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ABSTRACT
Optimal correlation filters are widely used in signal process-
ing and pattern recognition applications. Correlation filters
are a set of synthesized spatial filters that produce controlled
response with sharp peaks. While providing excellent dis-
crimination capabilities correlation filters offer shift, rota-
tion and scale invariance for 2D images. Correlation fil-
ters are optimized to enhance the recognition of consistent
parts while suppressing the varying patterns. Synthesizing
the correlation filters for pattern recognition applications
involves several complex mathematical operations and re-
quires high computation resources especially for high reso-
lution images and videos. In this paper, we show that near
real time performance can be achieved for the design of the
OTCHF filter with help of optimization and parallelization
on multicore GPUs and CPUs.
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1. INTRODUCTION
Correlation filters finds their application in variety of pat-

tern recognition applications such as image and video water-
marking, fingerprint, iris and face detection. Their ability
to discriminate under several variations such as shift, scale,
in-plane rotations, occlusion makes them extremely suitable
for such applications and classification tasks. These filters
are also robust to noise and illumination variations .
Correlation filtering is a process of correlating a digital

image or a signal with a precomputed template (filter) op-
timized to return expected response [12, 3]. The expected
magnitude response in correlation filtering are sharp peak(s)
in the correlation output at locations where there is a match
between the template and the signal satisfying the constraints
of the template design. Advanced correlation filters have
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been applied with significant success in image recognition
applications [16, 6, 2]. This success is mainly attributed to:

• The advent of the modern high-speed multicore pro-
cessors with the massive parallel processing abilities
which can meet the computational demands imposed
by correlation based methods.

• The correlation filters can be optimized for the desired
response for a set of predetermined constraints.

Correlation filters are designed with the help of a set of
training data containing images or frames. This training
data represents the anticipated set of distortions yielding
pre-determined responses to these training images.

In this paper, we consider the Optimal trade-off circular
harmonic function filters (OTCHF), which are designed to
account in-plane rotation distortion in pattern recognition
application such as face recognition [13, 3], target detection,
iris recognition etc 1.

The design of OTCHF filter allows us to specify the de-
sired response for a range of in-plane rotations. The op-
timization task involves maximizing the expected correla-
tion filter output level at the origin where the match occurs,
while minimizing the correlation function levels elsewhere.
The optimization procedure of the template considers all
or at least some of the possible variations of the pattern
to recognized, these variations include rotation, scaling and
translation.

For pattern recognition applications whose input is a video,
the number of frames and the resolution of the videos could
impose huge computational workload. The training proce-
dure is amenable to parallel processing. The modern day
CPUs and GPUs are extremely powerful machines, equipped
with multiple compute cores, they are capable of perform-
ing multiple tasks or same task on multiple data in paral-
lel. Exploiting their parallel processing capabilities, with
performance optimization techniques and usage of optimal
libraries for FFTs and linear algebra routines [8, 7], could
lead to many fold improvement in the performance.

In this paper, we present an optimal and parallel imple-
mentation of design of the OTCHF on Intel and Nvidia mul-
ticore platforms and report significant improvements in the
performance.

1The work reported in this paper was carried out for a video
water marking application
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2. RELATED WORK
Several methods have been proposed for obtaining differ-

ent kinds of distortion invariance, most of them based on
the use of filters partially matched to the target.
For rotation invariance, a suitable approach is to use the

circular-harmonic functions (CHF’s) of the image f(r, θ) in
polar coordinate domain. Rosen and Shamir [12] proposed
rotation invariant circular-harmonic component filter for au-
tomatic target detection.
Ryan et. al. [6] developed a scale-invariant correlation fil-

ter design based on the Mellin radial harmonic (MRH) trans-
form. Minimum average correlation energy (MACE) MRH
filters can approximates a user-specified scale response. Some
applications where multiple scale responses are required,
multiple correlation filters are used to account scale changes.
Each correlation filter providing a unique scale response.
The GPUs are widely used in audio, image and signal

processing and in correlation filtering [5, 14, 15] and [10].
However, to the best of our knowledge, a parallel implemen-
tation of the OTCHF filter design for pattern recognition on
GPUs is not reported in the published literature.

3. OPTIMAL TRADEOFF CIRCULAR HAR-
MONIC FUNCTION FILTER

Applications such as face recognition, fingerprint recogni-
tion, digital watermarking and other common pattern recog-
nition tasks requires classification performance to be invari-
ant to small in-plane rotation, shift and scaling. The optimal
tradeoff circular harmonic function filters (OTCHF) or the
correlation filters are designed for in-plane rotation distor-
tion, allows us to specify the desired response for a range of
in-plane rotations and also enable shift invariance. Certain
level of scale invariance can also be achieved by appropriate
training. The trade off parameters for this filter are noise
variance and peak sharpness.
An optimized correlation filter would yield similar corre-

lation outputs in response to test images that are from the
same class as the training images while providing distortion-
tolerant correlation outputs.
We utilize the circular harmonic decomposition in the fre-

quency domain rather than in the space domain. We used
finite impulse response (FIR) filter design methods to de-
termine the CHF coefficients. Specifically, the luminance
channel is used for computing correlation filter. In this pa-
per, we have implemented the correlation filter for a video
which consists of several frames where each frame is consid-
ered as an image. The steps involved in the filter design are
as follows:

1. Compute the two dimensional Fourier transform F (u, v)
of each training image f(x, y).

2. Compute the index matrix which maps the Fourier
transformed image F (u, v) to the polar coordinates

to obtain F (ρ, ϕ), where ρ =
√

(u2 + v2) and ϕ =
tan−1( v

u
).

3. Compute the harmonic function F (ρ) by operating
Fourier transom along the ρ axis on F (ρ, ϕ).

4. Define the ‘desired correlation function matrix by set-
ting ’1’ at locations the response should be maximum
and ’0’ at other location in the matrix where the re-
sponse must be minimal.

5. Obtain the optimal circular harmonic function (CHF)
weights/coefficients (Ck) by computing Fourier trans-
form of the above matrix.

6. Compute PFOM , the figure of merit.

7. Compute the filter harmonics Hk(ρ) [2] with inputs
matrices PFOM , Ck, index matrix and training images,
F (ρ) etc. as

Hk(ρ) = λk · Fk(ρ)

PFOM (ρ)

where λk = Ck/
∫∞
0

|Fk(ρ)|2 /PFOM (ρ)ρdρ

For the given m training images, sequence of matrix op-
erations are performed to get the filter harmonics Hk(ρ).
We assume that each frame consist of n × n pixels. We
assume that the matrices PFOM , Ck and index matrix ID
are computed and stored. The algorithm for computing the
correlation filter H(ρ, ϕ) is as follows:

1. for j = 0 to n− 1

(a) jth harmonic of each frame (=jth column) is ex-
tracted and a n×m temporary matrix tmpFk is
formed as depicted in Figure 1.

Figure 1: Formation of tmpFK matrices

(b) Compute (n × m) matrix TP2[i, k] =
tmpFk[i,k]
PFOM [i,k]

,

element by element division.

(c) Compute (n ×m) matrix TP3[i, k] = TP2[i, k] ×
ID[i, k], element by element multiplication.

(d) Compute complex conjugate transpose tmpF ∗
k .

(e) Compute the product V = tmpF ∗
k × TP3.

(f) Compute inverse of matrix V as V −1

(g) Compute TP4 = TP2 × V −1

(h) Extract the jth column of the Ck and compute
jth column of filter harmonic Hk(ρ) = TP4×C∗

kj ,
where ∗ denotes complex conjugate.

2. end for

3. Compute the correlation filter H(ρ, ϕ) by taking the
inverse Fourier transform of Hk(ρ) and converting it
back to cartesian form.

The Hk(ρ) computation involves frequent matrix-matrix,
matrix-vector operations and matrix inversions (done using
standard factoring techniques). For larger, higher resolution
and longer duration videos and images, it becomes a cumber-
some computational task. We observed that for a 49 frame
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Table 1: Time consumed by each step
Steps Time in seconds

step(a) tmpFk Formation 3.791
step(b) matrix TP2 computation 1.950
step(c) matrix TP3 computation 0.292
step(d) conjugate transpose 0.157
step(e) compute V 39.225

step(f) compute V −1 1.013
step(g) compute TP4 27.429
step(h) compute Hk(ρ) 1.177
Total 74.34

video (with resolution of 2112×2112 pixels), the time spent
for computing Hk(ρ) on the single core sequential implemen-
tation was approximately 75 sec (> 90% of the over all time).
The sequential implementation was developed using OpenCV

library [9] and FFTW library [4]. The table 1 represents the
breakup of time consumed by individual step(from step (a)
to step (h). These operations are amenable for paralleliza-
tion and it is possible to achieve significant improvement in
the execution speed.

4. PARALLEL IMPLEMENTATION
With the advent of multicore CPUs and many core GPUs,

compute intensive applications have much to gain with par-
allel computing. The GPUs, which were primarily designed
for graphical operations, are also proved to be equally ef-
fective in general purpose computing. Figure 2 represents
general architecture of modern multicore CPUs and GPUs.

Figure 2: Multicore CPU-GPU architecture

As shown in the figure above, the GPUs have large number
of light weight cores compared to multicore CPUs. Unlike
CPU cores, the GPU cores are designed to carry out same
instruction at a time but on different data. This enables
huge data parallel through-put. On the other hand, CPUs
have much more powerful cores, which are capable of carry-
ing out different tasks at the same time at very high speeds.
A typical CPU-GPU setup is shown in Figure 3. The CPU
works as a master and offloads compute intensive work to
GPU. The data transfer between CPU and GPU happens
over PCI bus, which was often proved to be a performance
bottleneck. However, this has not been the case with today’s
PCI express buses.
With this brief overview of today’s multicore systems, we

now present our approach for parallel implementation of cor-
relation filter H(ρ, ϕ). In the following section, we describe
the GPU implementation of the algorithm (1) mentioned in
the previous section.

Figure 3: CPU-GPU over PCIe

4.1 Experimental Setup
In this section we present the details of all the hardware

setup (CPUs/GPUs) used for the performance tuning and
running the benchmarks. All the performance figures, re-
ported in this paper, were obtained on the following hard-
ware.

• GPU systems:

– Device1: The Nvidia’s Fermi C2075 GPU with
1.1 GHz 448 cores, 5.5GB RAM.

– Host1: The Intel Westmere 2.93 GHz 4 cores
with 24GB RAM.

– Device2: The Nvidia’s Kepler K20x GPU with
796 MHz 2496 cores, 5GB RAM.

– Host2: The Intel Ivy Bridge 2.1 GHz, dual socket,
6 cores/socket, 16GB RAM.

• Multicore CPU system: The Intel Xeon E5 2650 v2,
Ivy Bridge 2.6 GHz dual socket, 8 cores/socket, 24GB
RAM.

4.2 Correlation filter on GPU
The correlation filter computation involves number of ma-

trix operations, which are extremely suitable for GPU com-
putation. In this section we present the details of our im-
plementation and measures taken for performance optimiza-
tion. This implementation was specific to Nvidia platforms
and was carried out in CUDA C. Though many CUDA
kernels were implemented from scratch, some of the ma-
trix computations were implemented with the help of rou-
tines/functions available in the highly optimized cuBLAS
library for GPUs. The parallel algorithm implemented on
the GPU is as follows:

1. Partition the total frames into nPart. Each partition
is processed in sequence. Then for each part do:

2. Create n OpenMP threads. Each thread extracts m/n
columns from each input frame to form m/n tmpFk

matrices, where m is the width of input frames, and
creates m/n number of tmpFk matrices in parallel.

3. Create nSt CUDA streams.

4. The tmpFk matrices are copied in batches to GPU
asynchronously in each stream.

5. Carry out steps (b) to step (h) on each batch of tmpFk

in each of the nSt stream.

6. Each stream computes a batch of Hk(ρ) columns.
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The following points were the main highlights of the im-
plementation.

• Accelerating matrix operations with cuBLAS:
The cuBLAS is a highly optimized CUDA C library for
the linear algebra and matrix operations provided by
the Nvidia. The Hk(ρ) computations require matrix-
matrix multiplication (step (e) and step (g)), matrix
inversion in step (f) and matrix-vector multiplication
in step (h). The cuBLAS also supports batch mode for
matrix-matrix multiplication (cublas< t >gemmBatched()).
The matrix inversion was computed using cublas<
t >getrfBatched (computes LU factorization) and cublas<
t >getriBatched (computes inverse of matrices with
forward and backward triangular solvers) respectively.

• Multi-level parallelism for higher GPU utiliza-
tion: To exploit the full potential of large number
of the cores on GPU, it is required that the problem
must be broken into large number of fine data parallel
computations. It is observed that the for loop in the
step 1 is amenable to parallelization. Multiple columns
from the training images in step (a) were extracted and
multiple tmpFk matrices were formed in parallel. This
was achieved using multiple threads with the help of
OpenMP on host or CPU.

Figure 4: Parallel formation of tmpFK matrices

Similarly multiple tmpFk were processed in parallel i.e.
the operations from step (b) to step (h) were carried
out on multiple tmpFk concurrently on GPU. This was
termed as batch processing. Secondly, each step within
the loop was also parallelized. The matrix operation
in step (b) to step (h) for each tmpFk are carried out
in parallel. This two level parallelism effectively con-
sumes huge compute power of the GPU.

• Minimizing CPU-GPU data transfers: Though
today’s PCI express buses are fast and support very
good data transfer bandwidth, but they still fall short
of compute speed and main memory (i.e. RAM) access
speed by huge margins. The algorithm required the
tmpFk matrices in step (b) and step (e), which in tern
require same data transfer to GPU twice. For a high
resolution video or large number of training images,
this becomes and expensive operation. To avoid this
twice data transfer, two copies of tmpFk matrices were
maintained in the GPU. This significantly improved
the performance but at the cost of double memory foot
print.

• Multi-Stream Computations: The GPUs are typ-
ically high latency devices. But they support mul-
tiple stream computation, which allows hiding laten-
cies by overlapping computations with data transfers.
Streams can be imagined as concurrent compute pipelines
which enable better utilization of the GPUs. To min-
imize the data transfers between host and device, two
copies of tmpFk were maintained. The data was fur-
ther divided into multiple batches and processed in
multiple streams as shown in Figure 5. All the stream
are launched simultaneously which results in overlapped
computations and data transfers across streams. This
multi-stream implementation provided further boost
in the over all performance.

Figure 5: Multi-Batch & Multi-Stream computa-
tional

• Coalesced data access: The global memory load/store
efficiency on GPU mostly depends on the data access
pattern of the application. If the neighboring threads
accessed global memory in strides then it results in
poor load/store efficiency, which translates into poor
performance. The data for tmpFk matrices, PFOM

matrix and index matrix ID is arranged to achieve co-
alesced data access pattern. This resulted in ≈ 85%
global load/store efficiency.

With all the above performance optimization, a significant
speed up was achieved for correlation function computation.
We report ≈ 35× gain on Nvidia’s C2075 GPU (see Figure
6).

Figure 6: Performance on C2075 GPU
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The modern GPUs are extremely capable machines. Fig-
ure 6 illustrates how well correlation filter design problem
scales for above discussed optimizations.

4.3 Correlation filter on multicore CPU
Modern day CPUs are also equally efficient parallel pro-

cessing machines. Equipped with less in number but more
powerful compute cores, these CPUs also deliver high per-
formance. We have also carried out parallel implementation
on Intel multicore system. The pthread library [11] was
used for multi-threaded application and the OpenCV library
[9] was used for various image processing and matrix algo-
rithms.
The parallelization approach adopted here was straight-

forward. The loop for j = 0 to n-1 described in section
3 was parallelized with pthreads. The total number of
frames, tmpFk, were equally divided among all the available
compute threads. Each thread processes tmpFk/N frames,
where N is the number of threads. Further, parallelization
of individual steps (a) to (h) was also implemented. It was
observed that the overall performance degraded when in-
ner multi-threading was enabled. This can be attributed to
the lack of compute resources to accommodate nested par-
allelism. The readings presented here were obtained with
internal parallelization turned off.
The following figure illustrates that correlation filter gen-

eration time decreases almost linearly as we increase number
of the compute threads.

Figure 7: Performance on 16 core CPU

Compared to the sequential execution, scale up of ≈ 16×
was achieved on 16 physical core CPU system.

5. PERFORMANCE RESULTS
The results presented in the section 4.2 were obtained on

the older Fermi C2075 GPU. The optimized GPU code was
then executed on the latest Kepler series K20 GPU. This fur-
ther boosted the performance. Figure 8 summarizes overall
application performance gain achieved with parallelization.
It also includes the energy savings while computations along
with compute time.

Figure 8: Performance gained on different multicore
systems

6. CONCLUDING REMARKS
The OTCHF filters are widely used in many applications.

A fast implementation would be desirable for large number
of applications in pattern recognition, signal and image pro-
cessing, which does not seem to be reported in previously
published literature. The implementation reported in this
paper can be easily adopted for other applications in corre-
lation filtering.

We considered the OTCHF filter design problem on mod-
ern day multicore systems such as CPUs and GPUs. Both
platforms delivered high performance with parallel process-
ing and performance optimizations. We achieved ≈ 16×
and 41× speed up on CPUs and GPUs respectively. Al-
though GPUs performed better than 16 core CPU, huge
effort was required in terms of changes done at design level
and implementation level. Performance optimizations like
exploiting two level parallelism, multi-stream computations
and minimizing data transfers were the key factor in achiev-
ing the high performance on GPUs. On the other hand,
parallelization on CPU required minimalistic code changes
as compared to the GPU implementation.

The computational cost, in terms of energy consumption,
was also drastically reduced with compute time. This en-
ables scope for doing more simulations with in same duration
and same cost, which effectively provides better results.

We conclude this paper on the note that, modern day
CPUs and GPUs are extremely capable machines, however
best results can only be obtained with performance opti-
mizations.
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