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ABSTRACT
Consistently high reliability and low latency are twin re-
quirements common to many forms of distributed process-
ing; for example, server farms and mirrored storage access.
To address them, we consider replication of requests with
canceling – i.e. initiate multiple concurrent replicas of a re-
quest and use the first successful result returned, canceling
all outstanding replicas. This scheme has been studied re-
cently, but mostly for systems with a single central queue,
while server farms exploit distributed resources for scalabil-
ity and robustness. We develop an approximate stochastic
model to determine the response-time distribution in a sys-
tem with distributed queues, and compare its performance
against its centralized counterpart. Validation against sim-
ulation indicates that our model is accurate for not only the
mean response time but also its percentiles, which are par-
ticularly relevant for deadline-driven applications. Further,
we show that in the distributed set-up, replication with can-
celing has the potential to reduce response times, even at
relatively high utilization. We also find that it offers re-
sponse times close to those of the centralized system, espe-
cially at medium-to-high request reliability. These findings
support the use of replication with canceling as an effective
mechanism for both fault- and delay-tolerance.

CCS Concepts
•Mathematics of computing → Markov processes;
•Computer systems organization → Reliability; Re-
dundancy;
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1. INTRODUCTION
Server farms have been widely deployed, fueled by the

ever-growing demand for computation-intensive and massive-
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data operations, to provide cost-effective and high-performance
services for organizations such as Amazon, Google, IBM,
Microsoft or Yahoo, by exploiting large collections of inex-
pensive resources [12]. Although much effort has been spent
on optimizing the performance of server farms [4, 6, 12],
requests unavoidably experience failures or delays, degrad-
ing the offered quality of service. Application-level failures,
which are the focus of this paper, can arise for reasons such
as communication errors [13], timeouts of resources with
constrained availability, or outputs exceeding latency re-
quirements. Further, low latency, especially keeping the tail
of the latency distribution short, can be difficult to achieve
in the face of contention for shared resources, queueing, or
hardware problems [3]. For instance, experiments at Google
show that a system where each request typically responds
in 1ms, has a 99th percentile latency of 10ms [3].

In this context, request replication with canceling has
been proposed as a powerful mechanism to improve relia-
bility, and to limit the response time, by initiating multiple
copies of a request on separate servers and using the result
from the copy that completes first [3, 16, 15]. To limit the
additional load introduced by replicas, upon the successful
completion of any replica, all other outstanding replicas are
canceled immediately. This is achieved by allowing servers
to share updates on the status of their replicas. Three key
points make this approach viable. First, most clusters today
are highly underutilized, with the average utilization of ma-
jor data center servers being around 18% [21]; Second, much
of the energy consumption is wasted at low utilization, e.g.,
even an idle server consumes about 65% of the power of its
peak consumption [5]. Thus it is cost-effective to use these
idling resources for running extra replicas of requests. Third,
concurrent replication can handle unpredictable failures, as
it is sufficient that one of the replicas succeeds. Further,
replication has the potential to reduce both the mean and
the tail of the response-time distribution, since the overall
latency becomes the minimum of the delays across all the
replicas [16, 15].

Although replication has been studied recently, most works
focus on systems with a single central queue, while server
farms exploit distributed resources for scalability and ro-
bustness. Clearly, the centralized set-up offers better perfor-
mance, but the distributed set-up provides more flexibility,
and in some systems holding a central queue is not possible,
such as when accessing mirrored storage systems in parallel.
To better understand the performance of these two settings,
in this paper we develop an approximate stochastic model to
determine the response-time distribution in a system with
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Figure 1: Reference models. A server farm is split in nodes, as in (a). The set-up of each node can be as in (b) or in (c).

distributed queues, and compare its performance against its
centralized counterpart. Although approximate, validation
results indicate that our model is accurate for not only the
mean response time but also its percentiles, a significant
advantage since mean response time guarantees are not suf-
ficient in many situations, in particular for deadline-driven
applications. Further, we show that in the distributed set-
up replication with canceling has the potential to reduce
the response times, even under relatively high utilization.
The effect of replication actually depends on the specific re-
sponse time percentile evaluated, especially in low-reliability
scenarios. This effect is more uniform across the response-
time distribution when the request reliability is high or when
more than one extra replica is adopted. We also find that
the distributed set-up offers response times close to those of
the centralized system, especially under a medium to high
request reliability. These findings support the use of replica-
tion with canceling as an effective mechanism for both fault-
and delay-tolerance in server farms.

2. RELATED WORK
Concurrent replication has been considered recently as a

means to reduce latency in interactive and deadline-driven
applications [1, 3, 7, 16, 15, 10, 17, 20, 22]. For instance, [1]
observes in trace-driven experiments that processing repli-
cas concurrently is effective in mitigating the effect of la-
tency. [17] explores concurrent replication with canceling as
a tail-tolerant approach, and shows that this approach can
be powerful in keeping the response time tail short. In par-
ticular, [7, 15, 16] evaluate the effectiveness of this approach
in improving the reliability for systems with request fail-
ures. These works focus on the case with one extra replica
for systems made up of two distributed queues [7], syn-
chronous parallel processors [15], and for computing clusters
with a central queue [16]. Among them, [16] determines the
response-time distribution, while [7, 15] focus on the mean
response time only. In this paper, we obtain the response-
time distribution for systems with both distributed and cen-
tralized queues, and implementing multiple extra replicas.

3. BACKGROUND

3.1 Reference model
We consider a server farm consisting of a number of dis-

tributed, homogeneous, and independent servers, which pro-
cess incoming requests with rate µ. Requests in service are
subject to failures, with failure rate α. Both service and
failure times are exponentially distributed, a common as-
sumption in reliability engineering [24, 23]. In case of a fail-
ure, the request currently in service is lost, but the server

itself is not affected, and continues to serve the next request
that enters. To improve the reliability, r−1 extra replicas
are adopted for each arriving request, i.e., a total of r repli-
cas of a request are submitted to the system. In particular,
r=1 represents the case where no replication is adopted. We
denote by request/replica the original request or any of its
replicas, and by job the set of replicas for a single request,
where the number of replicas r is also referred to as the
replication level. To reduce unnecessary workload, the sys-
tem replies with the result from whichever replica completes
successfully first, and immediately cancels all the other out-
standing replicas in the same job. The canceling overhead,
which is the time to remove all the replicas in a job, is as-
sumed to be negligible.

To take advantage of replication, we consider a server
farm consisting of n distributed computing nodes, and a cen-
tral scheduler that assigns jobs to the processing nodes in
a round-robin or random fashion, as shown in Figure 1(a).
Each node is composed of r independent and statistically
identical processing servers, thus serving a job of replication
level r, by processing each of the r replicas in each server.
The node can have distributed queues in front of each of the
servers, as shown in Figure 1(b), where each of the r repli-
cas joins the end of the queue at one of the r servers, and
is processed with first-come first-served (FCFS) scheduling.
An alternative setup is to have a centralized queue in front
of all the servers, as shown in Figure 1(c), where all the
replicas of the incoming requests form a single queue in the
order of arrival and join the next server that becomes avail-
able with FCFS scheduling. For both models, when one of
the replicas in a job completes service successfully, it imme-
diately cancels all its outstanding siblings, either waiting or
in service. However, if a replica fails during service, it leaves
the system without influencing its siblings. Analyzing the
model with distributed queues is far more challenging than
its counterpart with a single centralized queue, as the syn-
chronized arrivals of replicas to all queues correlates their
dynamics, while individual replicas fail asynchronously. We
therefore develop an approximated model in Section 4 to
cope with this setup, capturing the dynamics introduced by
failures, replication and canceling. To analyze the perfor-
mance of a system with a central queue, we extend our pre-
vious work [16], where we considered the r=2 case, to handle
any number of replicas, i.e., r≥2, as described in Section 6.

3.2 Preliminaries
Motivated by the high variability and auto-correlation ob-

served in inter-arrival times in computer systems, we utilize
Markovian arrival processes (MAP) to represent inter-arrival
times [14]. The continuous-time MAP [11] is a marked
Markov chain (MC) with generator matrix D = D0 + D1,
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where matrices D0 and D1 hold the rates associated to
transitions without and with arrivals. The diagonal en-
tries of D0 hold the total exit rate in each state, such that
(D0+D1)1=0. We denote this process as MAP(ma, D0, D1),
where ma is the number of states in the underlying MC, or
arrival phases. The mean arrival rate is λ=dD11, where 1 is
a column vector of ones, and d is the stationary distribution
of the underlying MC, i.e. dD=0 and d1=1. In the special
case of Poisson arrivals, D0=−λ and D1=λ.

In the next sections we show that the job processing time
follows a Phase-type (PH) distribution, whose parameters
depend on the overall system state. A PH random variable
X represents the absorption time in an MC with n+1 states,
where the states {1, . . . , n} are transient and state 0 is ab-
sorbing [11]. This random variable or its distribution are de-
noted as PH(τ , S), where the 1×n vector τ is the MC initial
probability distribution for the transient states, and matrix
S is the n×n sub-generator matrix holding the transition
rates among the transient states. The vector S∗=−S1 holds
the absorption rates from the transient states. Its cumula-
tive distribution function (CDF) is F (x)=1−τ exp(Sx)1, for
x≥0, and its expected value is E[X]=−τS−11.

4. THE DISTRIBUTED SETUP
In this section we introduce a stochastic model to deter-

mine the job response-time distribution offered by a single
computing node that implements replication with canceling
and operates with r individual queues, as in Figure 1(b). To
this end we start by obtaining the waiting-time and service-
time distributions separately, both of which have PH repre-
sentations. For each job, composed of r replicas, the waiting
time is the period between its arrival and the time the first
of its replicas starts service, while the service time starts
when the waiting period ends and concludes when one of
the replicas completes service successfully, or when all repli-
cas fail. In the following we refer to a period during which
the server of the shortest queue is busy as an all-busy period,
which terminates when the one server becomes idle and the
queue is empty. This marks the start of a not-all-busy pe-
riod, where at least one server is idle and terminates when a
job arrives, submitting one replica to each server, initiating
a not-all-busy period.

4.1 The waiting-time distribution
To determine the waiting-time distribution, we observe

the queues only during the all-busy periods and define an age
process, following [2, 19]. Different from [2, 19], which con-
sider queues with service times independent of the system
state, the replication and canceling mechanism introduces
dependencies among the servers that cannot be analyzed by
existing models. We thus define a bivariate Markov process
{X(t), J(t)|t≥0}, where the age X(t) is the total time-in-
system of the youngest job in service at time t. The age X(t)
thus takes values in [0,∞), increasing linearly with rate 1
as long as no new jobs start service. Note that, during the
all-busy period, a new job starts service only if the replica
in service in the shortest queue completes service or fails.
This is because for the replicas waiting in other queues, one
or more of their siblings have already failed. Thus in case
of a service completion or a failure in the shortest queue, a
new job starts service and its age will be equal to its waiting
time, thus triggering a downward jump in X(t). The phase
J(t)=(A(t), D(t)) holds the joint state of the arrival process

A(t) and the service process D(t). The arrival process is a
MAP with ma phases and parameters (D0, D1) as defined
in Section 3.

To model the service process, we first order the queue
lengths in ascending order, i.e., (q1, q2, . . . , qr) with qi≤qj
for i<j and 1≤i, j≤r, where the queue length includes jobs
waiting and in service. During the all-busy period, the short-
est queue length must be positive, i.e., q1>0, while during
the not-all-busy period the shortest queue must be empty,
i.e., q1=0. Further, we focus on the differences between two
consecutive queues after ordering, defined as (d1, . . . , dr−1),
where di=qi+1−qi for 1≤i≤r−1. Notice that this model
is closely related to the fork-join model in [18], where the
difference in queue-lengths are also used to model the evo-
lution of a set of queues. However, here we consider the
replication with canceling mechanism, which displays dif-
ferent dynamics from the fork-join queue, and the replicas
are allowed to fail, a feature not considered for the fork-
join queue. Also, [18] relies on the queue-length differences
with respect to the shortest queue, while here we focus on
the differences between two consecutive queues after order-
ing. The queue-length difference is unbounded in principle,
but, to keep the phase space finite, we introduce an upper
bound C<∞, such that the difference is at most C. As
a result, the service process D(t) takes values in the set
SD = {(d1, . . . , dr−1)|di ∈ {1, . . . , C} for 1≤i≤r−1}, the
cardinality of which is ms=(C+1)r−1 for a system with r
queues and an upper bound of C. The phase process J(t)
thus takes m=mams different values, where ma is the num-
ber of arrival phases. The limit C introduces an approxima-
tion, the goodness of which depends on the system parame-
ters. For instance, when the failure rate α is small compared
to the service rate µ, the probability of a large difference di
is small, since successful service completions are more likely
to occur, activating the canceling mechanism, which keeps
the queues more synchronized. With a larger failure rate, we
may expect a larger difference. However, due to the cancel-
ing mechanism, the probability of large differences between
queue lengths stays small, even at high loads. Section 5
evaluates the accuracy of this approximation and explores
the selection of the limit C.

To determine the PH representation (swait, Swait) of the
waiting-time distribution, we rely on the stationary distribu-
tion π(x) of the (X(t), J(t)) process, which has a matrix ex-
ponential representation [19] π(x)=π(0) exp(Tx), for x>0.
The m×m matrix T satisfies the non-linear integral equation

T = S(MAP) +

∫ ∞
0

exp(Tu)A(MAP)(u)du, (1)

where S(MAP)=S⊗Ima , A(MAP)(u)=A(jump)⊗ exp(D0u)D1,
while In is the identity matrix of size n, and ⊗ denotes
the Kronecker product. Here S+A(jump) is the generator
of the marginal service phase process, where S and A(jump)

are ms×ms matrices that hold the transition rates of the
service process associated to transitions without and with
the start of a new job service, respectively. As mentioned
above, only the service completion or failure of the replica in
service in the shortest queue triggers the start of a new job
service, thus transitions in the shortest queue correspond to
matrix A(jump), while transitions in other queues correspond
to matrix S.

Table 1 shows the transition rates in S and A(jump). The
first row considers the case where the replica in service in the
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Table 1: Transition rates for matrices S and A(jump)

Matrix From To Rate Range

S

(d1, . . . , di, di+1, . . . , dr−1) (d1, . . . , di−1, di+1, . . . , dr−1) µ di > 0, di+1 > 0,i ≥ 1
(d1, . . . , di, di+1, . . . , dr−1) (d1, . . . , di−1,max{C, di+1+1}, . . . , dr−1) α di > 0, di+1 > 0,i ≥ 1

(d1, . . . , di, 0, . . . , 0, dk, . . . , dr−1) (d1, . . . , di−1, 0, . . . , 0, dk, . . . , dr−1) (k−i)µ di > 0, dj = 0 ∀i < j < k
(d1, . . . , di, 0, . . . , 0, dk, . . . , dr−1) (d1, . . . , di−1, 1, 0, . . . , 0, dk, . . . , dr−1) (k−i)α di > 0, dj = 0 ∀i < j < k

A(jump)

(d1, d2, . . . , dr−1) (d1, d2, . . . , dr−1) µ d1 > 0
(d1, d2, . . . , dr−1) (max{C, d1+1}, d2, . . . , dr−1) α d1 > 0

(0, . . . , 0, di, . . . , dr−1) (0, . . . , 0, di, . . . , dr−1) iµ di > 0, dj = 0 ∀j < i
(0, 0, . . . , 0, di, . . . , dr−1) (1, 0, . . . , 0, di, . . . , dr−1) iα di > 0, dj = 0 ∀j < i

(i+1)th shortest queue completes service, canceling its part-
ners in all the queues longer than queue (i+1)th, resulting in
the difference between the (i+1)th and ith shortest queues
decreasing by 1, while other differences remain unaffected.
The second row considers the case where the replica in the
(i+1)th shortest queue fails, decreasing by 1 the difference
between the (i+1)th and ith shortest queues, while the dif-
ference between the (i+2)th and (i+1)th shortest queues in-
creases by 1, but bounded by C. In the previous two cases we
assumed that di+1>0, thus ensuring that the (i+1)th short-
est queue is actually a single queue. The third and fourth
rows consider the case where di+1= · · ·=dk−1 = 0, such that
from the (i+1)th to the kth shortest queues have the same
length. Thus, the transition rates in the third row reflect
that a service completion in any of these queues triggers the
same transition. The fourth row considers the same condi-
tion for the case of replica failures. The second block in Ta-
ble 1 considers similar conditions but for the matrix A(jump).
The first and second rows consider a service completion or
failure of the replica in the shortest queue, thus initiating a
new job service. In case of a service completion, the replica
that completes service cancels all its partners, thus the dif-
ferences between queue-lengths remain unchanged. On the
other hand, a failure in the shortest queue leads d1 to in-
crease by 1, but bounded by the limit C. The last two rows
consider the case where there are multiple shortest queues.

The matrix T can be found by iteratively solving Eq. (1),
where each iteration involves the solution of a Sylvester ma-
trix equation [8]. Once T has been found, we need to deter-
mine the steady state distribution π(0) of the phases at the
beginning of an all-busy period. To find π(0), we need to
connect the not-all-busy and the all-busy periods [2]. Com-
pared to the all-busy period, in the not-all-busy period the
shortest queue is empty, q1=0, but the differences between
queue-lengths can be modeled just as in the all-busy period.
Thus, during the not-all-busy period we keep track of the ar-
rival and services phases J(t)=(A(t), D(t)), with the service
phase D(t) taking values in the set SD. We can thus follow
[18] to find the stationary distribution π(0) that solves

π(0)=π(0)

∫ ∞
0

exp(Tu)(A(jump)⊗ exp(D0u))du

(Snot-all⊕D0)−1(Ims⊗D1),

(2)

where the matrix Snot-all holds all the service transition rates
between arrivals during a not-all-busy period. Since no ar-
rivals are allowed and the queue is empty, there are no new
jobs starting service during this period and the Snot-all ma-
trix holds the same transition rates as the matrix S. The
only difference is in the diagonal of Snot-all, which needs to
be such that Snot-all1 = 0.

Let the steady state distribution of the phase during the
busy period be πbusy=−π(0)T−1, and defineϕ=(T−S(MAP))1
[2]. The PH representation of the waiting time is given by

swait = γπbusy ◦ϕ/((πbusy ◦ϕ)1), Swait = ∆−1T ′∆, (3)

where ∆=diag(πbusy), and ◦ stands for the Hadamard prod-
uct. The parameter γ is the probability that a job has to
wait, and is given by γ=(E[η0]−1)/(E[η0]−1+E[η1]), where
E[η0] and E[η1] are the expected number of arrivals during
an all-busy period and a not-all-busy period, respectively.
Since the job that initiates the not-all-busy period does not
have to wait, E[η0]−1 is the expected number of arrivals that
have to wait in a cycle of an all-busy period followed by a
not-all-busy period. Further, E[η1]= 1 as an arrival dur-
ing the not-all-busy period sends replicas to all queues in
the node, initiating an all-busy period. Thus γ=1−1/E[η0],
where E[η0] can be obtained as in [2, Section 6].

4.2 The service-time distribution
We now determine the job service-time distribution, which

we show to be PH with parameters (sser, Sser) that depend
on the overall system state. Let Y (t) be the service state of a
tagged job in service at time t. We define Y (t)=(R(t), D(t)),
where R(t) records the number of alive replicas of the tagged
job at time t, thus R(t) ∈ {1, . . . , r}. The variable D(t) is
again the difference between queue lengths, but it focuses
on the queue lengths in front of the tagged replicas only, ig-
noring any jobs that arrive after the tagged job. Thus if a
tagged replica has already failed, the corresponding queue
length is kept at 0. Notice that since we are interested in
the service time of a tagged job, we keep track of its ser-
vice phase from the moment the first tagged replica starts
service, and we order the service states according to R(t) in
descending order. Further, when R(t)=1, only one tagged
replica remains alive, thus it is enough to keep track of the
length of the queue where this replica is located. To build
the PH representation of the service-time distribution we
consider the sub-generator S̄ser, and two absorbing states, S
and F, representing the cases where the job completes ser-
vice successfully or encounters a failure, respectively. We
can then write the generator of the service-time process (ig-
noring the zero rows corresponding to the absorbing states)
as [

S̄ser S̄
∗
S S̄

∗
F

]
,

where the absorption vectors S̄
∗
S and S̄

∗
F hold the absorption

rates into states S and F , respectively, and S̄
∗
=S̄
∗
S+S̄

∗
F .

The transitions among service phases depend not only on
whether there is a successful service completion or a fail-
ure, but also on which queue this happens. The transition
rates of the service process are shown in Table 2, which we
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Table 2: Transition rates for S̄ser, S̄
∗
S and S̄

∗
F

From To Rate Range

m, (d1, . . . , dr−1) m−1, (max{C, d1+1}, . . . , dr−1) α m = r
m, (d1, . . . , dr−1) S µ m = r

m, (0, . . . , 0, di, . . . , dr−1) m−1, (1, 0, . . . , 0, di, . . . , dr−1) iα m=r, di>0, dj=0 ∀j<i
m, (0, . . . , 0, di, . . . , dr−1) S iµ m=r, di>0, dj=0 ∀j<i
m, (. . . , di, di+1, . . . , dr−1) m, (. . . , di−1, di+1, . . . , dr−1) µ di>0, di+1>0, m≤r
m, (. . . , di, di+1, . . . , dr−1) m, (. . . , di−1,max{C, di+1+1}, . . . , dr−1) α di>0, di+1>0, m≤r

m, (. . . , di, 0, . . . , 0, dk, . . . , dr−1) m, (. . . , di−1, 0, . . . , 0, dk, . . . , dr−1) (k−i)µ di>0, dj=0 ∀i<j<k, m≤r
m, (. . . , di, 0, . . . , 0, dk, . . . , dr−1) m, (. . . , di−1, 1, 0, . . . , 0, dk, . . . , dr−1) (k−i)α di>0, dj=0 ∀i<j<k, m≤r
m, (0r−m−1, 1, dr−m+1, . . . , dr−1) m−1, (0r−m−1, 0,max{C, dr−m+1+1} . . . , dr−1) α dr−m+1>0, 1 < m < r
m, (0r−m−1, 1, dr−m+1, . . . , dr−1) S µ dr−m+1>0, 1 < m < r

m, (0r−m−1, 1, 0, . . . , 0, dk, . . . , dr−1) m−1, (0r−m−1, 0, 1, 0, . . . , 0, dk, . . . , dr−1) (k−r+m+1)α 1 < m < r
m, (0r−m−1, 1, 0, . . . , 0, dk, . . . , dr−1) S (k−r+m+1)µ 1 < m < r

1, (0r−2, 1) S µ m = 1
1, (0r−2, 1) F α m = 1

split in four sets for clarity. The first set of rows consid-
ers the case where R(t)=r, i.e., none of the tagged replicas
has completed service or failed, thus there is at least one
tagged replica in service in one of the shortest queues. In
the first two rows there is only one tagged replica in ser-
vice, thus its failure, with rate α, leads d1 to increase by 1
but bounded to C, while its service completion, with rate µ,
marks the service completion of the whole job, thus enter-
ing the S state. Rows 3-4 cover a similar case, but with i
tagged replicas concurrently in service. In the second set, we
consider transitions in queues other than the shortest ones,
which do not hold tagged replicas. The first and second rows
consider the case of a service completion or a failure in the
(i+1)th queue, respectively, assuming there is a single queue
with this queue length (di+1>0). The third and fourth rows
consider a similar transition, but in this case the (i+1)th

to the kth queues have the same length, thus the transi-
tion rates are (k−i)µ and (k−i)α, respectively. In the third
set we assume that the number of tagged replicas alive is
1<m<r, thus at least one tagged replica has already failed.
In fact, the zero vector 0r−m+1 in front of the state descrip-
tion corresponds to the queue-length differences among the
r−m servers where the tagged replicas have already failed.
Here the first two rows correspond to the failure or service
completion, respectively, of a tagged replica in the (only)
shortest non-zero queue, thus assuming dr−m+1 > 0. The
third and fourth rows cover the same case, but considering
multiple (i.e., k−r+m−1) shortest queues. Finally, the last
set considers the case where only one tagged replica remains
in service, thus its service completion marks a successful
completion of the whole job, while its failure leads to the
job failure.

Having obtained S̄ser, we define Sser = S̄ser ⊗ Ima , which
is a matrix of size mser. Since the service phase space is
ordered in decreasing order according to R(t), we let mr be
the number of phases where R(t)=r and m0 the remaining
phases, such that mser=mr+m0. We can now determine
the initial probability vector sser, which is the stationary
probability with which a job starts service in each of the
phases, and following [18, Proposition 1], it is given by

sser = [(1−γ)π(0) + γcπbusy(T−S(MAP)) 0m0 ], (4)

where c−1=πbusy(T−S(MAP))1, and the zero vector corre-
spond to phases with R(t)<r as a job can only start service
in phases with R(t)=r, since it starts with all its replicas

alive. As a result, we have that (sser, Sser) is a PH represen-
tation of the service time for all jobs. For further reference
we also define the corresponding exit vector S∗S = S̄∗S⊗1ma .
However, we want to focus on the successful jobs only, for
which we obtain a PH representation of the service time in
the following proposition, the proof of which is given in the
Appendix.

Proposition 1. The service time of successful jobs fol-
lows a PH distribution with parameters (βser, Bser), where

βser = S∗S
′
Π/pS , Bser = Π−1S′serΠ.

Π is a diagonal matrix such that Π1=η′, η=−sserS−1
ser is

the stationary distribution of the service phase, and pS =
−sserS−1

serS
∗
S is the probability that a job is successful.

Finally, we are in a position to obtain the response-time
distribution in the following theorem, the proof of which is
given in the Appendix.

Theorem 1. The response time of successful jobs follows
a PH distribution with parameters (sres, Sres), where

sres=
[
βidle

ser βbusy
ser 0

]
, Sres=

Bidle
ser 0 0
0 Bbusy

ser (−Bbusy
ser 1)Ps,w

0 0 Swait

 ,
(5)

where (βidle
ser , B

idle
ser ) and (βbusy

ser , B
busy
ser ) are the PH representa-

tions of the service times of successful jobs that start service
immediately upon arrival and that must wait, respectively.
Letting ∆idle be a diagonal matrix such that ∆idle1=−(1 −
γ)(π(0)S−1

ser )′, (βidle
ser , B

idle
ser ) are given by

βidle
ser =S∗S∆idle/pS , Bidle

ser =∆−1
idleS

′
ser∆idle.

Similarly, letting ∆busy be a diagonal matrix such that ∆busy1
=−γ(αbusyS

−1
ser )′, (βbusy

ser , B
busy
ser ) are given by

βbusy
ser =S∗S∆busy/pS , Bbusy

ser =∆−1
busyS

′
ser∆busy.

Finally, Ps,w is an mser ×m matrix given by

Ps,w =

[
P̃s,w

0m0×m

]
,

where P̃s,w = Γ−1(T −S(MAP))′Λ, and Γ and Λ are diagonal

matrices such that Γ1 = (T − S(MAP))′Λ1 and Λ1 = α′busy.

Here αbusy = cπbusy(T−S(MAP)) is the initial service phase
of jobs that wait, and c is a normalizing constant such that
c−1=πbusy(T−S(MAP))1.
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Table 3: Approximation errors compared with simulation results

r Arr NR-load Measure
Err(%) - NR-reliability:10% Err(%) - NR-reliability:50% Err(%) - NR-reliability:90%
C = 5 C = 10 C = 50 C = 5 C = 10 C = 50 C = 5 C = 10 C = 50

3

Poisson

0.1
mean <1 <1 <1 <1 <1 <1 <1 <1 <1
R95 <1 <1 <1 <1 <1 <1 <1 <1 <1

0.5
mean <1 <1 <1 <1 <1 <1 <1 <1 <1
R95 <1 <1 <1 <1 <1 <1 <1 <1 <1

0.9
mean 15.16 2.62 <1 <1 <1 <1 <1 <1 <1
R95 19.55 3.53 <1 <1 <1 <1 <1 <1 <1

MAP

0.1
mean <1 <1 <1 <1 <1 <1 <1 <1 <1
R95 <1 <1 <1 <1 <1 <1 <1 <1 <1

0.5
mean 31.63 11.28 <1 <1 <1 <1 <1 <1 <1
R95 28.60 9.97 <1 <1 <1 <1 <1 <1 <1

0.9
mean 34.48 11.95 <1 1.99 <1 <1 <1 <1 <1
R95 35.08 12.78 <1 1.32 <1 <1 <1 <1 <1

2

Poisson

0.1
mean <1 <1 <1 <1 <1 <1 <1 <1 <1
R95 <1 <1 <1 <1 <1 <1 <1 <1 <1

0.5
mean 1.05 <1 <1 <1 <1 <1 <1 <1 <1
R95 1.01 <1 <1 <1 <1 <1 <1 <1 <1

0.9
mean 23.89 8.17 <1 <1 <1 <1 <1 <1 <1
R95 28.28 11.32 <1 <1 <1 <1 <1 <1 <1

MAP

0.1
mean <1 <1 <1 <1 <1 <1 <1 <1 <1
R95 <1 <1 <1 <1 <1 <1 <1 <1 <1

0.5
mean 39.31 22.86 <1 <1 <1 <1 <1 <1 <1
R95 35.38 18.59 <1 <1 <1 <1 <1 <1 <1

0.9
mean 36.22 16.76 <1 3.54 <1 <1 <1 <1 <1
R95 36.51 17.16 <1 3.43 <1 <1 <1 <1 <1

4.3 The multi-node system
We conclude this section by noticing that the analysis of

a single computing node can be extended to the multi-node
case, and therefore to evaluate the overall performance of
the server farm. This result follows by observing that, under
either round-robin or random allocation, if the overall arrival
process is a MAP(D0,D1), the arrival process to each node is
also a MAP. Under round-robin allocation, the parameters
are

C0 =


D0 D1 . · · ·
. D0 D1 · · ·
...

...
. . .

. . .

. . · · · D0

 , C1 =


0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

D1 0 · · · 0

 .
These matrices are of size nma, where n is the number of
computing nodes in this group. Under the random alloca-
tion, the arrival process has parameters

C0 = D0 + (1− p)D1, C1 = pD1,

where p=1/n. As the arrival process to each computing node
is a MAP, its performance measures are readily obtained
with the analytical model proposed.

5. EXPERIMENTAL VALIDATION
We now demonstrate that the proposed model is able to

provide accurate results with quite moderate values of the
limit C. To study its behavior, we focus on the mean re-
sponse time, and the pth response time percentile, denoted
as Rp, which is the maximum response time faced by p% of
the successful jobs. With these two metrics, Table 3 sum-
marizes the relative errors of the values obtained from the
approximated model (finite C), against simulation results.
We show the errors achieved when r=2 and 3, and consider
different system settings. Thanks to the flexibility offered
by the proposed model, we consider Poisson arrivals, and

MAPs of second order. While the Poisson case is a stan-
dard assumption, MAPs allow us to explore the effect of
the variability and auto-correlation of the inter-arrival times
on the accuracy of the approximation. We use the method
in [9] to obtain the MAP representations, for which we set
the squared coefficient of variation (SCV) to be 10 and the
decay rate of the auto-correlation function to be 0.9. We
denote the reliability of the system without replication by
NR-reliability, which is given by µ/(µ+α)%. The service
rate µ is set to be 1.0, and the failure rate α is set to achieve
different NR-reliability levels, namely 10%, 50% and 90%.
Further, the arrival rate is set to achieve different load levels
for the system without replication, denoted as NR-load. For
each configuration we consider different values of the limit
C: 5, 10 and 50. For each setting, the simulations were run
for 5,000 times with 500,000 samples each time, from which
we obtain the mean response time and R95, and their 95%
confidence intervals.

Focusing first on the cases with r=3 and the NR-reliability
of 50% and 90%, we observe that the relative error is be-
low 1% for most test cases with C as small as 5, with
the exception of the case with MAP arrivals and 0.9 load,
which requires a larger C of 10 to achieve an error below
1%. Here both the load and the more variable and auto-
correlated arrival process increase the likelihood of larger
queues and larger differences among queue lengths, thus re-
quiring a larger limit C. However, when the NR-reliability is
just 10%, we observe significant errors for several cases with
C=5 and 10. For instance, with MAP arrivals and 0.9 load,
the error rate with C=5 and 10 are 34.48% and 11.95% for
the mean, and 35.08% and 12.78% for R95, respectively. The
low NR-reliability case is more challenging as the higher like-
lihood of failures increases the differences among the queue
lengths. Increasing the limit C to 50 allows us to obtain er-
rors below 1%. With medium and high NR-reliability levels,
failures are less frequent and the queues stay more synchro-
nized, such that a small C is sufficient to cover most of the
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Table 4: Transition rates of matrix S

From To
Rate Condition

(lr(t), . . . , l1(t)) Y (t) (lr(t), . . . , l1(t)) Y (t)

(lr, . . . , li, . . . , l1) (i, j) (lr, . . . , li+1+1, li−1, . . . , l1−1) (i+1, j−1) l1β j≥1
(lr, . . . , lb, . . . , l1) (i, j) (lr, . . . , lb−1, . . . , li−1, . . . , li+b+1, . . . , l1) (i+b, j−b) blbµ 1<b≤r, j≥b
(lr, . . . , lb, . . . , l1) (i, j) (lr, . . . , lb−1, lb−1+1, . . . , li+1+1, li−1, . . . , l1) (i+1, j−1) blbα 1<b≤r, j≥1
(lr, . . . , li, . . . , l1) (i, j) (lr, . . . , li, . . . , l1) (i, j−1) iα 1≤i≤r, j≥1

Table 5: Transition rates of matrix A(jump)

From To
Rate Condition

(lr(t), . . . , l1(t)) Y (t) (lr(t), . . . , l1(t)) Y (t)

(lr, . . . , li, . . . , l1) (i, j) (lr, . . . , li, . . . , l1) (i, r−i) iµ 1≤i≤r
(lr, . . . , l1) (1, 0) (lr, . . . , l1) (1, r−1) β i=1, j=0
(lr, . . . , l1) (i, 0) (lr, . . . , l1) (1, r−1) l1β 1≤i≤r, j=0

(lr, . . . , li, . . . , l1) (i, 0) (lr, . . . , li−1, li−1+1, . . . , l1+1) (1, r−1) iα 1≤i≤r, j=0
(lr, . . . , lb, . . . , l1) (i, 0) (lr, . . . , lb−1, lb−1+1, . . . , l1+1) (1, r−1) blbα 1<b≤r
(lr, . . . , lb, . . . , l1) (i, j) (lr, . . . , lb−1, . . . , lb−j+1, . . . , li+j+1, . . . , li−1, . . . , l1) (b−j, r−b+j) blbµ 1<b≤r, j<b

queue-length differences observed.
Considering the cases with r=2 we observe similar trends,

with errors increasing with the load and the arrival process
variability, and decreasing with the NR-reliability. How-
ever, we observe larger errors than with r=3 thus requiring
a larger C to achieve the same level of accuracy. This can
be explained by noticing that with r replicas and limit C
the maximum difference allowed by the model between the
shortest and the largest queues is rC. Thus a larger number
of replicas allows the model to consider larger queue-length
differences, given the same limit C.

6. THE CENTRALIZED SET-UP
We now consider the set-up with a centralized queue as

depicted in Figure 1(c). In this case, a request is replicated
such that its r copies join the central queue in a computing
node, and are submitted to the next server that becomes
available with FCFS scheduling. Similar to the distributed
set-up, jobs are distributed to nodes with either round-robin
or random scheduling, but the analysis can focus on a single
computing node by appropriately modifying the arrival pro-
cess. The analysis extends [16], which considered the case
with r=2, to any number of replicas.

6.1 The waiting-time distribution
Similar to the distributed case, we define a bivariate Markov

process {X(t), J(t)|t≥0}, where the age X(t) is the total
time-in-system of the youngest job in service at time t. Dif-
ferent from the distributed case, the phase J(t) is defined
as J(t) = (lr(t), . . . , l1(t), Y (t)), where li(t) is the number of
jobs with i replicas in service, and Y (t) holds the state of the
youngest job in service. Thus, Y (t)=(i, j) means that i repli-
cas of the youngest job are in service, j replicas are waiting
in the queue, and r−i−j replicas already failed. Y (t) there-
fore takes value in the set SY ={(i, j)|1≤i+j≤r, i≥1, j ≥ 0}.

To determine the PH representation (swait, Swait) of the
waiting-time distribution, we follow similar steps as in Sec-
tion 4, by solving Eq. (1) to find the matrix T that defines
the matrix exponential representation π(x)=π(0) exp(Tx)
of the stationary version of the process (X(t), J(t)). We

therefore need to define the matrices S and A(jump), which
hold the transition rates of the service process associated to

transitions without and with the start of a new job service,
respectively, as summarized in Tables 4 and 5. For matrix
S the first row considers the case where one of the l1 jobs
with a single replica in service either completes service or
fails, with rate β=µ+α, allowing one of the j replicas of the
youngest job in the queue to start service. In the second
row, one of the lb jobs with b replicas in service terminates
successfully, canceling its siblings, and letting b new replicas
to start service. Notice that the number of replicas of the
youngest job waiting (j) must be at least b to ensure that
no new job starts service. Similarly, if one of the b replicas
of either of these lb jobs fails, with rate α, one replica in
the queue starts service. The last row for this matrix covers
the case where one of the i replicas of the youngest job fails,
allowing one of its siblings waiting to start service. For the
A(jump) matrix we consider similar scenarios, the main dif-
ference being that the number of replicas of the youngest job
waiting j is assumed to be zero in most of the cases, as this
implies that the next replica to join service will be part of
a new job, and the transition thus corresponds to A(jump).
The only exception is in the last row, where a job with b
replicas finishes successfully, and since j<b, this allows the
j replicas of the youngest job in the queue, and b−j replicas
of a new job, to start service.

Using these matrices we can solve Eq. (1) to find T , and
then define a similar system as that in Eq. (2) to find the
π(0), the distribution of the phase at the beginning of an
all-busy period. The main difference here is that the gen-
erator of the service process during the not-all-busy period,
Snot-all in Eq. (2), requires a more detailed analysis, similar
to the one developed in [16]. The key idea is that this gen-
erator has a block structure amenable for analysis, namely a
level-dependent quasi-birth-and-death process [11]. Further
details can be found in [16]. After finding π(0) we can use
Eq. (3) to determine the PH representation of the waiting-
time distribution (swait, Swait).

6.2 The service-time distribution
The next step is to show that the service-time distribution

has a PH distribution with parameters (sser, Sser). For the
service time, we focus on a tagged job in service, and let Y (t)
to be the service phase of this job at time t. Here Y (t) takes
values from SY ={(i, j)|1≤i+j≤r, i≥1, j ≥ 0}, as defined be-
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Table 6: Transition rates of Sser

Condition
From To

Rate Condition
(lr−1(t), . . . , l1(t)) Y (t) (lr−1(t), . . . , l1(t)) Y (t)

j = 0
/ (i, 0) / S iµ 1≤i≤r
/ (i, 0) / (i−1, 0) iα 1<i≤r
/ (1, 0) / F α i=1

r−i=1
/ (r−1, 1) / S (r−1)µ /
/ (r−1, 1) / (r, 0) β /
/ (r−1, 1) / (r−1, 0) (r−1)α /

r−i>1, j≥1

(lr−1, . . . , li, . . . , l1) (i, j) / S iµ 1≤i≤r
(lr−1, . . . , l1) (i, j) (lr−1, . . . , l1−1) (i+1, j−1) l1β j≥1

(lr−1, . . . , lb, . . . , l1) (i, j) (lr−1, . . . , lb−1, lb−1+1, . . . , l1) (i+b, j−b) blbµ 1<b≤r, j≥b
(lr, . . . , lb, . . . , l1) (i, j) / (i+b, 0) blbµ 1<b≤r, j<b
(lr, . . . , lb, . . . , l1) (i, j) (lr, . . . , lb−1, lb−1+1, . . . , l1) (i+1, j−1) blbα 1<b≤r, 1≤j<b

fore. Clearly, the service time of a tagged job is affected by
other jobs in service. Specifically, when the tagged job has
replicas waiting in the queue, these replicas can only start
service if one of the replicas in service frees a server. Thus it
is essential to keep track of the states of all jobs in service,
which can be done by means of S(t)=(lr−1(t), . . . , l1(t)),
where li(t) is again the number of jobs with i replicas in
service at time t, but excluding the tagged job.

Similarly to the case with individual queues, we define two
absorbing states S and F that represent the cases where the
job completes service successfully or encounters a failure,
and describe the evolution of the service process as an MC
with generator Sser, given in Table 6. We split the transi-
tions in three sets, and the first case in any of these sets
considers the successful completion of the tagged job caused
by a successful tagged replica. The first set considers the
case where the tagged job has zero replicas waiting in the
queue. Thus, if any of its i replicas in service fails (second
row) the number of replicas in service decreases by one. In
case there is only one tagged replica in service, i=1, a fail-
ure triggers the failure of the whole job (third row). The
second set covers the special case where 1 tagged replica
is waiting in the queue while the other r−1 are in service.
In the second row we consider the successful completion or
failure, with rate β=µ+α, of the only non-tagged replica in
service, which allows the tagged replica in the queue to start
service. The third row instead considers the failure of one
of the tagged replicas, which also allows the tagged replica
in the queue to start service. Notice that in the first two
sets the evolution is independent of the state of the other
jobs in service, either because there are zero tagged repli-
cas in the queue, or because there are r−1 tagged replicas
in execution. The other cases, which depend on the state
of the non-tagged jobs in service, are described in the third
set, starting with the successful completion of any of the i
tagged replicas in service. In the second row, one of the
l1 jobs with a single replica in service either completes ser-
vice successfully or fails, allowing one more tagged replica to
start service. In the third and fourth rows, one of the lb jobs
with b>1 replicas in service completes successfully, allowing
b new replicas to start service. If there are at least as many
tagged replicas as free servers, i.e. j≥b, as in the third row,
we are left with j−b tagged replicas waiting in queue. If
not, j<b as in the fourth row, all tagged replicas waiting in
the queue start service and we can just focus on the tagged
replicas in service, ignoring any other jobs. In the last row,
one of the b replicas of the lb jobs in service fails, with b>1,

allowing a new tagged replica to start service.
Having obtained Sser, π(0) and T , we can determine the

initial probability vector sser as in Eq. (4). Actually, us-
ing the block structure of the service process generator dur-
ing the not-all-busy-period Snot-all, described in the previous
section, we can improve this computation in a manner sim-
ilar to [16]. Further, with this representation of the service
time for all jobs, we can obtain the PH representation of the
service-time distribution for successful jobs by directly ap-
plying Proposition 1. Finally, the PH representation of the
response-time distribution (sres, Sres) is obtained by using
Theorem 1.

7. EXPERIMENTAL RESULTS
In this section, we make use of the proposed model for the

distributed set-up to evaluate its performance in the terms
of its reliability and offered response times. We also com-
pare against the centralized set-up and determine the perfor-
mance gains obtained by keeping a central queue. Through
the whole section, the service rate µ is set to 1, and the mean
arrival and failure rates are set in proportion to µ to obtain
different load levels and NR-reliability.

7.1 Performance of the distributed set-up
In the distributed set-up, as well as in the centralized

one, the reliability, i.e. the probability that a job completes
service successfully, increases with the deployment of extra
replicas, and the improvement is actually independent of
the queueing model implemented. For both the distributed
and the centralized set-ups, with replication level r ≥ 1
the reliability achieved is 1−(α/(µ+α))r, which simplifies
to µ/(µ + α) if no replication is adopted. Beyond the evi-
dent improvement in reliability, another benefit of replica-
tion with canceling is its potential to reduce the response
time by allowing the selection of the first successful result.
Focusing first on the case with individual queues, we com-
pare the response times achieved under different replication
levels. We consider three different systems with r servers,
mean arrival rate rλ, and replication level r, for r=1, 2 and
3, thus offering the same load to all systems. Figures 2, 3
and 4 show how the utilization and R95 change under differ-
ent replication levels, under Poisson arrivals, and different
NR-reliability levels (10%, 50% and 90%).

Figure 2(a) depicts how the system utilization increases
as the replication level increases, although the increase is
relatively minor. In this case we assume an NR-reliability
of 90%. Decreasing this reliability to 50% and 10%, as de-
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Figure 2: Poisson arrival, NR-reliability: 90%
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Figure 3: Poisson arrivals, NR-reliability: 50%
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Figure 4: Poisson arrivals, NR-reliability: 10%
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Figure 5: MAP arrivals, NR-reliability: 90%

picted in Figures 3(a) and 4(a), the relative increase in uti-
lization when replication is implemented is larger. For in-
stance, when the NR-reliability is just 10%, a utilization of
0.35 without replication becomes 0.67 when r=2, and fur-
ther increases to 0.95 when r=3. However, the increase in
utilization does not necessarily lead to a higher delay. On
the contrary, replication leads to lower response times, as
long as the baseline NR-load stays below a certain thresh-
old. For instance, Figure 2(b) shows that both replication
levels achieve a lower R95 than without replication, when
the NR-load is below 0.85. In particular, the system with 3
replicas achieves the lowest response times among the three.
Although the introduction of replicas introduces extra load,
which leads to an increase in the response times, at the same
time it allows the selection of the first replica that finishes,
potentially reducing the response times. However, the sec-
ond effect weakens with a higher failure rate, as we observe
in Figures 2(b), 3(b) and 4(b) that the NR-load threshold
decreases with decreasing NR-reliability. In particular, when
the NR-reliability is 10%, the introduction of replication in-
creases the response times at any NR-load considered. The
reason is two-fold: first, the system without replication and
a low NR-reliability shows short response times since only
short jobs can complete service before a failure; second, the
probability that all replicas are running until the first one
completes reduces with a higher failure rate, weakening the
benefit of selecting the first replica that completes service.

Figure 5 shows the utilization and R95 obtained under
MAP arrivals and an NR-reliability of 90%, while keeping
the same mean arrival rate as for Poisson arrivals. We ob-
serve how the bursty workload modeled by the MAP arrivals
leads to much larger response times and a lower NR-load
threshold, below which replication reduces response times,
compared to the case with Poisson arrivals in Figure 2. This
is caused by the more variable and auto-correlated workload
represented by the MAP arrivals, which limit the load range
where replication is beneficial.

7.2 The Effect across the Distribution
We now look further into the effect that replication has
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Figure 6: Improvement on Rp (Poisson, 90% NR-reliability)
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Figure 7: Improvement on Rp (Poisson, 50% NR-reliability)

across the whole response-time distribution. To this end,
for each percentile p in the range {10, 20, . . . , 90, 99} we
obtain the relative improvement (R1

p−Rr
p)/R1

p%, compar-
ing the response time percentiles obtained with replication
(r=2, 3) against those without (R1

p). Figure 6(a)-(b) depicts
the improvements for the case under Poisson arrivals with
NR-reliability of 90% and NR-load levels of 0.1 and 0.3, re-
spectively. We observe fairly stable improvements across the
whole percentile range, with the exception of the improve-
ment on the tail. For instance, when the NR-load is 0.1,
and r=2, the improvement on the 99th percentile is 34.83%,
while the improvement experienced by most percentiles is
around 43%. In fact, we observe that the improvement gen-
erally decreases as the percentile considered increases. The
reason for this is that a larger percentile covers longer re-
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Figure 8: CCDFs of response times with individual queues and with a central queue (Poisson arrivals, r=2, NR-load:0.3)
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Figure 9: CCDFs of response times with individual queues and with a central queue (Poisson arrivals, r=3, NR-load:0.3)

sponse times, which are partially associated to longer service
times. In a long service time there is more room for a failure
to occur, in which case the system looses its ability to use
the minimum of r execution times. Notice that this effect
decreases if r is larger, as shown in Figure 6(a)-(b), as even
if one replica fails, there are r−1 replicas that could execute
concurrently and among which the system selects the min-
imum execution time. Further, this effect is stronger if the
utilization is low, as confirmed when comparing Figure 6(a)
and (b), since under low loads the contribution of the service
time on the response time is larger as the queueing times are
very short.

In the previous set-up we assumed an NR-reliability of
90%. If we reduce it to 50%, Figure 7(a)-(b) shows that the
gains across the percentiles are not uniform, where we ob-
serve peaks on small percentiles, and a stronger decrease in
the improvement for larger percentiles. For instance, when
r=3 and NR-load is 0.1, the improvement of the 10th per-
centile is 39.64%, while it is 17.36% for the 99th percentile.
This more pronounced effect is in agreement with the ob-
servation above as in this case failures are more likely and
higher percentiles evaluate conditions where service times
can be larger and provide more chances for failures to occur.
This clearly highlights the importance of explicitly consid-
ering the response-time distribution, and not just its mean,
or one percentile, when evaluating a replication strategy.

7.3 Distributed vs Centralized
Clearly, the distributed and centralized set-ups perform

identically in terms of reliability, as this only depends on the
replication level r, given our independence assumptions. In
terms of response times, the centralized set-up must achieve
lower response times than its distributed counterpart, as in
the latter case it is possible for some servers to have non-
zero waiting lines, while other servers remain idle. This is
not possible in the centralized set-up, as all servers must be

busy if there is any job waiting to start service. To better
understand this difference in performance we show in Fig-
ure 8(a) the complementary CDFs (CCDFs) of the response
times achieved with 2 replicas by these two models, assum-
ing Poisson arrivals, NR-reliability of 90%, and NR-load of
0.3 as an example. Clearly, it is hard to tell the difference be-
tween these two CCDFs. Reducing the NR-reliability to 50%
and 10%, Figure 8(b)-(c) shows a more significant improve-
ment of the centralized over the distributed set-up along the
whole distribution. Increasing the replication level to r=3,
Figure 9 shows that when the NR-reliability is high, the dis-
tributed set-up performs almost as well as the centralized
one, while this difference increases when the NR-reliability
decreases. Figures 8 and 9 also show that the improvement
is not uniform along the distribution, and that it is more sig-
nificant in the tail than in the body (e.g. second and third
quartiles).

Considering different NR-load levels, Figure 10(a) exam-
ines an NR-reliability of 90%, where the centralized set-up
shows a relative improvement on the R95 of less than 1%
over the distributed case. As discussed above, Figure 10(b)-
(c) shows that reducing the NR-reliability increases the ad-
vantage of the centralized set-up, and this can be over 20%
for NR-load around 0.2 and r=3 when the NR-reliability
is just 10%. If we modify the arrival process considered in
Figure 10(b) from a standard Poisson to a correlated MAP,
Figure 10(d) shows that the gains obtained with the central-
ized operation are similar in magnitude but are restricted to
a smaller subset of values for the NR-load, as with MAP ar-
rivals replication is beneficial for a more limited load range.
Similar results, both in trend and magnitude, can be ob-
served if we compare the mean response time or other per-
centiles instead of the R95.

8. DISCUSSION
In the previous section we observed, as expected, that the
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Figure 10: Improvement on R95 of the central model over the individual queues mode

centralized set-up achieves lower response times than the
distributed case, especially at low NR-reliability. However,
most large server farms dispatch incoming request to servers
immediately, without holding a central queue. Replication
with distributed queues is also required when accessing mir-
rored disks and searching distributed databases in parallel.
This set-up provides more flexibility since there is no need
to set up and manage a central dispatcher that keeps track
of the servers state, making it easier to increase or decrease
the number of servers as the load rises or falls.

A major point of our investigation is to assess the mag-
nitude of the difference in response time between the two
set-ups, to see if and when the distributed set-up suffers an
excessive performance penalty. From our results, we observe
that, although the centralized system performs better than
the distributed set-up, this difference is quite small, under
1%, when the NR-reliability is high (90%). Even if this re-
liability is 50%, which is already low as it assumes that one
out of two requests fail, the improvement obtained with the
centralized queue is at most 8%. We therefore observe that
replication not only is effective to reduce the response times
in the distributed set-up, as shown in Sections 7.1 and 7.2,
but it also provides a performance close to that of the cen-
tralized set-up as long as the NR-reliability is not too low.
In addition, the proposed models focus on request failures,
but not on server failures. While in the distributed system
the replicas in a job receive service from distinct servers,
in the centralized set-up several replicas in a job may be
submitted to the same server as the failure of one replica
allows its sibling in the queue to start at the same server,
increasing the risk of failure. The distributed set-up thus
offers many benefits over the centralized case, while its per-
formance disadvantage is limited when the NR-reliability is
high.

In the future, we intend to investigate other parameters
that may affect the performance of the proposed approach,
including the overhead of the replication and cancellation
mechanisms, and the correlation between request replicas.
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APPENDIX
Proof of Proposition 1
Since jobs only fail during service, the failure probability
is given by pS =

∫∞
0
sser exp(Sserx)S∗Sdx = −sserS−1

serS
∗
S .

Thus, the probability that a job service time lasts for at
most x time units and succeeds is

Fs(x) =
1

pS

∫ x

0

sser exp(Ssery)S∗Sdy

= 1 +
1

pS
sserS

−1
ser exp(Sserx)S∗S .

This matrix-exponential representation of the service times
for successful jobs can be turned into a PH representation
by defining a diagonal matrix Π such that Π1=η′, where
η=−sserS−1

ser is the stationary distribution of the service phase.
Defining Bser=Π−1S′serΠ, we have

1− Fs(x) = − 1

pS
sserS

−1
serΠ−1Π exp(Sserx)Π−1ΠS∗S

=
1

pS
ηΠ−1 exp(B′serx)ΠS∗S

=
1

pS
S∗S
′
Π exp(Bserx)1.

This defines a proper PH distribution as the vector S∗S
′Π/pS

is stochastic. This results from S∗S and Π being non-negative,
and S∗S

′Π1 = −S∗S ′(sserS−1
ser )′ = pS .

Proof of Theorem 1
The proof of this result follows similar arguments as that
of [18, Theorem 1], so we focus on the main differences.
As in [18, Theorem 1], we rely on the fact that the PH
representation of the waiting time distribution is obtained
from a time-reversal argument [19], thus we also use this
argument to build the PH representation of the response
times. Since we focus on the successful jobs only, we fol-
low Proposition 1 to obtain the PH representation of the
service time distribution of successful jobs. Further, we
split this representation for jobs that wait and jobs that do
not. The initial service phase of jobs that wait is given by
αbusy = cπbusy(T−S(MAP)), as this is the distribution of the
phase just after a downward jump in X(t), and c is a nor-

malizing constant such that c−1=πbusy(T−S(MAP))1. Thus
we apply a time-reversal by defining the diagonal matrix
∆busy such that ∆busy1=−γ(αbusyS

−1
ser )′. We then follow

similar steps as in the proof of Proposition1 to obtain the
PH representation for jobs that wait (βbusy

ser , Bbusy
ser ) as

βbusy
ser =S∗S∆busy/pS , Bbusy

ser =∆−1
busyS

′
ser∆busy.

A similar result is obtained for jobs that do not wait, con-
sidering that in this case jobs start service according to
(1−γ)π(0). We thus define ∆idle as a diagonal matrix such
that ∆idle1=−(1−γ)(π(0)S−1

ser )′, and the corresponding PH
representation (βidle

ser , B
idle
ser ) is given by

βidle
ser =S∗S∆idle/pS , Bidle

ser =∆−1
idleS

′
ser∆idle.

With these PH representations for the service time, we
obtain Eq. (5) by putting together the paths of jobs that
do not wait, which start service with βidle

ser , with those of
jobs that wait, which start service with βbusy

ser . Given the
time-reversal, the response time of jobs that wait is com-
posed of a first stage of service followed by a second stage of
waiting. Further, the phase in which the service stage ends
determines the stage in which the waiting stage begins. The
remaining of the proof follows the same steps as that of [18,

Theorem 1], such that the matrix P̃s,w=Γ−1(T−S(MAP))′Λ
is a stochastic matrix that determines how the phase at the
end of the service phase determines the phase at the be-
ginning of the waiting phase. Once a job starts the waiting
phase, it evolves according to Swait until absorption. Further
details can be found in [18].

208




