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ABSTRACT
Cloud services have made large contributions to the agile
developments and rapid revisions of various applications.
However, the performance of these applications is still one of
the largest concerns for developers. Although it has created
many performance analysis frameworks, most of them have
not been efficient for the rapid application revisions because
they have required performance models, which may have had
to be remodeled whenever application revisions occurred.

We propose an analysis framework for diagnosis of appli-
cation performance anomalies. We designed our framework
so that it did not require any performance models to be ef-
ficient in rapid application revisions. That investigates the
Pearson correlation and association rules between system
metrics and application performance. The association rules
are widely used in data-mining areas to find relations be-
tween variables in databases.

We demonstrated through an experiment and testing on a
real data set that our framework could select causal metrics
even when the metrics were temporally correlated, which
reduced the false negatives obtained from cause diagnosis.
We evaluated our framework from the perspective of the ex-
pected remaining diagnostic costs of framework users. The
results indicated that it was expected to reduce the diagnos-
tic costs by 84.8% at most, compared with a method that
only used the Pearson correlation.

Keywords
Cloud computing, Performance diagnosis, Correlation anal-
ysis, Association rule

1. INTRODUCTION
Cloud services have created many benefits to application

and service developers. One of the main benefits of the
cloud has been brought about by its agility. Cloud services
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can quickly provide application developers on-demand com-
putational resources (e.g., virtual machines (VMs)), which
allows them to agilely develop, easily revise, and scale out
their applications, which accelerates their business growth.
The advantage of the cloud has recently been changing the
software industry, which is shifting from traditional plan-
based developments to agile developments. That has also
created a new term called lean startup [21]. Agilely devel-
oped applications in lean startups are repeatedly delivered
to users for earlier feedbacks. Such agile features of appli-
cations in the cloud is leading to an era with more rapid
revisions of businesses as well as applications.

While cloud services enable the agile developments of ap-
plications, the performance of applications in the cloud is
still one of the prime concern for application developers.
A physical server in the cloud typically hosts several VMs
and these share resources (e.g., CPUs, memories, disks, and
networks) on the same server. This resource sharing enables
more efficient and flexible resource management, which, how-
ever, can lead to problems with the performance of appli-
cations [15]. When resource contentions between VMs oc-
cur, applications on the VMs can suffer from performance
degradation due to a lack of resources. Application develop-
ers (cloud service users) and cloud service providers have to
address these performance issues, which includes having to
detect and diagnose them. However, these processes often
involve excessive costs because of the complexity and large
scale of applications and clouds.

Many researchers have proposed performance analysis tools
or frameworks [25] in cloud environments and datacenters
to reduce the costs. Most of them [2, 5, 14, 22, 24] have
used the model-based approach, which models the perfor-
mance of applications or problems using techniques such as
machine learning with a training data set. However, they
are inefficient for the rapid application revisions because ag-
ile revisions may cause frequent remodeling or outputting
many adverse results.

This paper proposes a framework for the diagnosis of ap-
plication performance anomalies caused by resource con-
tentions in the consolidated cloud. Our framework was de-
signed so that it did not require any performance models
to work efficiently for the agile application revisions. Our
framework diagnoses the performance anomalies of applica-
tions by correlating the application performance (e.g., re-
sponse times) with performance metrics (e.g., CPU usage,
network throughput, and disk I/O) obtained from the cloud
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Figure 1: Target scenario for application perfor-
mance anomalies in this paper: Performance degra-
dation of target application occurs due to anomalous
network traffic of another application

infrastructure. The correlated performance metrics could
provide useful information for pinpointing the root causes
of the application performance anomalies as some previous
studies [9, 17, 29] indicated.

Our three main contributions in this paper are:

1. We propose a model-less framework for the diagnosis
of application performance anomalies caused by the
resource contentions (bottlenecks) in the cloud. Our
diagnosis not only includes the diagnosis of the appli-
cation performance bottlenecks but also the causes of
these bottlenecks.

2. We also propose a method to mine association rules [1]
between application performance and individual met-
rics to complement the drawbacks of the standard Pear-
son correlation. Association rules are widely used in
data-mining areas to find relations between variables
in databases. The approach using association rules
reduces false negatives when there are temporal corre-
lations between a metric and application performance.

3. We further investigated the effectiveness of the pro-
posed technique of diagnosis using the data obtained
from an experimental environment and a real data set.
We also evaluated our framework from the perspective
of not only the accuracy and coverage but also the
expected remaining diagnostic costs to our framework
users.

The rest of this paper is organized as follows. We explain
our performance diagnosis framework in Section 2. Section 3
details how we evaluated it in an experimental environment.
Section 4 clarifies how we tested our framework on a real
data set and confirmed its effectiveness. Section 5 discusses
some of its limitations. Section 6 introduces some related
work. Finally, we conclude the paper in Section 7.

2. SYSTEM DESIGN

2.1 Diagnosis approach
The main objective of our framework is to select (1) the

subset of metrics and their associated VMs that may have
caused bottlenecks (application performance anomalies) and
(2) the bottleneck attributes of performance anomalies (e.g.,
CPU, network, and disk). We expect that these two outputs
will easily motivate cloud administrators to deal with per-
formance anomalies by performing operations such as VM

migration [4]. Metrics are selected by finding the correla-
tion between individual metrics and application performance
(e.g., response times). In the scenario in Figure 1, where a
network resource contention occurs between a target appli-
cation and another application, the causal VMs are those
that host another application and the causal attribute is
network. These outputs can motivate the administrator to
migrate the VM to another host or set a limit for its usage
of network bandwidth.

Let us now estimate the remaining diagnosis costs to our
framework users and determine the main direction of our ap-
proach. It is almost impossible for diagnosis frameworks to
achieve an optimal result (i.e., no false positives and no false
negatives). They leave higher or lower costs for framework
users. We assumed that framework users have the ability to
correctly determine whether each metric is related to a per-
formance anomaly or not, and once a related metric is found,
they can address the performance issue. The cost of diag-
nosing a cause is then proportional to the number of metrics
that is obtained from the cloud infrastructure. Denote the
total number of metrics as ℵ. The cost, X, is represented as
X = αℵ, where α is determined by depending on the skills
of users. Assume that a cause diagnosis framework has pre-
cision p (0 ≤ p ≤ 1) and recall r (0 ≤ r ≤ 1), which are
defined as

p =
# of true positives

# of true positives + # of false positives
(1)

and

r =
# of true positives

# of true positives + # of false negatives
, (2)

where p represents accuracy and r represents the compre-
hensiveness of diagnosis. We assumed that the diagnosis
framework selected a subset of metrics whose size is ℵ∗. We
then calculated the expected remaining cost of the diagnosis
when a user utilizes the framework as:

X∗ = αℵ∗(1− p) + α(ℵ − ℵ∗)(1− r) (3)

Note that we here assumed that p and r have probabilistic
meanings. If the selected metrics include all correct metrics,
the expected cost is αℵ∗(1− p) because the selected metrics
include false positives with the probability, 1− p. If the se-
lected metrics do not include the correct metrics, the cost
expands by α(ℵ − ℵ∗) because the user has to additionally
investigate the other ℵ−ℵ∗ metrics. The total expected re-
maining cost is calculated with Eq. (3) because the probabil-
ity that the selected metrics will include the correct metrics
is r. Even though p and r, in fact, mean the ratio in Eq. (1)
and (2), the cost function (3) is intuitively accurate. When
p = 1 and r = 1, the cost is X∗ = 0, which means that an
optimal diagnosis framework does not leave any diagnostic
costs for users. When r = 1 (the results include all correct
metrics), the cost is αℵ∗(1−p), which means that the cost is
proportional to ℵ∗ and the user have to investigate the cause
within ℵ∗ metrics that have been selected by the framework.
When r = 0, p = 0 (the results do not include any correct
causes), the cost is X∗ = αℵ = X, which means that the
user has to investigate within all metrics.
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We assumed ℵ = dℵ∗(d ≥ 1) and transform Eq. (3) as:

X∗ = αℵ∗(1− p) + α(ℵ − ℵ∗)(1− r)
= αℵ − α(ℵ∗p+ ℵr − ℵ∗r)

= X − αℵ(
d− 1

d
r +

1

d
p) (4)

The second term in Eq. (4) represents gain of the diagnosis
framework. We obtained an important observation from the
gain function, i.e., recall is more important than precision.
As d increases, the contribution of p decreases with the rate,
1/d. When d → ∞, the gain is approaching αℵr and p
makes no contributions. The intuitive meaning is that when
d is large, ℵ∗ decreases and the diagnostic costs within ℵ∗
metrics also decrease even when p is small.

We designed our framework from this observation to achieve
better recall (fewer false negatives), while achieving accept-
able precision and large d (small ℵ∗).

2.2 System overview
Figure 2 overviews our framework, which is configured

with the Metric Collector, Application Performance Input
Module, Bottleneck Diagnosis, Cause Diagnosis and Database.
Our framework uses three kinds of information for the di-
agnosis, i.e., performance metrics in the cloud, application
performance data and classification information on the met-
rics, which is used to limit the analyzing metrics. We will
now explain the metric classification in Section 2.3.

The Metric Collector collects the metrics data from the
cloud infrastructure with a fixed sampling interval (e.g., 1
min) and timestamps the data that are thus obtained. It also
attaches labels to the collected metrics data. The attached
labels include information from which the metrics have been
collected. For example, the PercentProcessorTime metric
collected from VM1 in host A has a label, PercentProces-
sorTime;VM1;hostA. These labels are used to associate a
correlated metric with a VM or a host. The Application
Performance Input Module receives the application perfor-
mance data from application administrators (cloud service
users). They can transfer time-stamped numerical data (i.e.,
time series data) to this module. This input module archi-
tecture is motivated by a cloud environmental feature. The
application and cloud infrastructure are usually managed
by different administrators, which may make it difficult to
continuously collect application performance data especially
in a cloud provided as an infrastructure-as-a-service (IaaS).
Our framework has also been designed to work even when
application data have temporally been obtained.

The Bottleneck Diagnosis and Cause Diagnosis in Figure
2 are modules that infer the bottleneck attributes of the ap-
plication performance anomalies for the former and causal
VMs for the latter. We will explain the technical details
of these two modules in Sections 2.4 and 2.5. The Bottle-
neck Diagnosis outputs the analysis results to both the Ap-
plication and cloud administrator. The results include the
bottleneck attributes and associated metrics. The Cause Di-
agnosis, on the other hand, only outputs the analysis results
(causal VMs and the associated metrics) to the cloud ad-
ministrator because the application administrator should be
agnostic about causal VMs.

2.3 Preliminary
This section explains two preliminaries: the classification

of metrics and the creation of pair-wise data. We classified
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Figure 2: System overview

all the collected metrics into both of the location groups
and attribute groups in advance, as summarized in Table
1, which lists the groups and the metrics examples belong-
ing to each group. The Application VM group contains the
metrics associated with VMs that the application adminis-
trator uses. The VM groups contains the metrics that do
not belong to the Application VM group but that are asso-
ciated with VMs. The Host group contains the metrics that
is not associated with any VMs. This classification is done
once in advance when our framework is installed because
the kinds of collected metrics are rarely changed during the
operational phase. We used this classification information
for bottleneck and cause diagnosis, which will be described
in Subsections 2.4 and 2.5.

Our framework evaluates the correlations between appli-
cation performance and individual metrics. However, the
timestamps of application performance data are different
from those of metrics data. We define time units with a spe-
cific time interval t̄ (e.g., 300 s) to adjust the timestamps.
An analysis time period is determined based on input ap-
plication performance data. We assume that ts denotes the
oldest timestamps of the application performance data and
tf denotes the newest. Here, we define time as absolute
time such as UNIX time. Assume that the analysis start
time is denoted as Ts and the end time is denoted as Tf .
We then define them as Ts = ts − (ts mod t̄) and Tf =
tf−(tf mod t̄)+ t̄. When Ts and Tf are represented as Tf =
Ts+Nt̄, N is the number of time units in the analysis period.
We denote time unit un as un = [Ts + nt̄, Ts + (n+ 1)t̄). A
set of application performance data that have a timestamp
within time unit un is aggregated (e.g., averaged), and we
obtain a new time series as A = (a0, a1, ..., aN−1), where an
represents the average application performance data within
the time unit, un. We similarly obtain the new time series of
metric i as M i = (mi

0,m
i
1, ...,m

i
N−1), where mi

n represents
the average metric i data within the time unit, un. The
time series A and M i are pair-wised, and we evaluate the
correlation between them.

2.4 Bottleneck diagnosis
This section explains the technical details of how we se-

lect the bottleneck attribute, which is done by finding the
metrics that are highly correlated with the application per-
formance data. The port of physical switch in the scenario
in Figure 1 is the bottleneck point and it is associated with a
metric such as the physical switch port packet counter. When

175



Table 1: Metric classification
Location groups Metrics Attribute groups Metrics

Application VM Virtual CPUs, disks, NICs, and memories CPU CPUs and virtual CPUs
VM Virtual CPUs, disks, NICs, and memories Disk Disks, storage, and virtual disks

Host
CPUs, disks, memories, NICs, virtual switches, Memory Memory and virtual memories

physical switches and storage Network Physical switches, NICs, virtual switches, and virtual NICs

performance degradation occurs on the target application,
the packet counter should correlate with application perfor-
mance. In order to find the correlated metrics (we call them
bottleneck metrics), we simply used the Pearson correlation
coefficient (we simply call it correlation). Although the cor-
relation evaluates linear relationships between application
performance and individual metrics, the previous work [29]
has indicated that it achieves good accuracy in the bottle-
neck estimations. Here, we denote the set of all analysis
time units as T , and calculate the correlation between A
and M i as:

ci =

∑
n∈T (an − ā)(mi

n − m̄i)√∑
n∈T (an − ā)2

√∑
n∈T (mi

n − m̄i)2

where ā and m̄i are calculated as ā = 1/N ·
∑

n∈T an and

m̄i = 1/N ·
∑

n∈T m
i
n.

We then select a set of correlated metrics as bottleneck
metrics and diagnose the bottleneck attribute. We explain
the procedure for diagnosing the bottleneck attributes in
Algorithm 1. All metrics belonging to the application VM
or host group (summarized in Table 1) are analysis target
data, which are input to Algorithm 1. All input metrics in
the Algorithm 1 are sorted in decreasing order of |ci|. The
metrics are checked as to whether the correlation is over the
threshold, Tbot, in order of |ci|, and if so, the metrics are
stored in metr. We use hypothesis testing of Pearson cor-
relation with a specific significance level (e.g., 0.05) to de-
termine threshold Tbot. Given the number of sample data
(i.e., the number of analysis time units, N), Tbot is set as
the critical value for testing [12]. We set a limit, lm, for
the number of selected bottleneck metrics to limit the num-
ber of selected attributes. The attributes of the correlated
metrics are fetched by attribute(i) using the attribute group
information in Table 1 and stored in attr. We finally obtain
the bottleneck attributes, attr, and its associated metrics,
metr.

2.5 Cause diagnosis
This section explains the technical details of cause diagno-

sis. We also use the correlation-based approach in causal VM
diagnosis as well as bottleneck diagnosis. However, there are
some difficulties in selecting metrics that are associated with
causal VMs (we call them cause metrics). Figure 3 plots ex-
amples of bottleneck and cause metrics. We obtained the
behaviors of these metrics in the experimental environment
that is explained in Subsection 3.1, which is somewhat sim-
ilar to the scenario in Figure 1. Figure 3 indicates the be-
havior of the bottleneck metric (switch port throughput ob-
tained from a bottleneck point) highly correlates with the
application performance (response time). The correlation
coefficient is 0.904. The behavior of a cause metric (virtual
NIC throughput of the causal VM), on the other hand, is
less correlated with it because the cause metric has oppo-
site behavior at some time units (e.g., time unit 14 and 19).

Algorithm 1 Bottleneck attribute diagnosis

1: Input: metrics in application VM group or host group.
2: Output: bottleneck metrics metr ⇐ φ and selected at-

tributes attr ⇐ φ
3: Threshold of correlation: Tbot
4: Maximum number of selected bottleneck metrics: lm
5: Number of selected bottleneck metrics: count = 0
6: Set of input metrics: G

7: Calculate ci for all metrics in G.
8: Sort i ∈ G in decreasing order of |ci|.
9: for all i ∈ G do

10: if |ci| > Tbot then
11: metr ⇐ i
12: if attribute(i) /∈ attr then
13: attr ⇐ attribute(i)
14: end if
15: count+ +
16: if count > lm then
17: Break
18: end if
19: end if
20: end for
21: return metr, attr
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Figure 3: Examples of bottleneck and cause metrics

The correlation coefficient is 0.667. This metric is in fact
one of the cause metrics because we experimentally gener-
ated a performance bottleneck using the VM. Therefore, we
have to capture the cause metric by applying an additional
method. Otherwise, no low-correlated cause metrics can be
captured, which would lead to false negatives.

The main reason for low correlation of cause metrics is
that there are multiple causes. For example, there are mul-
tiple VMs that bring about the performance bottlenecks.
This means that the bottleneck metrics behave following the
aggregated behavior (e.g., sum) of cause metrics. That is,
each cause metric is temporally correlated with application
performance. We evaluate the association rules [1], which
has often been used in the field of data mining and previous
work [9], between each metric and application performance
to capture temporal correlations. To do this, we first have to
discretize application performance and individual metrics.
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We simply use a threshold in discretizing application per-
formance and we assume that the threshold is specified by
the application administrator. Given an application per-
formance threshold, a, we discretize the application perfor-
mance data as: Sn = 0 if an ≤ a and Sn = 1 otherwise. We
then obtain S = {Sn, n ∈ T }. We here assume that time
unit un is anomalous when Sn = 1 without losing generality.

We propose an algorithm that investigates the optimal
threshold for discretizing metrics. We define the optimal
threshold that maximizes support within a constraint of its
confidence (denoted as Tconf and fixed with Tconf = 0.8).

Given a threshold, mi, for metric i, we discretize metric i
as: din = 0 if mi

n ≤ mi and din = 1 otherwise. We ob-
tain the discretized data for metric i as Di = {din, n ∈
T }. We next calculate the support and its confidence for
the direction from metric i to application performance (de-
noted as supp(Di → S), conf(Di → S)) as follows. If
|D1

i ∩ S1|/|D1
i | ≥ |D0

i ∩ S1|/|D0
i |,

supp(Di → S) =

∣∣D1
i ∩ S1

∣∣∣∣S1
∣∣ , (5)

conf(Di → S) =

∣∣D1
i ∩ S1

∣∣∣∣D1
i

∣∣ , (6)

where D1
i = {n|din = 1, n ∈ T },S1 = {n|Sn = 1, n ∈ T },

and if not,

supp(Di → S) =

∣∣D0
i ∩ S1

∣∣∣∣S1
∣∣ , (7)

conf(Di → S) =

∣∣D0
i ∩ S1

∣∣∣∣D0
i

∣∣ . (8)

Equations (7) and (8) are the support and confidence for
negatively correlated metrics. We set mi as mi

n for each
n ∈ T and examine the optimal threshold, mi∗, as shown in
Algorithm 2. We obtain the optimal threshold as the value of
opt, which achieves the largest support within the constraint,
conf(Di → S) ≥ Tconf. We denote the discretized metric,

i, with the optimal threshold as: di∗n = 0 if mi
n ≤ mi∗ and

di∗n = 1 otherwise. We then obtain D∗i = {di∗n , n ∈ T }.
When the opt has null value, we assume that there is no
valid association rule between M i and A.

The support measure defined in Equations (5) and (7)
indicates the degree of association between application per-
formance and metric i. A large support means a strong
association and a small support means a temporal associ-
ation. For example, when supp(Di → S) = 0.5, the half
of anomalous time units (Sn = 1) is associated with (sup-
ported by) the metric i. Equations (6) and (8) indicate that
the confidence measure is used to evaluate whether appli-
cation performance is anomalous or not when the value of
metric i increases (or decreases), and therefore, the confi-
dence measure is close to one even when the correlation is
temporal. The example of the temporally correlated metric
in Figure 3 (virtual NIC throughput) is one of the metrics
that has a valid association rule. When we set a = 1.1, its
optimal discretizing threshold is set to 14,517 by Algorithm
2 and its confidence and support are calculated as 0.833
(5/6) for the former and 0.714 (5/7) for the latter.

The constraint of Tconf = 0.8 indicates that 80% of the

time units with di∗n = 1 is associated with the application

performance anomaly (Sn = 1). We have to set Tconf rel-
atively large (e.g., ≥ 0.8) because if it is set too small, no
valid association exists in the association rules. Therefore,
we set Tconf = 0.8, which is also the default value of the
arules package in R language [10].

We also have to confirm lift measures for association rules
to make the association rules valid. The lift measure for
association rule D∗i → S is defined as:

lift(D∗i → S) =
conf(D∗i → S)

|S1|/N
(9)

The lift measures generally have to be larger than one to
validate association rules. The fraction of analysis time
units that are anomalous (|S1|/N) therefore have to be less
than 0.8 to make the lift larger than one, because we set
Tconf = 0.8. This means our framework requires that input
application performance data have to include more than 20%
of normal (Sn = 0) time units.

Algorithm 2 Investigate optimal discretizing threshold

1: Input: Discretized application performance S and M i

2: Output: Optimal threshold opt = null
3: Current max support: max = 0

4: for all mi
n ∈M i do

5: Calculate Di with threshold mi
n.

6: Calculate supp(Di → S) and conf(Di → S).
7: if conf(Di → S) ≥ 0.8 then
8: if supp(Di → S) > max then
9: max = supp(Di → S), opt = mi

n

10: end if
11: end if
12: end for
13: return opt

Let us next select a set of metrics that are associated with
the causal VMs. In addition to the correlation, we use the
association rules previously examined to capture the tem-
porally correlated cause metrics. We explain the procedure
for cause diagnosis in Algorithm 3. The analysis target met-
rics in our cause diagnosis are the metrics in the VM group
listed in Table 1. We first remove the metrics that have
no correlation with A by setting a threshold, Tnocor. We
determine Tnocor as the critical value of hypothesis testing
with a high significance level of l = 0.1, which is generally
the highest. All selected cause metrics are satisfied under
two conditions: i) attr obtained from Algorithm 1 contains
its attribute and ii) its correlation is larger than Tcor or
its support is Tsupp(0 ≤ Tsupp ≤ 1) or above. We also
determine Tcor by using hypothesis testing with a specific
significance level of l = 0.01, which is set larger than Tnocor.
We investigate the effect of the settings of Tsupp in Section
3. The function, extractV M , in Algorithm 3 extracts the
name of the associated VM from the index of metrics. Algo-
rithm 3 finally outputs the cause metrics as cause and their
associated names of VM as causeVM .

3. EXPERIMENTAL EVALUATION

3.1 Experimental setup
We built two types of applications on our experimental

environment, i.e., a Web and virtual desktop infrastructure
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Algorithm 3 Cause diagnosis

1: Input: Metrics in VM group, bottleneck attribute attr
from Algorithm 1, and application performance data S

2: Output: Cause metrics cause⇐ φ and causeVM ⇐ φ
3: Set of input metrics: G

4: for all i ∈ G do
5: Calculate ci.
6: if |ci| > Tnocor and attribute(i) ∈ attr then
7: Calculate D∗i and supp(D∗i → S).
8: if (|ci| > Tcor or supp(D∗i → S) ≥ Tsupp) then
9: cause⇐ i

10: if extactV M(i) /∈ causeVM then
11: causeVM ⇐ extractV M(i)
12: end if
13: end if
14: end if
15: end for
16: return cause, causeVM

Table 2: Configurations of VMs
# of VMs Usage vCPU MEM vDisk

10 Virtual desktop 2 2 GB 20 GB
1 VDI benchmark 2 2 GB 20 GB
1 Web, AP server 2 2 GB 20 GB
1 Load balancer 4 8 GB 40 GB
3 DB server 4 8 GB 40 GB
3 Load generator on Host-2 8 2 GB 10 GB
1 Load generator on Host-1 2 4 GB 10 GB

(VDI), which are typical applications that require stable per-
formance [11]. Figure 4 illustrates our experimental environ-
ment. There are two physical host servers (Host-1 and Host-
2 ) and a physical switch that connects these two servers
with a local network that has 1-Gbps bandwidth. Hosts-1
and -2 have the same configuration, i.e., Intel Xeon X5680,
3.33-GHz 6 core x 2 processors, 48 GB of RAM, 278-GB
SAS x 4 (RAID1 x 2, one for the host and the other for
the VMs), and Windows server 2012 R2 datacenter. We in-
stalled Hyper-V [18] on the two hosts to manage the VMs.
Host-1 hosts 14 VMs: 10 VMs for the VDI application, a
VM for benchmarking VDI performance, a VM for the Web
and application (AP) server, a VM for the load balancer of
the Web application, and a VM for generating load. Host-2
hosts six VMs: three VMs for database (DB) server of the
Web application and the others for generating load. Table
2 summarizes the configurations of these VMs. These 10
VDI VMs and one VDI benchmark VM were running with
Windows 7 (64 bits) and the other VMs were running with
CentOS-7 (64 bits).

The Web application built on our experimental environ-
ment was configured with Nginx, Kibana and ElasticSearch,
which have recently been widely used for visualizing logging
data [8]. We used Nginx as the Web server, Kibana as the
AP server and ElasticSearch as the load balancer and DB
server. We assumed that response times between the Web
server and DB servers would provide the application perfor-
mance data for the Web application, which were obtained
from the access logs that were output from Nginx. We built
five VMs to generate the Web access workload on another
environment, each of which accessed the same Kibana dash-
board with a fixed polling interval (10 s).

The 10 VDI VMs simulated a VDI service, which provided
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Figure 4: Experimental environment

desktop environments on Windows 7 operating system (OS).
We simulated a VDI user workload that included a local Ex-
cel file open and over-write, an Excel file on an external file
server open and over-write and external Web page access
on each VDI VM. We wrote a script that randomly ran the
above actions at random time intervals. The random in-
tervals followed the an exponential distribution with a spe-
cific average. We set the averages as listed in Table 3. We
prepared the application performance data for the VDI by
measuring the experience of a VDI user. We then measured
the response time of an Excel file (1 MB) open with a fixed
time interval (30 s) on the VDI benchmark VM. These mea-
sures enable the disk performance of the VDI to be captured.
(The disk performance is also a problem on our testing on a
real data set, which will be explained in Section 4.)

Table 3: VDI workload simulation
# of VMs Avg. interval Actions

1 150 s Local/remote file access, Web access
6 300 s Local/remote file access, Web access
3 600 s Local/remote file access, Web access

Table 4: VDI anomalous workload simulation
# of VMs Avg. interval Actions

1 150 s Local/remote file access, Web access
5 300 s Local/remote file access, Web access
4 10 s Local file access

We used data on Windows performance monitor [20], which
included the metrics of the host OS processor, disk, mem-
ory, network adapter, and those of VMs [28]. We obtained
the data through the Windows management instrumenta-
tion (called WMI ) [26] by running the wmic [27] command
on the Metric Collector in Figure 2 with a fixed interval
(60 s). We also used the simple network management pro-
tocol (SNMP) to obtain the management information base
(MIB) counters of the physical switch port interfaces, which
included I/O packets, bytes, and dropped packets. We ob-
tained the MIB counters with a fixed interval (60 s). Some
metrics have an cumulative feature such as a packet counter
of a network interface and a read/write operation counter
on a disk. Those metrics have to be calculated difference
between successive data and the difference is divided by the
sampling interval. These calculations are done on the Metric
Collector. We obtained a total of 12,410 metrics from our ex-
perimental environment, which included 6,110 metrics that
were associated with VMs.

3.2 Bottleneck injection
We evaluated the proposed framework with the data that

contained injected performance anomalies. This section ex-
plains how performance anomalies were injected. We in-
jected three types of resource contentions to create applica-
tion performance anomalies: CPU, network, and disk.
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CPU resource contentions were injected by the three load
VMs on the host-2. This results in CPU resource short-
ages on DB servers, and it led to degraded performance in
the Web application. We intermittently ran the stress [23]
command on each load VM with a specific duration and
the number of stressed CPU cores. The duration was ran-
domly determined following an exponential distribution with
a fixed average (10 s). The interval between two successive
runs was also randomly determined following the exponen-
tial distribution with a fixed average (2 s). When the ap-
plication performance was not anomalous, the number of
stressed cores is set to four. When it was anomalous, we
increased the number of stressed core to eight.

Network resource contentions were injected by the three
load VMs on the host-2 and one load VM on host-1. We
intermittently ran iperf [13] on all load VMs on Host-1 to
generate network traffic load. The network traffic was trans-
mitted from individual load VMs (i.e., iperf clients) on host-
1 to a load VM (i.e., the iperf server) on host-2. The interval
between two successive runs was also randomly determined
following the exponential distribution with a fixed average
(5 s). We ran iperf with the user datagram protocol (UDP)
specifying the duration and bandwidth. The duration was
randomly determined following the exponential distribution
with a fixed average (10 s). When application performance
was not anomalous, the bandwidth was randomly set follow-
ing a uniform distribution U(100Mbps, 300Mbps). When it
was anomalous, we switched the distribution of the deter-
mined bandwidth to U(500Mbps, 700Mbps) on two of the
load VMs on Host-2. The increased bandwidth created re-
sponse delays between the load balancer on Host-1 and DB
servers on Host-2, which led to degraded performance in the
Web application.

Disk resource contentions were injected by four of the
ten VDI VMs. When VDI performance was anomalous, we
switched the actions of four VDI VMs to only a local Excel
file open/write with the small average intervals listed in Ta-
ble 4. Frequent local file access caused disk I/O contentions
between VDI VMs and the benchmark VM. That led to de-
graded VDI performance.

3.3 Experimental results
This section presents the results we obtained from the

experimental evaluation that was previously explained. We
injected 10 resource contentions for each CPU, network, and
disk resource, which degraded application performance. We
set t̄ = 300 (s) and input 10 times 18 time units (1.5 h)
of application performance data, each of which included the
performance degradation period.

3.3.1 Bottleneck diagnosis
Here, we present the results from bottleneck diagnosis

that were obtained with Algorithm 1. The algorithm has
a changeable parameter, lm, which indicates the maximum
number of bottleneck metrics that is selected by Algorithm
1. We investigated the effects of the setting of lm as well
as the evaluation of bottleneck diagnosis. We used precision
and recall measures for the evaluation. Precision was de-
fined as the fraction of selected attributes that was correct.
Recall was defined that if the selected attributes contained
the correct one, recall was one; if not, recall was zero.

Figure 5 plots the results obtained from evaluating the
selected attributes. Note that the results are the total (i.e.,

average) results for 10 anomaly injections for each type of
resource contention. When lm = 1, there are some false
negatives, as shown in Figure 5; the results do not include
the correct attribute. Setting lm = 1 means that the at-
tribute is determined by the most correlated metric. The
reason for these false negatives is that the bottleneck injec-
tions not only affect the bottleneck attribute but also others.
For example, running iperf not only affects network metrics
but also CPU and memory metrics because generating net-
work traffic uses some CPU and memory resources. Figure
6 plots the behavior of a false positive bottleneck metric
that is most correlated with application performance whose
attribute is memory. As we can see from the figure, the
false positive metric is highly correlated with the response
time (the correlation is 0.895). If we want to remove the
false positive, we have to use another method that is not
correlation-based. The similar phenomena can occur in a
real environment because almost all real applications use
several kinds of resources. Therefore, lm should be set rel-
atively large. Although, the false negatives decreased and
false positives increased as lm is increased, it is important
for diagnosis frameworks to reduce the number of false neg-
atives, as was explained in Subsection 2.1.

3.3.2 Cause diagnosis
We will next discuss our evaluation of the results obtained

from cause diagnosis. Note that here we assumed that the
bottleneck diagnosis was accurately done (i.e., attr in Al-
gorithm 3 only included an accurate attribute), so that we
could evaluate our cause diagnosis without the effects of the
results from the bottleneck diagnosis. We used precision and
recall measures for the evaluation. Here, we define precision
as the fraction of all selected cause metrics (i.e., those in
cause in Algorithm 3) whose attributes and associated VMs
are accurate. However, it is difficult to identify the exact
number of metrics that have to be correlated with the ap-
plication performance when resource contention is injected.
We therefore used VM-level recall instead of metrics -level.
We defined recall as the fraction of all causal VMs that were
accurately selected (i.e., those in causeVM in Algorithm 3).
We compared our framework with an approach using only
the Pearson correlation, which selected cause metrics by hy-
pothesis testing of the Pearson correlation with variations
in significance levels of l = 0.01, 0.05, and 0.1.

Figures 7 through 9 present the results in CPU, network,
and disk contention cases. Each contains three graphs: (a)
indicates precision, recall, and the number of selected met-
rics (denoted as ℵ∗), (b) indicates the effect of the Tsupp set-
ting (Tsupp = 0.2, 0.4, 0.6, and 0.8), and (c) indicates the ex-
pected remaining diagnosis cost of a framework user, which
was calculated from Eq. (3) and normalized by αℵ. The re-
sults labeled l = 0.01, 0.05, and 0.1 indicate those obtained
by using the Pearson correlation with different significance
levels l, and those labeled proposal are the results obtained
from our framework with Tsupp = 0.2. Note that here we
have presented the total results obtained from 10 anomaly
injections.

Figures 7(a), 8(a), and 9(a) indicate precision for differ-
ent significance levels l has a tendency that as l increases,
precision decreases and ℵ∗ increases. The reason for this
is that the thresholds for the correlation are set large as l
decreases. (When N = 18 and l = 0.01, 0.05, and 0.1, the
respective thresholds of the correlations are set to 0.589,
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Figure 6: Example of false positive bottleneck met-
ric

0.468, 0.400.) Higher thresholds also decrease recall because
some cause metrics that have temporal correlating behav-
iors are not captured. As was previously explained, drops
in recall may incur relatively large diagnosis costs for frame-
work users. The framework we propose, on the other hand,
achieves stable recall as well as the Pearson correlation with
l = 0.1, which indicates that it accurately captures the met-
rics that have temporal and low correlation. The proposed
framework achieves better precisions and smaller ℵ∗ for all
cases of contention than that with the results using l = 0.1,
which was used for the Tnocor setting. This means that even
though setting l = 0.1 also enabled to capture temporal cor-
relations by using low correlation thresholds, it created more
false positives.

The results for the proposed framework were affected by
the Tsupp setting. As Tsupp was set large, precision im-
proved and ℵ∗ decreased as can be seen from Figures 7(b),
8(b), and 9(b). However, when Tsupp = 0.8, recall de-
creased in Fig. 8(b) and 9(b). These results indicate that
some cause metrics have association rules with support of
< 0.8, which means that these metrics have more tempo-
ral correlations with application performance. Therefore,
Tsupp should not be set large (e.g., ≤ 0.6) so that the tem-
poral correlation can be captured.

Although there were tradeoffs between precision and recall
in these results, we could evaluate the total performance of
our framework by calculating the remaining diagnosis costs
from Eq. (3). Our framework achieved better performance
than those of l = 0.01 and 0.05 in Figs. 7(c), 8(c), and 9(c).
It respectively reduced the costs, especially with l = 0.01,
by 77.4%, 84.8%, and 79.5% for CPU, network, and disk
contention case. That was caused by stable recall as was
previously explained. Our framework achieves better per-
formance in Fig. 7(c) than that in l = 0.1 cases. However,
the cost reductions in Figs. 8(c) and 9(c) are quite small

despite the better precision of our framework. This is be-
cause ℵ∗ in the network and disk contention in Figs. 8(a)
and 9(a) is smaller than that in the CPU contention in Fig.
7(a). That reduces the contribution of precision as was ex-
plained in Subsection 2.1.

The threshold of the Pearson correlation is also affected
by the length of the analysis time period (denoted as N)
because the critical value of hypothesis testing is calculated
from the number of sample data. As the number of sample
data increases, the critical value decreases and the correla-
tion threshold is then set small.

Figure 10 presents the results for the remaining diagnosis
costs where the analysis time period length, N , is 24 and
30. We have omitted the results for precision, recall, and
ℵ∗ because of space limitations. The results in Fig. 10(b)
have a similar tendency with the results for N = 18 be-
cause there are still some false negatives and recall decreases
even when the correlation threshold is set small. However,
the results in Figs. 10(a) and 10(c) demonstrate a different
tendency. When N is large, the low correlation threshold
removes false negatives and the cost is only affected by pre-
cision and ℵ∗. In that case, our framework achieves better
performance than that of l = 0.1. This is because when
N is large, ℵ∗ also increases and precision makes a larger
contribution to the remaining diagnosis costs. Even though
l = 0.01 and 0.05 achieve lower costs, there are more risks
of recall-decreases, as can be seen from Fig. 10(b).

We concluded from these observations that our framework
worked stably both when N was large and small. This con-
clusion is suitable for our framework because i) some applica-
tion performance data may not be able to obtained during
long periods from application administrators and ii) long
periods of performance data have a greater probability of
containing totally different types of causes such as disk con-
tention and workload surge of applications. These may not
be captured by the Pearson correlation because individual
cause metrics should correlate with a type of anomalies but
not correlate with the others, which bring about temporal
correlations. Even in that situation, our framework should
work well if we set Tnocor smaller because there can be valid
association rules between individual cause metrics and ap-
plication performance.

4. TESTING ON REAL DATA SET
This section explains how we adapted a prototype of our

framework to a real data set and investigated the efficiency
of our framework.
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Figure 7: Results from cases of CPU contention
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Figure 8: Results from cases of network contention

A. Setups
The real data set we used in this section was data that were
obtained from a real VDI service, which hosted a total of
290 users (VMs). The VDI service was configured with five
host servers, two FCoE 10-G physical switches, and physical
storage. The five host servers had the same configuration:
256 GB of RAM, Intel Xeon E5-2695v2 2.4 GHz 12 core x
2 processors, and Windows server 2008 (Hyper-V was used
for the hypervisor). Each host server used an 8-TB RAID6
volume on the physical storage, which was used for virtual
disks of VMs on the host.

The metrics data were obtained by using WMI and SNMP
with a fixed interval (60 s), similarly to our experimental
environment explained in Subsection 3.1. We also obtained
metrics from storage, which supported various kinds of pri-
vate MIBs, which included metrics related to storage such
as read/write response times, I/O per second, read/write
throughput, and cache hits for each volume. The total num-
ber of metrics we obtained from the cloud infrastructure was
approximately 49,000 (fluctuating by time), which include
approximately 35,000 metrics that were associated with a
specific VM. The performance of the VDI service was mea-
sured in the same way that we used in the experiment in
Subsection 3.1. We ran the benchmark script on a virtual
desktop and measured user-experienced performance.

When we ran the benchmark script for one week, we en-
countered 13 times performance anomalies. We found from
additional investigations that the root cause of these per-
formance anomalies was disk resource contentions brought
about by synchronous virus scans on a large number of VMs.
Therefore, the correct bottleneck attribute was the disk.
However, the correct causal VMs were not identical because
in order to investigate these, we have to investigate the logs
obtained from virus scan software on all VMs, which was

impossible for us to do. We therefore have only presented
a summary of the metrics that were selected in cause diag-
nosis. We input application performance data 24 time units
in length. When sample data size was 24 units, the critical
value of hypothesis testing was 0.344, 0.404, and 0.515 with
significance levels that corresponded to 0.1, 0.05, 0.01.

B. Results
Figure 11(a) plots the results obtained from bottleneck di-
agnosis, where the precision (recall) has the same definition
as that provided in Subsection 3.3.1. As we can see from
the figure, there is the same tendency as that in the exper-
imental results in Fig. 5(c), i.e., when lm is set small (e.g.,
lm = 1), there are some false negatives. Therefore, using
only the most correlated metric has to be avoided in bottle-
neck diagnosis, which is the same conclusion that we reached
in our experimental evaluation.

Figure 11(b) shows the number of selected metrics. Note
its similarity with the experimental evaluation, in which we
assumed that bottlenecks had been accurately diagnosed.
Our framework can capture larger numbers of cause metrics
than the correlation approaches (l = 0.01 and 0.05). Figure
11(c) shows the effect of setting Tsupp. As can be seen from
in Fig. 11(c), larger numbers of metrics are selected when
Tsupp is set small. That indicates there are large numbers of
metrics that have temporal correlations. In this case, there
are many temporally correlated cause metrics because the
degradation in application performance is brought about by
a large number of VMs.

Figure 12 plots three examples of cause metrics selected by
cause diagnosis on a real data set and compares application
performance. The figure indicates the read bytes/sec met-
rics of three virtual disks on VMs. These metrics (denoted
vm1, vm2, and vm3 ) have temporally correlated behaviors;
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Figure 9: Results from cases of disk contention
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Figure 10: Effect of analysis time period length

when application performance increases at 11 through 24
time units, these three metrics increase at the subset of these
time units, and they have respective correlations of 0.358,
0.478, and 0.577. Then, vm1 is not captured by the Pearson
correlation with significance levels 0.01 and 0.05, and vm2 is
also not captured by that with significance level of 0.01. Our
framework, on the other hand, can capture these metrics be-
cause they have valid association rules. vm1, vm2, and vm3
have confidence measures of 1.000, 1.000, 0.889 and support
measures that correspond to 0.214, 0.357, and 0.571. Their
discretizing thresholds have the same value 0.0 because that
maximizes the support measure.

Our framework, however, captures some obvious false pos-
itives. Figure 13 plots the examples of false positive met-
rics. These metrics have negative correlations with the ap-
plication performance. For example, the vm4 metric has a
confidence of 0.818, a support of 0.643, and a discretizing
threshold of 4.19e+06. They do not indicate the cause of
performance bottlenecks because if they indicate the cause,
the read bytes/sec metrics of virtual disks should increase
during the performance anomaly period. We inferred that
these metrics, which had negative correlations, indicated
VMs that suffered from degraded performance. If so, these
metrics also bring to light quite useful information for cloud
administrators.

5. DISCUSSION
We evaluated our framework and found that it worked well

even when short periods of application performance data
were obtained, which we discussed in Section 3. This feature
and its model-less design will provide excellent adaptation
for dynamic application revisions in the cloud. However,
there were some limitations in our framework.

First, our framework only works when the cause of a per-

formance anomaly is a resource bottleneck in the cloud and
the bottleneck is created by VMs. Some performance prob-
lems are brought about by anomalous host servers and hy-
pervisors or faults on physical equipment (e.g., switches and
storage). These kinds of causes can be inferred from text
log data (e.g., error and warning messages) obtained from
the hypervisor logs or SNMP trap data, which are managed
by the cloud administrator. Those kinds of causes can be
inferred with higher accuracy and coverage by using the text
log data. However, no performance bottlenecks caused by
VMs remain in any text logs. Therefore, our framework only
focused on resolving that issue.

Second, our framework did not pinpoint the causes of
performance anomalies. It required some supports from
users because the results still contained some false posi-
tives. These false positives are often unavoidable because
some metrics are correlated with application performance
by chance. Users have to investigate the results to remove
these false positives. Even though our framework was ex-
pected to reduces the cost of investigations as was explained
in Section 3, the verification of the cost estimation still re-
mains for future work.

Third, our framework needs to obtain application perfor-
mance data from application administrators, who have to
include performance anomaly periods. Therefore, perfor-
mance anomalies have to be detected by them. They should
detect performance anomalies by directly monitoring appli-
cation performance such as response times or throughput
because model-based or training-based approaches are not
efficient for the detections in highly dynamic applications.

Finally, we will discuss the computational cost of our
framework. Our framework has scalable features because the
computation of correlations and association rules are inde-
pendent between metrics. This means that the computation
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Figure 11: Results from testing on real data set
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can be parallelized. The computational cost of our frame-
work mainly depends on the length of analysis time periods.
The computational order, especially in Algorithm 2, is two
powers of the analysis period length. That may cause long
computation times when excessive application performance
data are input.

6. RELATED WORK
There is much existing work that has investigated the per-

formance problems in the cloud. This section introduces
some of these that are related to our work.

Several researches [3, 9, 16, 24, 30] have diagnosed the
cause of performance problems by identifying which perfor-
mance issues that occurred in the past were the same or
closest to current performance issues. Fu et al.’s approach
[9] characterizes the past performance issues based on class
association rules (CARs) and identifies the metrics that will
help to pinpoint the root cause of a newly encountered issue
by using the CARs. These approaches require training data
set and only work for recurring performance problems.

Some applications in the cloud bring about stable corre-
lating behavior between metrics when the applications are
sound. Some researchers [2, 14, 22] diagnosed the cause of

performance problems by finding breaks in the stable cor-
relating behavior between metrics. Breaks in correlations
provides a chance to predict severe performance issues and
information on cause diagnosis. These approaches focus on
the issues with applications, and not on resource contentions
between applications in the cloud.

Xiong et al. [29] proposed a model-driven framework that
builds regression models to diagnose performance bottle-
necks in applications. Their approach infers the bottleneck
point (e.g., a VM or a host) and its attribute (e.g., CPU
or memory) from the regression models, which is similar to
our bottleneck diagnosis. However, this framework does not
infer VMs that created performance bottlenecks.

Resource contentions in the cloud have been addressed
as problems in VM placements or scheduling in some re-
searches [6, 7, 19]. Do et al. [7] used canonical correlation
analysis (CCA) for application profiling which enables to
identify dominant factors in application performance and
predict resource usage of applications. The profiling helps
the decisions of VM placements. These approaches assume
the applications are sound and do not address application
performance anomalies that are caused by anomalous re-
source usage in some applications.

7. CONCLUSION
We proposed an analysis framework for the cause diag-

nosis of application performance anomalies. Our framework
captured cause metrics that had temporal correlations with
application performance, which is difficult for methods that
use the standard Pearson correlation, by finding association
rules between each metric and application performance.

We confirmed the efficiency of our framework through our
experimental evaluation. The experimental results revealed
that it achieved better performance even with few applica-
tion performance data. In addition to the evaluation of ac-
curacy and coverage, we also evaluated our framework from
the perspective of the remaining diagnosis cost of our frame-
work users. Our framework was expected to reduce the cost
by 84.8% at most because it reduced many false negatives.
We also adapted our framework to a real data set obtained
from a VDI service. The results from the real data set in-
dicated that some cause metrics have temporal correlations,
which are difficult to be captured by the Pearson correlation.

Our framework should be efficient for agile application
developments and revisions because it does not involve any
performance models. It works as soon as the performance
data are obtained even when an application is newly devel-
oped and revised, and even when few data are obtained.
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