enabling multiple re-
quests to be processed in parallel by these VMs that run these com-
ponents. The cloud uses two main scaling operators: sres(r,a, i)
and sinst(a, i), where r is the type of a resource (e.g., memory,
CPU), a is its quantity, and i is the VM identifier. The scaling op-
erator sres (de)allocates the resource, r, in the quantity, a, to the
VM, i, and the scaling operator sinst (de)allocates a instances
of the VM, i. Of course, different costs are associated with these
scaling operators. For example, allocating a new VM is more ex-
pensive than assigning more CPU or RAM to an already running
VM. In theory, elastic clouds “know” when to apply these opera-
tors to (de)allocate resources with high precision and efficiency.

2.4 The State of the Art and Practice
Today, stakeholders typically deploy their applications in the

cloud, using ad-hoc scripts in which they encode the behavior of
these applications and rules on how the cloud should apply the s-
caling operators based on a coarse collection of performance coun-
ters and otherwise “guesstimating” on how to provision resources
to their applications in the cloud. The Google Cloud, the Ama-
zon EC2 and Microsoft Azure clouds have issued guidelines for
manually load balancing their elastic clouds, directing their users
to manually specifying the conditions that trigger work routing and
scaling operations. The key takeaway here is that existing cloud
providers understand that their users often need to manually con-
figure the cloud. Such manual activities are tedious, error-prone
and expensive, and clearly demonstrate that clouds, such as Ama-
zon’s EC2, have a long way to go in their quest for better elasticity
(see http://aws.amazon.com/autoscaling/).

2.5 The Problem Statement
We address the following problem – how to enable programmers

to provision resources with a high degree of precision to specif-
ic VMs to maximize the throughput of an application that runs in
these VMs. Our goal is to enable stakeholders to create more pre-
cise rules for resource provisioning. In this paper we concentrate
on the resource consumption by application for specific combina-
tions of input values rather than for different loads. In order to
know resource demands for an application, its performance analy-
sis should be done, ideally, with all allowed combinations of values
of the inputs. Unfortunately, this is often infeasible because of the
enormous possible number of combinations. Thus, a subgoal is to
approximate the performance behavior of the application.

We hypothesize that by using application-specific performance
models that are re-engineered automatically during software per-
formance testing it is possible to provision resources to specific
VMs to maximize the application’s throughput. To do that, it is
important to know which resources affect more the performance of
specific VMs that host software components. Therefore, our goal is
to recommend to stakeholders what type of resources and in what
quantity should be provisioned for certain types of input data, so
that this information can be used to make the cloud highly elastic.

210

3. APPROACH
In this section, we give an overview of PRESTO and explain

provisioning strategies as well as our proposed algorithm.
3.1 Overview of PRESTO

To address the problem of enhancing cloud elasticity, the cloud
should provision adequate quantities of specific resources to the
designated VMs using rules that are supplied by programmers. Ad-
equate quantities of resources are those that do not lead to under-
and over-provisioning. A key idea of our solution, PRESTO, is
that stakeholders should create application-specific provisioning s-
trategies using models that are obtained during performance testing
in the cloud. PRESTO methodology combines obtaining applica-
tion’s behavioral model (i.e., a collection of workload profiles, con-
straints, performance counters, and various relations among com-
ponents of the application [21, 26]) with sensitivity analysis that
parameterizes resources and samples the parameter space to de-
termine the types of resources that have the highest impact on the
throughput of the application. Eventually, stakeholders synthesize
the results of modeling and sensitivity analysis into provisioning s-
trategies that they import into the cloud to provision resources based
on specific client requests that arrive to the cloud for a given appli-
cation. To summarize, provisioning strategies for the application
are obtained during its performance testing. These provisioning s-
trategies concisely describe for what types of inputs and input loads
the application loses its scalability and what types of resources and
in what quantities should be provisioned to maintain the applica-
tion’s quality of service by not allowing its throughput to fall below
some level as dictated by an SLA.
3.2 Obtaining Provisioning Strategies

Using the learned model, the user of PRESTO discovers provi-
sioning strategies that most effectively alleviate decreasing through-
puts. The user searches through a space of possible cloud provi-
sioning operations. For example, if a software component involves
computationally intensive operations or requires a lot of memory,
the cloud could scale-up the VM in which the component runs by
giving it more CPU and memory units. If the component’s perfor-
mance has unacceptable latency, resulting from database interac-
tions, then the cloud could scale-out the VM that contains this data-
base. These strategies can be applied to the system and if additional
testing shows performance improvements, then a new provisioning
strategy is automatically generated.
Definition 1 A provisioning strategy is a relation P ⇒ (R • R)∗,
where P is a performance rule and R•R is a resource provisioning
scheme, where R ∈ {sres,sinst} are resource (de)allocation
operators defined in Section 2.3 and • stands for logical connec-
tors and and or and ∗ is the Kleene star.
An example representation of a provisioning strategy for this rule
is (A, R)⇒ sres(P,3,V Mi)∧sinst(2,V Mn), meaning that if we
observe inputs to the application, A, then the rule R holds, meaning
that we will triple the number of CPU units, P, that are assigned to
the V Mi (i.e., scale up), and double the number of virtual machines,
V Mn that run the AUT (i.e., scale out). If this provisioning strategy
is made available to the cloud in advance, then when the applica-
tion, A is executed with the input values that satisfy the performance
rule R, the cloud will provision resources according to the designat-
ed provisioning strategy instead of waiting until the performance of
the application demonstrably worsens as is done in existing clouds
[10]. Conversely, the cloud will deallocate resources to some base-
line level if no consequent is present.

3.3 PRESTO Algorithm
PRESTO’s algorithm for synthesizing provisioning strategies, S

is shown in Algorithm 1. The input to Algorithm 1 is the AUT and

VM configuration that includes all VMs in which the AUT runs as
well as resources assigned by the cloud to these VMs.

The algorithm builds the behavioral model using FOREPOST in
line 2, outputting function fA to represent the performance mod-
el of the AUT by learning rules to map the groups of inputs to the
classes that describe different AUT performance behaviors (see de-
tails in [11]). We defined classes for behaviors: good class, where
performance of the AUT is scalable and bad class, where the AUT
is not scalable. But for nontrivial AUT, the range of performance
behaviors is broader, thus there can be more classes. In the out-
er for loop between lines 4-13, the AUT is checked for each
class for different loads if it loses its scalability. If it does, method
GetBottleneckModel in line 5 returns types of fault models,
describing violations of different properties regarding resource use,
like CPU load, memory utilization, and database bottlenecks. The-
ses defaults are likely to cause the AUT to lose its scalability. Es-
sentially, the method determines the consumption of resources and
operations in the execution of the AUT that led to this consumption.
In the for loop between lines 6-12, for each detected fault mod-
el, m, a set of allocated resources, Rm is obtained in line 7. Then,
between lines 8-11, different types of allocated resources are per-
turbed by scaling them up or out. All the provisioning strategies,
the performance rules and the corresponding AUT’s behaviors are
added to S in line 10, guiding programmers in developing provi-
sioning strategies to improve cloud elasticity.

Algorithm 1 PRESTO Algorithm.
1: Inputs: AUT A , VM Configuration Ω

2: Behavioral Model:(A , Ω) 7→ fA : I→ C
3: S ← /0 {Initialize the set of provisioning strategies}
4: for all c ∈ C ∧¬ Scalable(A ,c) do
5: GetBottleneckModel(A , c) 7→M
6: for all m ∈M do
7: GetVMResource(m) 7→ Rm
8: for all rm ∈ Rm do
9: Ω±∆← Perturb(Ω,∆Rm)

10: S ← S ∪ GetRule(fA ,∆)
11: end for
12: end for
13: end for
14: return S

4. EXPERIMENTAL EVALUATION
In this section, we pose research questions (RQs), describe sub-

ject AUTs, explain our methodology and variables, formulate hy-
potheses, and discuss threats to validity.

4.1 Research Questions and Hypotheses
A main goal of our proposed work is to investigate if learned

performance models of applications can enable stakeholders to cre-
ate precise and effective provisioning strategies for application-
s running in the cloud. To do that, we will pursue and evaluate
the following objectives. One objective is to show that the result-
ing provisioning strategies should be more effective than those s-
trategies produced by existing state-of-the-art automated black-box
approaches and manually created ad-hoc provisioning scripts (see
Section 2.4). Another equally important objective is to learn these
strategies quickly and automatically without placing a significant
demand for resources. To better quantify these objectives, we will
seek to answer the following research questions.
RQ1: How effective is PRESTO in maintaining the throughput of

the applications in the cloud?

211

RQ2: How fast and efficient is PRESTO in learning provisioning
strategies?

The rationale for RQ1 is to determine if PRESTO strategies will en-
able subject applications to maintain their throughputs at some de-
sired levels. Suppose that the application’s throughput drops below
some level that is dictated by an SLA for certain combinations of its
input values. By applying PRESTO strategies, we expect the cloud
to increase the throughput to an acceptable level. We compare how
effective a cloud infrastructure using the PRESTO methodology is
with respect to a cloud infrastructure without PRESTO that uses a
commercial black-box application agnostic autoscaler. We intro-
duce the following null hypothesis to evaluate how close the means
are for throughputs for different approaches. We seek to evaluate
the hypothesis at a 0.05 level of significance.
H0 The primary null hypothesis is that there is no difference in

throughputs of the subject applications for PRESTO and the
competitive approaches.

The rationale behind the H0 is that with PRESTO-based methodolo-
gy, elastic resource provisioning will achieve the same application’s
throughput as the competitive approaches. We expect to reject this
hypothesis to confirm our conjecture that the PRESTO-based cloud
configuration will enable the cloud to provision resources to sub-
ject applications resulting in higher throughputs. The other aspect
of RQ1 is to investigate the economical aspect of autoscaling in the
cloud. Recall that different resources have different costs. It is
important that PRESTO can give a tradeoff between the improved
throughput and its cost. To address RQ2, we instrument our system
to determine the time and resources that PRESTO needs to learn
provisioning strategies. In addition, we want to establish how long
it takes to converge to stable provisioning strategies.

4.2 Subjects and Cloud Configurations
We evaluate PRESTO on two three-tier Java applications, JPet-

Store and Dell DVD Store, which are widely used as industry per-
formance benchmarks [30, 15]. JPetstore is a Java implementation
of the PetStore benchmark. We used JPetStore 4.0.5 [18], which
consists of 36 classes in 8 packages and 382 methods with the av-
erage cyclomatic complexity of ≈ 1.23. It is deployed in Tomcat 6
and uses Apache Derby as its backend database. In this paper, we
only present the results for JPetStore. The experimental results for
Dell DVD Store can be found in the online appendix [28].

We build a private cloud by using an open source cloud, Cloud-
stack 4.2.0 [7], with an integrated load balancer - NetScaler VPX
10.1[24]. NetScaler VPX is a virtual NetScaler appliance that in-
cludes load balancing/traffic management, application acceleration,
application security, and offload functionality. Multiple reports and
Citrix documents confirm that Netscaler is the state of the art load
balancing and provisioning tool that gives us the ability to compare
PRESTO with the baseline approach that is considered to be one of
the best in the cloud computing industry.

4.3 Methodology
A key driver for choosing an experimental methodology is to

compare the values of the dependent variable, throughput for sub-
ject applications given the following independent variables: a cloud
platform, manually created resource provisioning scripts, user load-
s, and PRESTO. User loads are simulated for five, 15 and 30 user-
s. An experiment involves randomly choosing client requests for
transactions and measuring an average throughput. Since random
URLs is unlikely to show the worst performance of the application-
s, we expect that an average throughput will be higher compared to
the one that results from using the inputs selected in FOREPOST.

Recall that FOREPOST automatically constructs behavioral mod-
els of applications to choose inputs and user loads for which the ap-

plication’s throughput falls below some acceptable level. For these
inputs and the predefined user loads we experiment with different
provisioning strategies. Our goal is twofold: 1) we show that differ-
ent provisioning strategies lead to a large variability in the resulting
throughput of the applications, and 2) given that resources have d-
ifferent costs, we show that PRESTO can choose a provisioning
strategy that reduces the cost of resource provisioning and improve
the performance of the applications when they lose their through-
put. We aligned our methodology with the guidelines for statistical
tests to assess randomized approaches in software engineering [1,
2]. Given the high variability in the resources allocated to different
applications, we execute each experiment multiple times to perform
statistical tests and draw reliable conclusions from these tests.

4.3.1 Forming the Load
In JPetStore, the GUI front end is web-based and it communi-

cates with the J2EE-based backend that accepts HTTP requests in
the form of URLs. Recall that a set of URL requests is defined as
a transaction. The backends of the subject applications can serve
multiple transactions from multiple users concurrently. Test script-
s are written using JMeter [16], which generates a large number
of virtual users who send HTTP requests to web servers of AUT-
s thereby creating significant workloads. We limit the number of
URLs in each transaction to 50, since we observed that users ex-
plored approximately 50 URLs before switching to other activities.

4.3.2 Experimenting With Performance Bottlenecks
To determine how well PRESTO allows the cloud to provision

resources to maintain good performance of applications, we push
the subject applications to worsen their throughputs by injecting
computationally intensive operations into their source code. We
consider CPU and database performance bottlenecks. CPU bot-
tlenecks perform computationally intensive operations, e.g., arith-
metic computations in a loop. Adding more CPUs to a VM can
improve the performance of applications with CPU bottlenecks, e-
specially if these bottlenecks are executed by multiple threads. Da-
tabase bottlenecks address database locking strategies, so resources
are locked and applications cannot proceed because one transaction
is waiting on resources that are held by some other transactions.
We randomly seeded nine CPU and nine database bottlenecks into
JPetStore to create two versions (CPU and database version).

4.3.3 Resource Perturbation Modes
During performance testing, stakeholders perturb resource provi-

sioning by applying scaling operators (see Section 2.3) to determine
if the throughput of applications can be improved by assigning more
resources to VMs. Baseline experiments are carried out using the
basic cloud infrastructure, which was one VM with 1.0 GHz CPU
and 1.0 GB memory. Different operators are shown as following.
∆1, ∆2 and ∆3 are scale up operators, and ∆4 is a scale out operator.

∆1: one VM with 1.0 GHz CPU and 1.5 GB RAM;
∆2: one VM with 1.5 GHz CPU and 1.0 GB RAM;
∆3: one VM, two 1.0 GHz core CPUs, 1.0 GB RAM;
∆4: two VMs, one 1.0 GHz CPU, 1.0 GB RAM each.

4.4 Threats to Validity
A threat to the validity is that our subject programs are relatively

small; however, we used these applications since they are open-
source and have been previously used for evaluating performance
testing approaches [30, 15]. It is hard to obtain access to large
enterprise-level applications, and increasing the size of subject ap-
plications is unlikely to affect the time and space demands of our
analysis because PRESTO only considers approximations of the be-
haviors of these applications.

212

Figure 2: Throughputs for JPetStore using PRESTO on Cloud-
stack. The X axis shows the throughputs (URLs per second).

A threat to validity is that application’s behavioral models are
easier to learn for smaller applications, however this is not a point
that we address in this paper. We rely on our previously developed
tool FOREPOST to learn behavioral models in this paper, however,
other approaches for obtaining such models can be used in PRESTO
[25, 20]. Since the focus of the paper is on provisioning strategies,
we leave the work on experimenting with other approaches for de-
riving behavioral models for the future.

Another threat to validity relates to the fact that PRESTO uses
FOREPOST for learning provisioning strategies. We do not claim
that FOREPOST is able to learn sound and complete behavioral
models. FOREPOST may miss some of the bottlenecks (and thus,
it may miss opportunity to explore testing provisioning strategies
in that context). However, in real contexts this may be less of a
problem, especially when some of the “typical” usages of the ap-
plication are known beforehand. Yet, we leave investigation on how
undetected bottlenecks can impact performance of the applications
deployed in the cloud for future work.

A threat to validity may come from relatively small loads which
include at most 30 users simultaneously. However, our underlying
experimental cloud platform has limited capabilities, and this threat
is countered by the load chosen in a balanced way with respect to
available resources. By increasing the load by five orders of magni-
tude, the underlying cloud platform capabilities would be increased
by the same order and our experimental evaluation will stand.

5. EXPERIMENTAL RESULTS
The experimental results are shown in Figure 2. The left and

right figures show experiments with CPU and database bottlenecks
respectively. Experiments with the random inputs (i.e., Random)
and selected input chosen in FOREPOST are common in all graph-
s. Other experiments are carried out for cloud configurations ∆1-
∆4 that we described in Section 4.3. Each experiment shows three
bars. The blue, red, and green bars show throughputs for five, 15,
and 30 users respectively. Exploratory performance random test-
ing is notoriously difficult to find input types and loads to wors-
en an AUT’s throughput below some acceptable level. Thus, we
expect that the throughput for Random experiments will be high-
er as compared to the throughput for the selected inputs. As Fig.
2 shows, the throughput for selected-input experiments shows an
average drop in performance by more than 50% as compared to
an average throughput for the corresponding Random experiments,
which demonstrates that FOREPOST effectively selects inputs that
significantly reduce the throughput. We take the levels of through-
put for selected-input experiments as baseline levels for the corre-
sponding applications and the cloud configurations.

The experiment with selected inputs shows how the through-
put falls below some unacceptable level, and the experiments for
∆k,1≤ k≤ 4, show how PRESTO provisions resources proactively
to VMs to increase the throughput levels compared to the unaccept-
able level. ∆1 scales up the VMs by 0.5GB of RAM and ∆2 scales
up the VMs by increasing the CPU speed by 0.5GHz. However, it

improves the throughput by less than 5%. ∆3 scales up the VM-
s by adding one more CPU and it increases throughput by more
than 40% in the CPU version and by around 30% in the database
version compared to the throughput for selected-input experiments.
∆4 allows two VMs executing requests in parallel. The through-
put for ∆4 increases almost 50% as compared to the throughput for
selected-input experiments. A key here is that using the scale out
operator to parallelize client request processing may achieve better
throughput even with more users compared to the baseline level,
thus improving the scalability of the deployed applications.

However, the scale out operator is expensive – starting and main-
taining a new instance of VM leads to a higher cost compared to
provisioning more RAM or CPU. Since we conduct separate exper-
iments with CPU and database bottlenecks, our goal is to determine
if PRESTO finds more economic provisioning strategies to improve
the scalability of the AUTs. Note that CPU bottlenecks can be al-
leviated by adding more CPUs. Specifically, the scale up operator
∆3 adds one more CPU while keeping the same quantity of RAM
and the same number of VMs. On average, the difference between
throughputs with ∆3 and ∆4 is less than 8% for CPU bottleneck-
s and it is over 20% for the database bottlenecks. Other scale up
operators that add different quantities of RAM show little to none
improvement. Naturally, PRESTO selects the configuration ∆3 as a
cheaper one for CPU bottlenecks and ∆4 for database bottlenecks.
Our conclusion is to support RQ1 in stating that not only does
PRESTO determine effective provisioning strategies, but it also
chooses them economically, so that stakeholders can balance the
cost versus scalability when running applications in the cloud.

Recall that we re-ran multiple experiments with PRESTO, s-
ince these experiments involve the random strategy. To statisti-
cally compare throughput values, we used one-way ANOVA and
t-tests for paired two sample to evaluate the null hypothesis H0
(Section 4.1). The results of t-tests showed that the applications’
throughputs of PRESTO-based strategies ∆1 and ∆2 were compara-
ble to the throughput of selected inputs with basic cloud infrastruc-
ture. However, for ∆3 and ∆4, most of other p-values were much
smaller than 0.05, implying that the applications’ throughputs when
using other different PRESTO-based strategies were statistically
significantly different as compared to the baseline approach. We
also used one-way ANOVA to evaluate H0. The results show that
all p-values were substantially larger than the critical value (2.246).
Hence, we reject H0 and conclude that there is statistically signif-
icant difference in throughputs for the subject applications while
using PRESTO-based strategies compared to the baseline ones.

PRESTO builds performance model for applications as a func-
tion that maps the inputs to outputs, finding performance rules that
guide the input selection and pinpoint computationally intensive
paths. In our experiments, it needed less than two hours to con-
verge to stable rules for JPetStore. Once we obtained performance
rules, we tried different provisioning strategies until we found the
appropriate strategy that made the throughput for the application to
increase to an acceptable level. There was no other manual effort
needed in this process. We support RQ2 in stating that PRESTO
is fast and efficient in learning provisioning strategies.

Summary. Based on experimental results, we answer affirma-
tively to RQ1 that the PRESTO provisioning strategies are effective
in terms of improving the AUTs’ performance and making them s-
calable. Moreover, once we obtained performance rules, it is easy to
map the provisioning strategies to performance rules without much
manual effort, thus we affirmatively answer RQ2.

6. RELATED WORK
Learning rules helps stakeholders to optimize distributed system-

s for dynamically changing workloads [34, 31, 22]. In contrast,

213

PRESTO uses feedback-directed adaptive test scripts to locate most
computationally intensive execution profiles and bottlenecks.

Several papers focused on improving the performance of appli-
cations deployed in the cloud [17, 27, 5, 29, 14, 6, 12, 33]. Klein et
al. [19] defined a self-adaptation programming paradigm to “skip"
optional functionality in the cloud-deployed applications. Frey et
al. [8] used a simulation-based genetic algorithm for finding opti-
mized cloud deployment options for the software in the cloud. An
approach, ATUoCLES, allows collecting execution information for
applications, which have all the logic to scale up and down auto-
matically [9]. Spinner et al. proposed a model-based approach to
improve AUT performance by adding/removing VMs [33]. How-
ever, none of these approaches analyze impact of specific inputs on
the performance of deployed programs and efficient resource allo-
cation in the cloud-based environments, which is done in PRESTO.

7. CONCLUSION AND FUTURE WORK
Our novel solution for Provisioning Resources with Experimental

SofTware mOdeling (PRESTO) enhances cloud elasticity by learn-
ing and refining models of under-constrained applications throu-
ghout performance testing and using these models stakeholders can
craft resource provisioning strategies for the cloud that are highly
tailored for specific applications. Experimental results suggest that
PRESTO is effective and efficient - up to 40% better response in
provisioning resources on average when the AUT throughput wors-
ened significantly. In summary, we extend the theory of cloud com-
puting by utilizing performance testing in its load balancing and
resource provisioning. We believe that our work is a successful
attempt of using software engineering artifacts to guide cloud de-
ployment of software. The future work will involve automatically
searching for scaling operators to (de)allocate different resources to
VMs and determining the provisioning strategies to maintain AUT’s
performance at an acceptable level.

Acknowledgements
This work is supported in part by the NSF IIP-1547597 and NSF
CCF-1217928 grants. Any opinions, findings, and conclusions ex-
pressed herein are the authors’ and do not necessarily reflect those
of the sponsors.

8. REFERENCES
[1] A. Arcuri and L. Briand. A practical guide for using

statistical tests to assess randomized algorithms in software
engineering. In ICSE ’11.

[2] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software
engineering. STVR, 2012.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Commun. ACM.

[4] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud
computing research agenda. SIGACT News’09.

[5] P. C. Brebner. Is your cloud elastic enough?: Performance
modelling the elasticity of infrastructure as a service (iaas)
cloud applications. In ICPE ’12.

[6] F. Brosig, N. Huber, and S. Kounev. Automated extraction of
architecture-level performance models of distributed
component-based systems. In ASE’11.

[7] Cloudstack. http://cloudstack.apache.org/.
[8] S. Frey, F. Fittkau, and W. Hasselbring. Search-based genetic

optimization for deployment and reconfiguration of software
in the cloud. In ICSE ’13.

[9] A. Gambi, W. Hummer, and S. Dustdar. Automated testing of
cloud-based elastic systems with autocles. In ASE ’13.

[10] Google. Auto scaling on the google cloud platform.
https://cloud.google.com/resources/articles/auto-scaling-on-
the-google-cloud-platform.

[11] M. Grechanik, C. Fu, and Q. Xie. Automatically finding
performance problems with feedback-directed learning
software testing. In ICSE’12.

[12] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. Modeling run-time adaptation at the system
architecture level in dynamic service-oriented environments.
SOCA’14.

[13] S. Islam, K. Lee, A. Fekete, and A. Liu. How a consumer can
measure elasticity for cloud platforms. In ICPE ’12.

[14] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic resource
provisioning for cloud-based software. In SEAMS ’14.

[15] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automated performance analysis of load tests. In ICSM ’09.

[16] JMeter. https://jmeter.apache.org.
[17] K. Johnson, S. Reed, and R. Calinescu. Specification and

quantitative analysis of probabilistic cloud deployment
patterns. In HVC’11.

[18] JPetStore. http://sourceforge.net/projects/ibatisjpetstore.
[19] C. Klein, M. Maggio, K.-E. ρ Arzén, and

F. Hernández-Rodriguez. Brownout: Building more robust
cloud applications. In ICSE ’14.

[20] D. Lo and S. Maoz. Scenario-based and value-based
specification mining: Better together. In ASE ’10.

[21] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
generation of software behavioral models. In ICSE ’08.

[22] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk.
Forepost: Finding performance problems automatically with
feedback-directed learning software testing. EMSE, 2016.

[23] H. Mendelson. Economies of scale in computing: Grosch’s
law revisited. Commun. ACM.

[24] NetScaler. http://www.citrix.com/netscalervpx.
[25] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,

I. Beschastnikh, and Y. Brun. Behavioral resource-aware
model inference. In ASE ’14.

[26] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun. Mining
precise performance-aware behavioral models from existing
instrumentation. In ICSE Companion ’14.

[27] D. Perez-Palacin, R. Calinescu, and J. Merseguer.
Log2cloud: Log-based prediction of cost-performance
trade-offs for cloud deployments. In SAC ’13.

[28] PRESTO.
http://www.cs.wm.edu/semeru/data/ICPE16-PRESTO/.

[29] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. A
virtual machine re-packing approach to the horizontal vs.
vertical elasticity trade-off for cloud autoscaling. In CAC ’13.

[30] A. Shankar, M. Arnold, and R. Bodik. Jolt: Lightweight
dynamic analysis and removal of object churn. In OOPSLA
’08.

[31] D. Shen, Q. Luo, D. Poshyvanyk, and M. Grechanik.
Automating performance bottleneck detection using
search-based application profiling. In ISSTA ’15.

[32] J. E. Smith and R. Nair. The architecture of virtual machines.
Computer’05.

[33] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler,
and R. Griffith. Runtime vertical scaling of virtualized
applications via online model estimation. In SASO’14.

[34] J. Wildstrom, P. Stone, E. Witchel, and M. Dahlin. Machine
learning for on-line hardware reconfiguration. In IJCAI’07.

214

