
End-to-End Java Security Performance Enhancements for
Oracle SPARC Servers

Luyang Wang
Oracle

4180 Network Circle
Santa Clara, CA 95054, USA

luyang.wang@oracle.com

Pallab Bhattacharya1
Facebook

1 Hacker Way
Menlo Park, CA 94025, USA

 pllb@fb.com

Yao-Min Chen
Oracle

4180 Network Circle
Santa Clara, CA 95054, USA

yaomin.chen@oracle.com

Shrinivas Joshi
Oracle

4180 Network Circle
Santa Clara, CA 95054, USA

shrinivas.joshi@oracle.com

James Cheng
Oracle

4180 Network Circle
Santa Clara, CA 95054, USA

james.cheng@oracle.com

ABSTRACT
In this paper we investigate the performance of cryptographic
operations, when used in Java applications. We demonstrate the
advantage of using built-in hardware accelerator for cryptographic
operations on SPARC servers. In particular, we demonstrate the
advantage of hardware cryptographic instructions invoked via
AES and SHA intrinsics, implemented in the Java Virtual
Machine (JVM), over the more traditional Java Native Interface
(JNI) calls. For the purpose of our study, we modified the
SPECweb2005 benchmark by adding modern banking
requirements, and created a new workload which we call the End-
to-End Java Security (EEJS) workload. Using the workload, we
compare different Java Cryptographic Service Providers (CSPs)
and arrive at the conclusion that hardware cryptography has
significant performance advantage for Java applications. With the
EEJS workload, we also identify several enhancements applicable
to the Java Secure Socket Extension (JSSE).

General Terms
Performance, Security.

Keywords
Java Security; Java Cryptography Performance; SPARC
Processors; JVM Intrinsics; RSA; AES; SHA; JSSE;
SPECweb2005.

1. INTRODUCTION
There were a few recent customer cases where the performance of
security operations on the SPARC servers was deemed critical to
customer applications. These cases raised the necessity of an in-
house tool to model customer application scenarios and identify
performance issues and optimization opportunities. This external
“push” also aligned well with the internal “pull” to evaluate the

new way of doing cryptographic acceleration since SPARC T4,
which uses instructions rather than coprocessors. The two reasons
combined have motivated the need to study the cryptography
performance from an end-to-end perspective.1

Before delving into the end-to-end performance study, we briefly
describe the history of SPARC cryptography acceleration. The
Oracle SPARC line of processors have a history of supporting
cryptographic operations at hardware level starting with the first
Niagara Processor [1]. Its many generations consistently work
towards adding support for more cryptographic algorithms and
improving the performance of cryptographic operations. A key
motivation for this effort is that certain cryptographic
computations are inefficient if done in software, requiring many
instructions when using a conventional instruction set. The earlier
cryptographic acceleration (e.g., the implementations in
UltraSPARC T2, T2 Plus and T3 [2][3]) is mostly delivered via a
coprocessor mechanism, which requires device drivers or system
calls to use these new capabilities, but also adds software
overhead. In later generations (SPARC T4, T5 and onwards), non-
privileged instructions are implemented, which avoid the
overhead of traps into the kernel. With SPARC T4, new
algorithms are also developed to replace old, more vulnerable
algorithms as well as to address new security and usability
requirements.2

The new hardware cryptographic instructions have been evaluated
via numerous micro benchmarks. However, when they are used in
a real-world application setting, sometimes the advantage is not
immediate. This could be due to the fact that the software
(security middleware) has not used the hardware cryptography in
an effective way, or the fact that there is a bottleneck in the
software. We need a tool to identify such software-hardware
integration issues. Towards this end, we have devised the End-to-
End Java Security (EEJS) workload. It is based on SPECweb2005
Banking Workload [4][5], 3 with enhancements to incorporate

1 All work by Pallab Bhattacharya for this article was performed

prior to his employment at Facebook.
2 The newer processors, SPARC T5, M6 and M7, are similar to

SPARC T4 in terms of cryptographic processing.
3 The SPECweb2005 benchmark has been retired by SPEC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE'16, March 12–18, 2016, Delft, Netherlands.
© 2016 ACM. ISBN 978-1-4503-4080-9/16/03…$15.00.

DOI: http://dx.doi.org/10.1145/2851553.2851577

159

modern banking requirements. 4 We have learned these
requirements from customer engagements.

A key area of our performance study is related to the Java Native
Interface (JNI) calls when executing the cryptographic
instructions. JNI calls involve copying of data and flushing of
register windows, making them expensive and less suitable for
small messages. A new approach, called intrinsics, eliminates the
JNI overhead. The EEJS workload is an effective tool to compare
the implementation based on intrinsics and the more traditional
implementation that leverages JNI.

This paper makes the following contributions. First, we
demonstrate that the best performance on SPARC servers comes
from using the hardware cryptographic instructions. Second, with
Java Development Kit (JDK) 8u40 and later, accessing the
hardware cryptography via intrinsics shows advantage over going
through the JNI. Third, we have identified enhancements in the
Java Secure Socket Extension (JSSE). The effects of the
performance improvements are quantified in terms of response
time, number of simultaneous user sessions, and intensity of user
activities such as page views, just to name a few.

For the remainder of the paper, in Section 2 we describe EEJS
benchmark in detail. In Section 3 we cover the experiment setup
and the cryptographic service providers offered in JDK on Solaris
operating system. In Section 4, we present and evaluate the
performance data. This is followed by Section 5 where we
describe the JSSE enhancements along with their contributions to
performance improvement. Finally we conclude the paper by
summarizing our results in Section 6.

2. BACKGROUND
In this section, we first discuss the SPECweb2005 Banking
workload and then introduce the EEJS enhancements.

2.1 SPECweb2005
SPECweb2005 Banking workload was developed after conducting
extensive research in the financial sector, specifically focusing on
the Web transaction types, the business logic, the payload size and
the cipher-suite specification that was prevalent at the time. From
the study, RSA1024_RC4_MD5/SSLv3 was most popular circa
2005, thus it was chosen for SPECweb2005 as the cipher used for
securing communication between the clients and the banking
application.

The overall structure of the SPECweb2005 Banking workload is
illustrated in Figure 1. On the left hand side of the figure, the
drivers simulate the browsers or mobile apps used by the banking
customers. The drivers implement load generators that inject load
into the client application, which in turn sends HTTPS requests to
and receives HTTPS responses from the server [4].

4 It should be noted that results from our modified benchmark are

not compliant with SPECweb2005 run rules and cannot be
compared with published results. However, the use of
SPECweb2005 benchmark conforms to SPEC Fair Use Rule for
research use [6].

Figure 1 SPECweb2005 Banking Workload

The server is a bank application running on a hardware platform
referred to as System Under Test (SUT). The application accesses
static content such as check images that are hosted by the internal
storage disk on the SUT. The server works with a backend
simulator (BeSim) to serve the client requests. BeSim is intended
to emulate a back-end application server that the bank application
must communicate with to retrieve specific information (customer
data, for example) needed to complete a transaction request from
the customer. The communication between bank application and
BeSim is over TCP and uses the HTTP protocol.

There are two quality-of-service (QoS) parameters, TIME_GOOD
and TIME_TOLERABLE, which are used to define the
performance metrics of the benchmark. Specifically, the
performance metric SIMULTANEOUS_USERS is the maximum
number of user connections that can be supported such that 1)
TIME_GOOD QoS requirement can be met by at least 95% of the
page requests and 2) TIME_TOLERABLE QoS requirement can
be met by at least 99% of the page requests. Here, based on end-
user experience [4], TIME_GOOD is set at 2 seconds and
TIME_TOLERABLE is set at 4 seconds.

2.2 EEJS
The overall structure of the EEJS workload is shown in Figure 2.
We had a few goals in mind when we developed the workload.
First, we eliminated the heavy disk usage caused by the large
document root required in the original SPECweb2005 benchmark.
In our use case, we would like to focus on the security processing
requirements, not to be bogged down by the disk IO performance
on the SUT. There are a few ways to alleviate the disk IO
bottleneck such as using faster storage (e.g., SSDs) or storage
devices front ended with large amount of DRAM for caching. We
opt for a software solution of implementing a small document root
with a finite set of check images. Secondly, as SSLv3 has been
deprecated and RC4 and MD5 are now considered insecure, we
have modified the workload to use secure SSL ciphers
(TLS_RSA_WITH_AES_128_CBC_SHA256 and TLS_RSA_
WITH_AES_128_GCM_SHA256, for example). Additionally, we
have changed the protocol between the bank application and
BeSim to be HTTPS, reflecting what we have learned from bank
customers. This is accomplished by replacing the BeSim client (as
part of the bank application) with the Apache HTTP client [7].
Finally, to simulate realistic use cases, each request from the bank
application to BeSim makes a new HTTPS connection.

Figure 2 EEJS Workload

160

EEJS inherits the QoS parameters from SPECweb2005, namely,
TIME_GOOD (2 seconds) and TIME_TOLERABLE (4 seconds).
Instead of reporting the SIMULTANEOUS_USERS performance
metric, we use the number of simultaneous user sessions to
control the load driven by the SUT. For example, fixing the load
at N simultaneous user sessions, we measure the average response
time, the percentage of responses within the TIME_GOOD limit,
and the percentage of responses within the TIME_TOLERABLE
limit.

A key characteristic of the workload is that there are significant
SSL handshake operations. From our experiments, more than 30%
of the requests involve full handshake. Therefore, this workload
stresses the cryptographic processing capability of the SUT,
which serves quite well our need to address recent customer cases
referred to in Section 1.

From our experience, EEJS has proven to be an effective tool. In a
series of experiments described in Section 4, it is used to
demonstrate the performance advantage of hardware cryptography
acceleration over conventional SPARC instructions. Furthermore,
we compare different ways of accessing hardware cryptography,
via the different Cryptographic Service Providers (CSPs). EEJS
also helped identify a number of software enhancements, which
can be applied to improve JSSE. These enhancements will be
described in Section 5.

3. EXPERIMENT SETUP
Here we will first introduce CSPs, what they are and how they are
configured. Then we will describe the hardware and software
setups.

3.1 Cryptographic Service Providers
Cryptography implementations in the JDK are provided via
several different CSPs. For example, with SPARC servers there
are OracleUcrypto, SunPKCS11, SUN, SunJSSE, SunJCE and
SunRsaSign providers [8]. Each CSP provides a package or set of
packages that supply concrete implementation of a subset of the
JDK Security API security features. Each JDK installation has one
or more providers installed and configured by default [8] . These
built-in providers and their usage priorities are listed in a
configuration file named java.security. 5

OracleUcrypto provider is a Solaris specific CSP that leverages
the Solaris Ucrypto library to offload and delegate cryptographic
operations to hardware supported by Oracle SPARC T4 and later
processor based on-core cryptographic instructions [9]. Among
other ciphers, RSA [10], AES [11] and SHA [12] ciphers are
available in the OracleUcrypto provider. SunPKCS11 provider is
supported on Solaris (SPARC and x86) and Linux (x86), in both
32-bit and 64-bit Java processes [13]; it supports algorithms
including RSA, AES and SHA. The SunJCE and SUN providers
are “pure Java” CSPs in the sense that the cryptographic
algorithms are implemented entirely in the JDK API classes
without relying on any native libraries.

For SPARC T4 and later Oracle SPARC servers, we have
embedded assembly instruction level implementation of AES and
SHA ciphers in the Java side code generation logic of the JVM.
These assembly code implementations leverage appropriate
hardware cryptography instructions. Such JVM embedded
assembly implementations are also termed as JVM Intrinsics. A

5 For a SPARC server running Solaris OS, the path to the file is

$JAVA_HOME/jre/lib/security/java.security.

key advantage of intrinsics is that they avoid the JNI overhead
associated with accessing hardware cryptography instructions via
native libraries such as the Solaris Ucrypto library. AES intrinsics
are available since JDK 8u20, via the SunJCE provider. SHA
intrinsics are available since JDK 8u40, via the SUN provider.

EEJS has been used to evaluate the performance gain of the
intrinsics, in comparison with OracleUcrypto and SunPKCS11
providers. The comparisons will be described in Subsection 4.1.

3.2 Hardware and Software Setups
Refer to Figure 2 for the following description of our experiment
setup. The SUT is a recently announced SPARC T7-1 server,
running Solaris 11 Update 3 Build 27. The T7-1 server has 32
cores and 480 GB of DRAM. On the SUT, we run the bank
application with 4 cores of the server. Oracle WebLogic
application server (WLS) running on the SUT is configured to use
the following JVM flags: -Xms16g -Xmx16g -Xmn8g -
XX:+PrintGCTimeStamps -XX:+PrintGCDetails. We use WLS
version 12.2.1 in our experiments.

We have used JDK 8u40 and 8u60 for the Java runtime. As
mentioned before, both AES and SHA intrinsics are available
since JDK 8u40 for SPARC.

We deploy the bank application on WLS, which is also
responsible for catering application-specific static content such as
check images from the internal storage disk. The workload drivers
are run on two Oracle X2-2 servers. Each X2-2 has two Intel
Westmere CPUs and 48GB of DRAM. BeSim is run on an Oracle
X3-2 server, which has two Intel SandyBridge CPUs and 128GB
of DRAM. All the systems, i.e., the hosts running the drivers,
WLS and BeSim, are connected by a 10Gb Ethernet private
network.

For our experiments, we focus on the comparison between
OracleUcrypto, SunPKCS11 and intrinsics. With JDK 8 on
SPARC servers, OracleUcrypto is the default first priority CSP.
We can edit the java.security file to change CSP priorities from
OracleUcrypto to SunPKCS11. To exercise AES intrinsics, we
need to disable AES in ucrypto-solaris.cfg or sunpkcs11-
solaris.cfg, depending on the chosen provider. In this way, the
AES intrinsics implemented for SunJCE CSP will be used.
Similarly, to use SHA intrinsics implemented for SUN CSP, one
needs to disable SHA in ucrypto-solaris.cfg or sunpkcs11-
solaris.cfg. One can certainly use both AES and SHA intrinsics
together, with appropriate changes in the ucrypto-solaris.cfg or
sunpkcs11-solaris.cfg configuration files.

For the connection between the driver and the bank application,
cipher suite TLS_RSA_WITH_AES_128_CBC_SHA256 is used.
This cipher suite uses RSA for key exchange. Note that RSA
consists of key encryption/decryption, as well as key generation.
With the default OracleUcrypto provider, SunPKCS11 is used for
key generation. When SunPKCS11 is disabled in file java.security,
key generation falls through to the next available provider which,
in our case, is SunJCE.

4. PERFORMANCE EVALUATION WITH
EEJS
In this section, we provide examples of how EEJS is used for
performance evaluation. The examples here include comparing
different CSPs and comparing hardware cryptography
acceleration with software implementation of cryptographic
algorithms.

161

We started out with the exact setup described in the previous
section. However, we soon realized that there were a few software
bottlenecks that had to be alleviated before we could move to
performance comparisons of cryptography operations. The
bottlenecks stemmed from the large number of connections
between the bank application and BeSim (the SSL connections on
the right hand side of Figure 2). To work around these bottlenecks
we temporarily reverted back to plain-text HTTP connections, as
were used in SPECweb2005. The data reported in this section is
based on this workaround. In Section 5 we will describe how to
address the discovered software bottlenecks. Identifying and
addressing these bottlenecks is a major contribution of the EEJS
workload analysis work.

4.1 Comparison of CSPs
We first compare the efficiency of different cryptographic service
providers. Towards this end, we control the number of
simultaneous user sessions and compare 1) the average response
time, 2) the number of successful requests, 3) the percentage of
requests that meet TIME_GOOD threshold, called good requests,
and 4) CPU utilization including system and user times. Here, a
request is considered successful if the response for it is fulfilled
within the TIME_TOLERABLE interval.

Table 1: The 5 CSP Configurations Used in the Performance
Comparison

Table 1 shows five different configurations (A, B, C, D and E)
that have been evaluated here. Under each configuration are the
CSPs used for the different cryptographic operations involved.
For example, with Configuration A, SunPKCS11 is used for
encrypting and decrypting keys as part of RSA; so is RSA key
generation, AES and SHA. By contrast, with Configuration E,
OracleUcrypto is used for encrypting and decrypting keys in the
RSA, while SunJCE is used for key generation, and intrinsics
within SunJCE and SUN are used for AES and SHA respectively.
As mentioned in Section 3.1, both AES and SHA intrinsics are
assembly-level implementations of the underlying methods and
are embedded in the JVM code generation logic. JVM emits this
assembly code while executing appropriate intrinsified methods
from the JDK API. The other configurations B, C and D are self-
explanatory. Note that, Configuration B is the current out-of-box
default configuration for JDK8 on SPARC servers.

The results shown in Figure 3 are from the set of experiments with
1,000 simultaneous user sessions. For each configuration, we run
the load with 3 minutes ramp-up, 5 minutes warm-up, 10 minutes
steady-state and 3 minutes ramp-down phases. The performance
metrics are collected during the steady-state period of the run.
Figure 3 shows the measured performance metrics, expressed in
terms of the relative ratio to the default configuration
(Configuration B).

Figure 3: Performance Comparison between CSP
Configurations

In the bar chart of Figure 3, lower is better for ‘Response Time’
and ‘CPU Utilization’ metrics and higher is better for ‘Total
Requests’ and ‘Good Requests’ metrics.

Note that the configurations are chosen mainly to explore: 1) the
performance advantages of current default configuration over the
more traditional PKCS11 provider (Configuration A) and 2) the
effect of using AES and SHA intrinsics. We observe that
Configuration E provides the lowest average response time and
highest total requests. It also has better QoS in the sense that it has
higher percentage of good requests.6 Note that the performance of
Configuration E is achieved with better CPU efficiency; it uses
less CPU than Configuration B.

From Figure 3, we see that Configuration B outperforms
Configuration A. This is mainly because OracleUcrypto CSP’s
usage of Solaris Ucrypto library accesses unprivileged
cryptography instructions directly from user space, which should
be compared with PKCS11 that is based on system calls. By
contrast, Configuration D outperforms Configuration B because
AES and SHA intrinsics avoid the JNI overhead that is inherent in
the OracleUcrypto provider. Configuration C stands in the
middle between Configurations B and D; its use of intrinsics
makes it more efficient in terms of AES and SHA, while its use of
PKCS11 for RSA makes it less efficient in comparison to using
Ucrypto library for RSA.

The performance contrast between Configurations D and E is an
interesting one. They differ only in the CSP used for key
generation. Configuration D uses SunPKCS11, while
Configuration E uses SunJCE. When SunJCE is used for key
generation, SHA intrinsics are used in a critical step
(SecureRandom) of the key generation, which leads to better
performance than using SunPKCS11 for key generation. JDK bug
report JDK-8044659 7 has the description of the key generation
process in this case.

6 The five configurations are virtually indistinguishable in terms

of the percentage of good requests, with only Configuration A
slightly lower.

7 The notation JDK-nnnnnnn refers to a bug ID in the OpenJDK
bug tracking system.

162

Figure 4: Capacity Comparison between Configurations B

and E

With the results in hand, we proceed to verify that the CPU
efficiency of Configuration E can be translated into higher
number of user sessions. Figure 4 summarizes our results. Here,
we increase the number of simultaneous user sessions for
Configuration E until the QoS metrics match those for
Configuration B. We can see that Configuration E can support
12% more simultaneous user sessions, while keeping the average
response time on par with Configuration B. Moreover,
Configuration E achieves this with lower CPU utilization.

From the results in this subsection, one can conclude that there is
a combination that leads to best EEJS performance among the
configurations tested. The combination consists of 1)
OracleUcrypto for RSA encryption and decryption, 2) SunJCE for
RSA key generation, 3) SunJCE for AES, and 4) SUN for SHA.
Note that 2), 3) and 4) directly benefit from intrinsics. There is
ongoing effort to make the best combination the default in future
JDK releases.

4.2 Advantage of Cryptography Instructions
Configuration E can be further compared with a “pure software”
configuration where we intentionally disable crypto intrinsics
based hardware acceleration. To test a pure software configuration,
we disable AES intrinsics from SunJCE, using “-XX:-
UseAESIntrinsics” JVM command line flag. We also disable
SHA intrinsics from the SUN provider using “-XX:-
UseSHA1Intrinsics -XX:-UseSHA256Intrinsics -XX:-
UseSHA512Intrinsics” JVM flags. In addition, we swap in
SunJCE provider for RSA encryption and decryption. We add this
“pure software” configuration to our configuration mix and call it
Configuration F.

From Figure 5 we see that hardware cryptography instructions
with Configuration E provide very significant performance
advantage over the implementation using regular ISA (“pure
software”) instructions, as in Configuration F. Configuration F is
not able to support the required QoS requirements, while CPU is
close to 100%. By contrast, Configuration E has half the response
time, utilizing only half of the CPU as that of Configuration F.

Figure 5: Comparing the implementation using cryptography
instructions (Configuration E) with the software-only

implementation (Configuration F)

5. PERFORMANCE OPTIMIZATIONS
WITH EEJS
By analyzing performance characteristics of EEJS workload we
have identified enhancements in JSSE. This section describes the
associated performance bottlenecks and possible enhancements.
Before describing the JSSE enhancements we provide a brief
introduction of JSSE.

The Java Secure Socket Extension (JSSE) enables secure Internet
communications. It provides a framework and an implementation
for a Java version of the SSL and TLS protocols. It includes
functionality for data encryption, server authentication, message
integrity, and optional client authentication [14]. JSSE provides
both an application programming interface (API) framework and
an implementation of that API. The JSSE API supplements the
core network and cryptographic services defined by the
java.security and java.net packages by providing
extended networking socket classes, trust managers, key
managers, SSL contexts, and a socket factory framework for
encapsulating socket creation behavior [14].

EEJS enables the performance study of related Java packages in
an end-to-end application setting. It helps us identify a few
enhancements that can help improve performance.

5.1 Buffered Reading of Trusted Certificates
The primary responsibility of the TrustManager is to
determine whether the presented authentication credentials should
be trusted. If the credentials are not trusted, the connection will be
terminated [14]. To authenticate the remote identity of a secure
socket peer, an SSLContext object will be initialized with one
or more TrustManager objects. If a null TrustManager
object is passed into the SSLContext initialization, a new
TrustManager will be created.

Running EEJS with JDK 8u40, we noticed high system CPU time
(around 70%) on the SUT, as well as high response time, when a
null TrustManager was passed into the SSLContext
initialization. During the initialization, a new TrustManager
was created and initialized with a source of certificate authorities
and related trust material, which was obtained by reading from the
cacerts8 file and loading the trusted certificates.

8 $JAVA_HOME/jre/lib/security/cacerts

163

Figure 6: Functions ordered by exclusive system CPU time

Further analyzing the Oracle Studio Performance Analyzer [15]
profiles as shown in Figure 6, we observed that 93% of the system
CPU time was caused by the __read() system call, which, in turn,
was called by the read() system call. To identify what was being
read, we looked at the truss [16] output and observed that reading
from the cacerts file was done on a single byte basis, as follows.
The first four bytes of cacerts were the signature bytes, which
were obtained by calling readInt() of the
DataInputStream. Inside readInt(), it made four calls to
read(). Similarly, the next four bytes representing the version
of the cacerts file, as well as the subsequent four bytes
representing the number of trusted certificate entries, were read
one byte at a time. Furthermore, for each trusted certificate entry,
the alias of the certificate, the certificate creation date, and the
trusted certificate were also read on a single byte basis.

Performance is improved with a fix for JDK bug JDK-8129634
delivered by Java Engineering team. The fix wraps the
DataInputStream representing the cacerts file in a
BufferedInputStream object. Instead of retrieving single
byte from cacerts file, the BufferedInputStream object
buffers 8192 bytes at a time and the read from the SSLContext
initialization is now from this buffer. With JDK 8u60 that
includes this bug fix, system CPU time drops to around 20%
(from the previous 70%). Reducing the number of reads thus
makes a significant difference in system CPU utilization.

5.2 Consolidation of the Cacerts Keystore
A keystore is a database for storing key management related data.
Information residing in a keystore can be grouped into two
categories: key entries and trusted certificate entries [14]. With
EEJS running, we observed from the truss output that the cacerts
file was opened for read repetitively and frequently. The
frequency of the file open operations coincided with the frequency
of SSL handshakes. We analyzed the call stack and associated
source code and made the following observation. A new thread
was created for each handshake. Each new thread started a new
SSLContext initialization. During the SSLContext
initialization, each TrustManager instance read the cacerts file
and created a KeyStore instance. When there were multiple
threads, each establishing its own SSLContext, there were
multiple KeyStore instances accessing the common cacerts file,
causing synchronization and memory overheads.

To optimize the performance here, only one KeyStore instance
needs to be created. In addition, the cacerts file should only be
read when there is a modification in this file, instead of being
opened and read every time. These changes are tracked by JDK
Request for Enhancement (RFE) JDK-8129988.

Without the change, with JDK 8u60 the maximum number of
simultaneous user sessions is 490 while maintaining the
TIME_GOOD and TIME_TOLERABLE QoS requirements. With
the prototype changes for JDK-8129988, the average response
time and the number of page views for 490 simultaneous user
sessions improve by 9.5%, while meeting the QoS requirements.

5.3 Elimination of Hot Locks
5.3.1 sun.security.ssl.CipherSuite$BulkCipher.isAvai
lable()
When a socket is created between WLS and BeSim server, WLS
gets the default cipher suite list and iterates over the list to check
the availability of individual ciphers. From the jstack output of
WLS server threads, we noticed that a number of server threads
are blocked in the BulkCipher.isAvailable() method. It
is a synchronized method which checks the availability of a bulk
cipher. It is called when a cipher suite list is requested at the initial
phase of a handshake. Since each new connection between WLS
and BeSim Server involves a full handshake, this method is
frequently called.

Within the method, there is a cache, implemented with a hash map.
The cache is used to map the bulk cipher to its availability status.
However, with JDK 8u60, even though the cache exists, it is
cleared every time the method tries to get the cipher suite list,
defeating the purpose of the cache. By not clearing the hash map
cache the average response time and the number of page views
have improved by additional 3% for 490 simultaneous user
sessions, and there is an additional 3% improvement on the
percentage of TIME_GOOD responses. This change is tracked in
JDK RFE JDK-8133070.

5.3.2 SecureRandom.nextBytes()
The SecureRandom class provides the functionality of a
Random Number Generator (RNG). It differs from the
java.lang.Random class in that it produces cryptographically
strong random numbers. Random numbers are used throughout
cryptography, such as for generating cryptographic keys,
algorithmic parameters, and so on [8]. There are several different
algorithms for SecureRandom: PKCS11, NativePRNG,
SHA1PRNG, NativePRNGBlocking and
NativePRNGNonBlocking. The PKCS11 algorithm is
provided by the SunPKCS11 provider, while the others are
provided by the SUN provider. If the entropy gathering device in
java.security file is set to file /dev/urandom or file /dev/random,
then NativePRNG is preferred to SHA1PRNG. Otherwise,
SHA1PRNG is preferred [9]. In this study, NativePRNG is used
to generate secure random bytes.

A synchronized method is used to generate the secure random
bytes. This method employs a global shared buffer for storing the
random numbers read from the /dev/random file. The shared
buffer is implemented using a byte array. When a fixed size of
secure random bytes is requested, the method first checks if there
are any bytes remaining in the buffer. If there are, it reads the
requested number of bytes from the buffer and does a ‘xor’

164

operation with the input random bytes.9 If there are not enough
bytes remaining in the buffer, the synchronized method
replenishes the buffer by reading random numbers from
/dev/random. As the buffer is a global shared variable, the ‘xor’
operation between the buffer and the input has to be synchronized,
leading to hot locks. The locks can be alleviated by using a finer
grained synchronization.

This change, which is tracked by JDK RFE JDK-8098581, helps
improve the throughput of a secure random micro benchmark by
more than three times. With this change, the average response
time and the number of page views improve by additional 19% for
the configuration with 490 simultaneous users.

5.3.3 Registration of CSP Services
We also noticed a hot lock when getting services from a CSP. By
design, there is a map maintaining the services offered by each
CSP, and the constructor for a CSP object should record the
supported services in this map. When an application gets service
from a particular CSP, it looks up the map to find the supported
services. However, in our EEJS experiments, we found that with
the exception of the PKCS11 provider, other CSPs do not register
the services in their respective constructor. As a consequence,
when an application looks up the map, it always returns a null
map. When the application finds a null map, it falls back to check
a legacy map for services. It first checks a transient variable
to see if the legacy map has been modified and then get the
services from the legacy map.

Ideally, a single map should suffice. When service map is null,
falling back to legacy map incurs the overhead of exercising extra
code path. In addition, as the method for getting services is
synchronized, it causes performance regression when multiple
threads are involved. This issue is currently tracked by JDK RFE
JDK-8133906.

5.4 Performance Optimization Results
We measured the combined effect of all the changes mentioned in
Section 5. With the officially released binaries of JDK 8u60, 490
simultaneous user sessions can be achieved while maintaining
QoS requirements. With the changes described in this section, 800
simultaneous user sessions can be achieved. This is a 1.6 times
improvement in terms of throughput. Table 2 shows these
performance optimization results. If we restrict the load to 490
simultaneous user sessions, the aforementioned changes lead to an
improvement of 34.6% in average response time, 34.6%
improvement in page views, and 2.36 times improvement in login
latency.

6. SUMMARY
In this paper, we describe the motivation of EEJS workload, its
use in conducting performance evaluation, and the performance
optimization results from it. Performance evaluations using JDK
8u40 running on SPARC servers lead to the conclusion that using
JVM intrinsics for AES and SHA ciphers and using
OracleUcrypto for RSA encryption and decryption provides the
best performance among the configurations evaluated. There is
ongoing work around out-of-the-box CSP configuration to
provide the best combination of CSPs based on the underlying
platform.

9 The input random bytes were generated from an earlier

operation invoking a secure random algorithm such as
SHA1PRNG.

Table 2: Performance results comparison between JDK 8u60
and improvements from Section 5

Since the EEJS workload is heavy on the SSL handshakes, it is
also used to demonstrate the clear advantage of hardware
cryptography acceleration. This is accomplished by comparing a
configuration using hardware cryptography with one that uses
conventional instruction set.

We have identified a number of JSSE enhancements by analyzing
performance characteristics of EEJS workload. Several of these
enhancements are in the process of being incorporated into future
JDK releases.

7. ACKNOWLEDGMENTS
The authors would like to thank Oracle Java Security team and
Solaris Security team for their support and encouragement, and
our colleagues Jan-Lung Sung, Richard Smith and Andy Bowers
for their valuable critiques to improve the paper. We would also
like to thank the anonymous reviewers for their constructive
feedback to help further improve the paper.

8. REFERENCES
[1] Kongetira, P. 2004. A 32-way Multithreaded SPARC

Processor. In Hot Chips 16.

[2] Spracklen, L. 2009. Sun's 3rd generation on-chip
UltraSPARC security accelerator. In Hot Chips 21.

[3] Shoaib Bin Altaf, M. and Wood, D.A. 2014. LogCA: A
Performance Model for Hardware Accelerators. In Computer
Architecture Letters. Volume: PP, Issue: 99 (Sep. 2014).

[4] SPECweb2005 Release 1.20 Benchmark Design Document.
https://www.spec.org/web2005/docs/designdocument.html

[5] Trademark for the SPEC Benchmark.
https://www.spec.org/spec/trademarks.html

[6] SPEC Fair Use Rule. Academic/research usage.
http://www.spec.org/fairuse.html#Academic

[7] Apache HTTP Client. https://hc.apache.org/httpcomponents-
client-ga/

[8] Java Cryptography Architecture (JCA) Reference Guide.
https://docs.oracle.com/javase/8/docs/technotes/guides/securi
ty/crypto/CryptoSpec.html

[9] Java Cryptography Architecture Oracle Providers
Documentation for JDK 8.
http://docs.oracle.com/javase/8/docs/technotes/guides/securit
y/SunProviders.html

[10] Rivest, R.; Shamir, A.; Adleman, L., 1978. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM 21 (2): 120–126.

[11] Announcing the ADVANCED ENCRYPTION STANDARD
(AES). Federal Information Processing Standards Publication

165

197. United States National Institute of Standards and
Technology (NIST). October, 2012.

[12] FIPS 180-4: Secure Hash Standard. United States National
Institute of Standards and Technology (NIST). August 2015.

[13] JDK 8 PKCS#11 Reference Guide.
http://docs.oracle.com/javase/8/docs/technotes/guides/securit
y/p11guide.html

[14] Java Secure Socket Extension (JSSE) Reference Guide.
https://docs.oracle.com/javase/8/docs/technotes/guides/securi
ty/jsse/JSSERefGuide.html

[15] Oracle Solaris Studio Performance Analyzer.
http://www.oracle.com/technetwork/server-
storage/solarisstudio/features/performance-analyzer-
2292312.html

[16] Man pages for truss.
http://docs.oracle.com/cd/E23823_01/html/816-5165/truss-
1.html

166

