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ABSTRACT 
In this paper we investigate the performance of cryptographic 
operations, when used in Java applications. We demonstrate the 
advantage of using built-in hardware accelerator for cryptographic 
operations on SPARC servers. In particular, we demonstrate the 
advantage of hardware cryptographic instructions invoked via 
AES and SHA intrinsics, implemented in the Java Virtual 
Machine (JVM), over the more traditional Java Native Interface 
(JNI) calls. For the purpose of our study, we modified the 
SPECweb2005 benchmark by adding modern banking 
requirements, and created a new workload which we call the End-
to-End Java Security (EEJS) workload. Using the workload, we 
compare different Java Cryptographic Service Providers (CSPs) 
and arrive at the conclusion that hardware cryptography has 
significant performance advantage for Java applications. With the 
EEJS workload, we also identify several enhancements applicable 
to the Java Secure Socket Extension (JSSE).  

General Terms 
Performance, Security. 

Keywords 
Java Security; Java Cryptography Performance; SPARC 
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1. INTRODUCTION 
There were a few recent customer cases where the performance of 
security operations on the SPARC servers was deemed critical to 
customer applications. These cases raised the necessity of an in-
house tool to model customer application scenarios and identify 
performance issues and optimization opportunities. This external 
“push” also aligned well with the internal “pull” to evaluate the 

new way of doing cryptographic acceleration since SPARC T4, 
which uses instructions rather than coprocessors. The two reasons 
combined have motivated the need to study the cryptography 
performance from an end-to-end perspective.1 

Before delving into the end-to-end performance study, we briefly 
describe the history of SPARC cryptography acceleration. The 
Oracle SPARC line of processors have a history of supporting 
cryptographic operations at hardware level starting with the first 
Niagara Processor [1]. Its many generations consistently work 
towards adding support for more cryptographic algorithms and 
improving the performance of cryptographic operations. A key 
motivation for this effort is that certain cryptographic 
computations are inefficient if done in software, requiring many 
instructions when using a conventional instruction set. The earlier 
cryptographic acceleration (e.g., the implementations in 
UltraSPARC T2, T2 Plus and T3 [2][3]) is mostly delivered via a 
coprocessor mechanism, which requires device drivers or system 
calls to use these new capabilities, but also adds software 
overhead. In later generations (SPARC T4, T5 and onwards), non-
privileged instructions are implemented, which avoid the 
overhead of traps into the kernel. With SPARC T4, new 
algorithms are also developed to replace old, more vulnerable 
algorithms as well as to address new security and usability 
requirements.2 

The new hardware cryptographic instructions have been evaluated 
via numerous micro benchmarks. However, when they are used in 
a real-world application setting, sometimes the advantage is not 
immediate. This could be due to the fact that the software 
(security middleware) has not used the hardware cryptography in 
an effective way, or the fact that there is a bottleneck in the 
software. We need a tool to identify such software-hardware 
integration issues. Towards this end, we have devised the End-to-
End Java Security (EEJS) workload. It is based on SPECweb2005 
Banking Workload [4][5], 3  with enhancements to incorporate 

                                                                 
1 All work by Pallab Bhattacharya for this article was performed 

prior to his employment at Facebook. 
2 The newer processors, SPARC T5, M6 and M7, are similar to 

SPARC T4 in terms of cryptographic processing.  
3 The SPECweb2005 benchmark has been retired  by SPEC. 
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modern banking requirements. 4  We have learned these 
requirements from customer engagements.  

A key area of our performance study is related to the Java Native 
Interface (JNI) calls when executing the cryptographic 
instructions. JNI calls involve copying of data and flushing of 
register windows, making them expensive and less suitable for 
small messages. A new approach, called intrinsics, eliminates the 
JNI overhead. The EEJS workload is an effective tool to compare 
the implementation based on intrinsics and the more traditional 
implementation that leverages JNI.  

This paper makes the following contributions. First, we 
demonstrate that the best performance on SPARC servers comes 
from using the hardware cryptographic instructions. Second, with 
Java Development Kit (JDK) 8u40 and later, accessing the 
hardware cryptography via intrinsics shows advantage over going 
through the JNI. Third, we have identified enhancements in the 
Java Secure Socket Extension (JSSE). The effects of the 
performance improvements are quantified in terms of response 
time, number of simultaneous user sessions, and intensity of user 
activities such as page views, just to name a few. 

For the remainder of the paper, in Section 2 we describe EEJS 
benchmark in detail. In Section 3 we cover the experiment setup 
and the cryptographic service providers offered in JDK on Solaris 
operating system. In Section 4, we present and evaluate the 
performance data. This is followed by Section 5 where we 
describe the JSSE enhancements along with their contributions to 
performance improvement. Finally we conclude the paper by 
summarizing our results in Section 6. 

2. BACKGROUND 
In this section, we first discuss the SPECweb2005 Banking 
workload and then introduce the EEJS enhancements. 

2.1 SPECweb2005 
SPECweb2005 Banking workload was developed after conducting 
extensive research in the financial sector, specifically focusing on 
the Web transaction types, the business logic, the payload size and 
the cipher-suite specification that was prevalent at the time. From 
the study, RSA1024_RC4_MD5/SSLv3 was most popular circa 
2005, thus it was chosen for SPECweb2005 as the cipher used for 
securing communication between the clients and the banking 
application.   

The overall structure of the SPECweb2005 Banking workload is 
illustrated in Figure 1. On the left hand side of the figure, the 
drivers simulate the browsers or mobile apps used by the banking 
customers. The drivers implement load generators that inject load 
into the client application, which in turn sends HTTPS requests to 
and receives HTTPS responses from the server [4].  

 

 

 

 

                                                                 
4 It should be noted that results from our modified benchmark are 

not compliant with SPECweb2005 run rules and cannot be 
compared with published results. However, the use of 
SPECweb2005 benchmark conforms to SPEC Fair Use Rule for 
research use [6].  

 

Figure 1 SPECweb2005 Banking Workload 

The server is a bank application running on a hardware platform 
referred to as System Under Test (SUT). The application accesses 
static content such as check images that are hosted by the internal 
storage disk on the SUT. The server works with a backend 
simulator (BeSim) to serve the client requests.  BeSim is intended 
to emulate a back-end application server that the bank application 
must communicate with to retrieve specific information (customer 
data, for example) needed to complete a transaction request from 
the customer. The communication between bank application and 
BeSim is over TCP and uses the HTTP protocol. 

There are two quality-of-service (QoS) parameters, TIME_GOOD 
and TIME_TOLERABLE, which are used to define the 
performance metrics of the benchmark.  Specifically, the 
performance metric SIMULTANEOUS_USERS is the maximum 
number of user connections that can be supported such that 1) 
TIME_GOOD QoS requirement can be met by at least 95% of the 
page requests and 2) TIME_TOLERABLE QoS requirement can 
be met by at least 99% of the page requests. Here, based on end-
user experience [4], TIME_GOOD is set at 2 seconds and 
TIME_TOLERABLE is set at 4 seconds. 

2.2 EEJS 
The overall structure of the EEJS workload is shown in Figure 2. 
We had a few goals in mind when we developed the workload. 
First, we eliminated the heavy disk usage caused by the large 
document root required in the original SPECweb2005 benchmark. 
In our use case, we would like to focus on the security processing 
requirements, not to be bogged down by the disk IO performance 
on the SUT. There are a few ways to alleviate the disk IO 
bottleneck such as using faster storage (e.g., SSDs) or storage 
devices front ended with large amount of DRAM for caching.  We 
opt for a software solution of implementing a small document root 
with a finite set of check images. Secondly, as SSLv3 has been 
deprecated and RC4 and MD5 are now considered insecure, we 
have modified the workload to use secure SSL ciphers 
(TLS_RSA_WITH_AES_128_CBC_SHA256 and TLS_RSA_ 
WITH_AES_128_GCM_SHA256, for example). Additionally, we 
have changed the protocol between the bank application and 
BeSim to be HTTPS, reflecting what we have learned from bank 
customers. This is accomplished by replacing the BeSim client (as 
part of the bank application) with the Apache HTTP client [7]. 
Finally, to simulate realistic use cases, each request from the bank 
application to BeSim makes a new HTTPS connection.  

 
Figure 2 EEJS Workload 
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EEJS inherits the QoS parameters from SPECweb2005, namely, 
TIME_GOOD (2 seconds) and TIME_TOLERABLE (4 seconds). 
Instead of reporting the SIMULTANEOUS_USERS performance 
metric, we use the number of simultaneous user sessions to 
control the load driven by the SUT. For example, fixing the load 
at N simultaneous user sessions, we measure the average response 
time, the percentage of responses within the TIME_GOOD limit, 
and the percentage of responses within the TIME_TOLERABLE 
limit.  

A key characteristic of the workload is that there are significant 
SSL handshake operations. From our experiments, more than 30% 
of the requests involve full handshake. Therefore, this workload 
stresses the cryptographic processing capability of the SUT, 
which serves quite well our need to address recent customer cases 
referred to in Section 1. 

From our experience, EEJS has proven to be an effective tool. In a 
series of experiments described in Section 4, it is used to 
demonstrate the performance advantage of hardware cryptography 
acceleration over conventional SPARC instructions. Furthermore, 
we compare different ways of accessing hardware cryptography, 
via the different Cryptographic Service Providers (CSPs). EEJS 
also helped identify a number of software enhancements, which 
can be applied to improve JSSE. These enhancements will be 
described in Section 5.  

3. EXPERIMENT SETUP 
Here we will first introduce CSPs, what they are and how they are 
configured. Then we will describe the hardware and software 
setups.  

3.1 Cryptographic Service Providers 
Cryptography implementations in the JDK are provided via 
several different CSPs. For example, with SPARC servers there 
are OracleUcrypto, SunPKCS11, SUN, SunJSSE, SunJCE and 
SunRsaSign providers [8]. Each CSP provides a package or set of 
packages that supply concrete implementation of a subset of the 
JDK Security API security features. Each JDK installation has one 
or more providers installed and configured by default [8] . These 
built-in providers and their usage priorities are listed in a 
configuration file named java.security. 5 

OracleUcrypto provider is a Solaris specific CSP that leverages 
the Solaris Ucrypto library to offload and delegate cryptographic 
operations to hardware supported by Oracle SPARC T4 and later 
processor based on-core cryptographic instructions [9]. Among 
other ciphers, RSA [10], AES [11] and SHA [12] ciphers are 
available in the OracleUcrypto provider. SunPKCS11 provider is 
supported on Solaris (SPARC and x86) and Linux (x86), in both 
32-bit and 64-bit Java processes [13]; it supports algorithms 
including RSA, AES and SHA. The SunJCE and SUN providers 
are “pure Java” CSPs in the sense that the cryptographic 
algorithms are implemented entirely in the JDK API classes 
without relying on any native libraries.   

For SPARC T4 and later Oracle SPARC servers, we have 
embedded assembly instruction level implementation of AES and 
SHA ciphers in the Java side code generation logic of the JVM. 
These assembly code implementations leverage appropriate 
hardware cryptography instructions. Such JVM embedded 
assembly implementations are also termed as JVM Intrinsics. A 

                                                                 
5 For a SPARC server running Solaris OS, the path to the file is  

$JAVA_HOME/jre/lib/security/java.security. 

key advantage of intrinsics is that they avoid the JNI overhead 
associated with accessing hardware cryptography instructions via 
native libraries such as the Solaris Ucrypto library. AES intrinsics 
are available since JDK 8u20, via the SunJCE provider. SHA 
intrinsics are available since JDK 8u40, via the SUN provider.  

EEJS has been used to evaluate the performance gain of the 
intrinsics, in comparison with OracleUcrypto and SunPKCS11 
providers. The comparisons will be described in Subsection 4.1. 

3.2 Hardware and Software Setups 
Refer to Figure 2 for the following description of our experiment 
setup. The SUT is a recently announced SPARC T7-1 server, 
running Solaris 11 Update 3 Build 27. The T7-1 server has 32 
cores and 480 GB of DRAM. On the SUT, we run the bank 
application with 4 cores of the server. Oracle WebLogic 
application server (WLS) running on the SUT is configured to use 
the following JVM flags: -Xms16g -Xmx16g -Xmn8g -
XX:+PrintGCTimeStamps -XX:+PrintGCDetails. We use WLS 
version 12.2.1 in our experiments.  

We have used JDK 8u40 and 8u60 for the Java runtime. As 
mentioned before, both AES and SHA intrinsics are available 
since JDK 8u40 for SPARC. 

We deploy the bank application on WLS, which is also 
responsible for catering application-specific static content such as 
check images from the internal storage disk. The workload drivers 
are run on two Oracle X2-2 servers. Each X2-2 has two Intel 
Westmere CPUs and 48GB of DRAM. BeSim is run on an Oracle 
X3-2 server, which has two Intel SandyBridge CPUs and 128GB 
of DRAM. All the systems, i.e., the hosts running the drivers, 
WLS and BeSim, are connected by a 10Gb Ethernet private 
network.  

For our experiments, we focus on the comparison between 
OracleUcrypto, SunPKCS11 and intrinsics. With JDK 8 on 
SPARC servers, OracleUcrypto is the default first priority CSP. 
We can edit the java.security file to change CSP priorities from 
OracleUcrypto to SunPKCS11. To exercise AES intrinsics, we 
need to disable AES in ucrypto-solaris.cfg or sunpkcs11-
solaris.cfg, depending on the chosen provider. In this way, the 
AES intrinsics implemented for SunJCE CSP will be used. 
Similarly, to use SHA intrinsics implemented for SUN CSP, one 
needs to disable SHA in ucrypto-solaris.cfg or sunpkcs11-
solaris.cfg. One can certainly use both AES and SHA intrinsics 
together, with appropriate changes in the ucrypto-solaris.cfg or 
sunpkcs11-solaris.cfg configuration files.  

For the connection between the driver and the bank application, 
cipher suite TLS_RSA_WITH_AES_128_CBC_SHA256 is used. 
This cipher suite uses RSA for key exchange. Note that RSA 
consists of key encryption/decryption, as well as key generation. 
With the default OracleUcrypto provider, SunPKCS11 is used for 
key generation. When SunPKCS11 is disabled in file java.security, 
key generation falls through to the next available provider which, 
in our case, is SunJCE.   

4. PERFORMANCE EVALUATION WITH 
EEJS 
In this section, we provide examples of how EEJS is used for 
performance evaluation. The examples here include comparing 
different CSPs and comparing hardware cryptography 
acceleration with software implementation of cryptographic 
algorithms.  
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We started out with the exact setup described in the previous 
section. However, we soon realized that there were a few software 
bottlenecks that had to be alleviated before we could move to 
performance comparisons of cryptography operations. The 
bottlenecks stemmed from the large number of connections 
between the bank application and BeSim (the SSL connections on 
the right hand side of Figure 2). To work around these bottlenecks 
we temporarily reverted back to plain-text HTTP connections, as 
were used in SPECweb2005. The data reported in this section is 
based on this workaround. In Section 5 we will describe how to 
address the discovered software bottlenecks. Identifying and 
addressing these bottlenecks is a major contribution of the EEJS 
workload analysis work.    

4.1 Comparison of CSPs 
We first compare the efficiency of different cryptographic service 
providers. Towards this end, we control the number of 
simultaneous user sessions and compare 1) the average response 
time, 2) the number of successful requests, 3) the percentage of 
requests that meet TIME_GOOD threshold, called good requests, 
and 4) CPU utilization including system and user times. Here, a 
request is considered successful if the response for it is fulfilled 
within the TIME_TOLERABLE interval.  

Table 1: The 5 CSP Configurations Used in the Performance 
Comparison  

 

Table 1 shows five different configurations (A, B, C, D and E) 
that have been evaluated here. Under each configuration are the 
CSPs used for the different cryptographic operations involved. 
For example, with Configuration A, SunPKCS11 is used for 
encrypting and decrypting keys as part of RSA; so is RSA key 
generation, AES and SHA. By contrast, with Configuration E, 
OracleUcrypto is used for encrypting and decrypting keys in the 
RSA, while SunJCE is used for key generation, and intrinsics 
within SunJCE and SUN are used for AES and SHA respectively. 
As mentioned in Section 3.1, both AES and SHA intrinsics are 
assembly-level implementations of the underlying methods and 
are embedded in the JVM code generation logic. JVM emits this 
assembly code while executing appropriate intrinsified methods 
from the JDK API. The other configurations B, C and D are self-
explanatory. Note that, Configuration B is the current out-of-box 
default configuration for JDK8 on SPARC servers. 

The results shown in Figure 3 are from the set of experiments with 
1,000 simultaneous user sessions. For each configuration, we run 
the load with 3 minutes ramp-up, 5 minutes warm-up, 10 minutes 
steady-state and 3 minutes ramp-down phases. The performance 
metrics are collected during the steady-state period of the run. 
Figure 3 shows the measured performance metrics, expressed in 
terms of the relative ratio to the default configuration 
(Configuration B). 

 

 
 

Figure 3: Performance Comparison between CSP 
Configurations 

In the bar chart of Figure 3, lower is better for ‘Response Time’ 
and ‘CPU Utilization’ metrics and higher is better for ‘Total 
Requests’ and ‘Good Requests’ metrics. 

Note that the configurations are chosen mainly to explore: 1) the 
performance advantages of current default configuration over the 
more traditional PKCS11 provider (Configuration A) and 2) the 
effect of using AES and SHA intrinsics. We observe that 
Configuration E provides the lowest average response time and 
highest total requests. It also has better QoS in the sense that it has 
higher percentage of good requests.6 Note that the performance of 
Configuration E is achieved with better CPU efficiency; it uses 
less CPU than Configuration B. 

From Figure 3, we see that Configuration B outperforms 
Configuration A. This is mainly because OracleUcrypto CSP’s 
usage of Solaris Ucrypto library accesses unprivileged 
cryptography instructions directly from user space, which should 
be compared with PKCS11 that is based on system calls. By 
contrast, Configuration D outperforms Configuration B because 
AES and SHA intrinsics avoid the JNI overhead that is inherent in 
the OracleUcrypto provider.   Configuration C stands in the 
middle between Configurations B and D; its use of intrinsics 
makes it more efficient in terms of AES and SHA, while its use of 
PKCS11 for RSA makes it less efficient in comparison to using 
Ucrypto library for RSA.  

The performance contrast between Configurations D and E is an 
interesting one. They differ only in the CSP used for key 
generation. Configuration D uses SunPKCS11, while 
Configuration E uses SunJCE. When SunJCE is used for key 
generation, SHA intrinsics are used in a critical step 
(SecureRandom) of the key generation, which leads to better 
performance than using SunPKCS11 for key generation. JDK bug 
report JDK-8044659 7 has the description of the key generation 
process in this case.  

                                                                 
6 The five configurations are virtually indistinguishable in terms 

of the percentage of good requests, with only Configuration A 
slightly lower.  

7 The notation JDK-nnnnnnn refers to a bug ID in the OpenJDK 
bug tracking system.  
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Figure 4: Capacity Comparison between Configurations B 

and E 

With the results in hand, we proceed to verify that the CPU 
efficiency of Configuration E can be translated into higher 
number of user sessions. Figure 4 summarizes our results. Here, 
we increase the number of simultaneous user sessions for 
Configuration E until the QoS metrics match those for 
Configuration B. We can see that Configuration E can support 
12% more simultaneous user sessions, while keeping the average 
response time on par with Configuration B.  Moreover, 
Configuration E achieves this with lower CPU utilization. 

From the results in this subsection, one can conclude that there is 
a combination that leads to best EEJS performance among the 
configurations tested. The combination consists of 1) 
OracleUcrypto for RSA encryption and decryption, 2) SunJCE for 
RSA key generation, 3) SunJCE for AES, and 4) SUN for SHA.  
Note that 2), 3) and 4) directly benefit from intrinsics. There is 
ongoing effort to make the best combination the default in future 
JDK releases. 

4.2 Advantage of Cryptography Instructions 
Configuration E can be further compared with a “pure software” 
configuration where we intentionally disable crypto intrinsics 
based hardware acceleration. To test a pure software configuration, 
we disable AES intrinsics from SunJCE, using “-XX:-
UseAESIntrinsics” JVM command line flag. We also disable 
SHA intrinsics from the SUN provider using “-XX:- 
UseSHA1Intrinsics -XX:-UseSHA256Intrinsics -XX:-
UseSHA512Intrinsics” JVM flags. In addition, we swap in 
SunJCE provider for RSA encryption and decryption. We add this 
“pure software” configuration to our configuration mix and call it 
Configuration F.  

From Figure 5 we see that hardware cryptography instructions 
with Configuration E provide very significant performance 
advantage over the implementation using regular ISA (“pure 
software”) instructions, as in Configuration F. Configuration F is 
not able to support the required QoS requirements, while CPU is 
close to 100%. By contrast, Configuration E has half the response 
time, utilizing only half of the CPU as that of Configuration F.  

 

 

Figure 5: Comparing the implementation using cryptography 
instructions (Configuration E) with the software-only 

implementation (Configuration F) 

5. PERFORMANCE OPTIMIZATIONS 
WITH EEJS 
By analyzing performance characteristics of EEJS workload we 
have identified enhancements in JSSE. This section describes the 
associated performance bottlenecks and possible enhancements. 
Before describing the JSSE enhancements we provide a brief 
introduction of JSSE.  

The Java Secure Socket Extension (JSSE) enables secure Internet 
communications. It provides a framework and an implementation 
for a Java version of the SSL and TLS protocols. It includes 
functionality for data encryption, server authentication, message 
integrity, and optional client authentication [14]. JSSE provides 
both an application programming interface (API) framework and 
an implementation of that API. The JSSE API supplements the 
core network and cryptographic services defined by the 
java.security and java.net packages by providing 
extended networking socket classes, trust managers, key 
managers, SSL contexts, and a socket factory framework for 
encapsulating socket creation behavior [14].  

EEJS enables the performance study of related Java packages in 
an end-to-end application setting. It helps us identify a few 
enhancements that can help improve performance. 

5.1 Buffered Reading of Trusted Certificates 
The primary responsibility of the TrustManager is to 
determine whether the presented authentication credentials should 
be trusted. If the credentials are not trusted, the connection will be 
terminated [14]. To authenticate the remote identity of a secure 
socket peer, an SSLContext object will be initialized with one 
or more TrustManager objects. If a null TrustManager 
object is passed into the SSLContext initialization, a new 
TrustManager will be created.  

Running EEJS with JDK 8u40, we noticed high system CPU time 
(around 70%) on the SUT, as well as high response time, when a 
null TrustManager was passed into the SSLContext 
initialization. During the initialization, a new TrustManager 
was created and initialized with a source of certificate authorities 
and related trust material, which was obtained by reading from the 
cacerts8 file and loading the trusted certificates.  

 
                                                                 
8 $JAVA_HOME/jre/lib/security/cacerts 
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Figure 6: Functions ordered by exclusive system CPU time 

Further analyzing the Oracle Studio Performance Analyzer [15] 
profiles as shown in Figure 6, we observed that 93% of the system 
CPU time was caused by the __read() system call, which, in turn,  
was called by the read() system call. To identify what was being 
read, we looked at the truss [16] output and observed that reading 
from the cacerts file was done on a single byte basis, as follows. 
The first four bytes of cacerts were the signature bytes, which 
were obtained by calling readInt() of the 
DataInputStream. Inside readInt(), it made four calls to 
read().  Similarly, the next four bytes representing the version 
of the cacerts file, as well as the subsequent four bytes 
representing the number of trusted certificate entries, were read 
one byte at a time. Furthermore, for each trusted certificate entry, 
the alias of the certificate, the certificate creation date, and the 
trusted certificate were also read on a single byte basis.  

Performance is improved with a fix for JDK bug JDK-8129634 
delivered by Java Engineering team. The fix wraps the 
DataInputStream representing the cacerts file in a 
BufferedInputStream object.  Instead of retrieving single 
byte from cacerts file, the BufferedInputStream object 
buffers 8192 bytes at a time and the read from the SSLContext 
initialization is now from this buffer. With JDK 8u60 that 
includes this bug fix, system CPU time drops to around 20% 
(from the previous 70%). Reducing the number of reads thus 
makes a significant difference in system CPU utilization.   

5.2 Consolidation of the Cacerts Keystore 
A keystore is a database for storing key management related data. 
Information residing in a keystore can be grouped into two 
categories: key entries and trusted certificate entries [14]. With 
EEJS running, we observed from the truss output that the cacerts 
file was opened for read repetitively and frequently. The 
frequency of the file open operations coincided with the frequency 
of SSL handshakes. We analyzed the call stack and associated 
source code and made the following observation. A new thread 
was created for each handshake. Each new thread started a new 
SSLContext initialization. During the SSLContext 
initialization, each TrustManager instance read the cacerts file 
and created a KeyStore instance. When there were multiple 
threads, each establishing its own SSLContext, there were 
multiple KeyStore instances accessing the common cacerts file, 
causing synchronization and memory overheads.  

To optimize the performance here, only one KeyStore instance 
needs to be created. In addition, the cacerts file should only be 
read when there is a modification in this file, instead of being 
opened and read every time. These changes are tracked by JDK 
Request for Enhancement (RFE) JDK-8129988. 

Without the change, with JDK 8u60 the maximum number of 
simultaneous user sessions is 490 while maintaining the 
TIME_GOOD and TIME_TOLERABLE QoS requirements. With 
the prototype changes for JDK-8129988, the average response 
time and the number of page views for 490 simultaneous user 
sessions improve by 9.5%, while meeting the QoS requirements.  

5.3 Elimination of Hot Locks 
5.3.1 sun.security.ssl.CipherSuite$BulkCipher.isAvai
lable() 
When a socket is created between WLS and BeSim server, WLS 
gets the default cipher suite list and iterates over the list to check 
the availability of individual ciphers. From the jstack output of 
WLS server threads, we noticed that a number of server threads 
are blocked in the BulkCipher.isAvailable() method. It 
is a synchronized method which checks the availability of a bulk 
cipher. It is called when a cipher suite list is requested at the initial 
phase of a handshake. Since each new connection between WLS 
and BeSim Server involves a full handshake, this method is 
frequently called.  

Within the method, there is a cache, implemented with a hash map. 
The cache is used to map the bulk cipher to its availability status. 
However, with JDK 8u60, even though the cache exists, it is 
cleared every time the method tries to get the cipher suite list, 
defeating the purpose of the cache. By not clearing the hash map 
cache  the average response time and the number of page views 
have improved by additional 3% for 490 simultaneous user 
sessions, and there is an additional 3% improvement on the 
percentage of TIME_GOOD responses. This change is tracked in 
JDK RFE JDK-8133070.  

5.3.2 SecureRandom.nextBytes() 
The SecureRandom class provides the functionality of a 
Random Number Generator (RNG). It differs from the 
java.lang.Random class in that it produces cryptographically 
strong random numbers. Random numbers are used throughout 
cryptography, such as for generating cryptographic keys, 
algorithmic parameters, and so on [8]. There are several different 
algorithms for SecureRandom: PKCS11, NativePRNG, 
SHA1PRNG, NativePRNGBlocking and 
NativePRNGNonBlocking. The PKCS11 algorithm is 
provided by the SunPKCS11 provider, while the others are 
provided by the SUN provider. If the entropy gathering device in 
java.security file is set to file /dev/urandom or file /dev/random, 
then NativePRNG is preferred to SHA1PRNG. Otherwise, 
SHA1PRNG is preferred [9]. In this study, NativePRNG is used 
to generate secure random bytes.  

A synchronized method is used to generate the secure random 
bytes. This method employs a global shared buffer for storing the 
random numbers read from the /dev/random file. The shared 
buffer is implemented using a byte array. When a fixed size of 
secure random bytes is requested, the method first checks if there 
are any bytes remaining in the buffer. If there are, it reads the 
requested number of bytes from the buffer and does a ‘xor’ 
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operation with the input random bytes.9  If there are not enough 
bytes remaining in the buffer, the synchronized method 
replenishes the buffer by reading random numbers from 
/dev/random. As the buffer is a global shared variable, the ‘xor’ 
operation between the buffer and the input has to be synchronized, 
leading to hot locks. The locks can be alleviated by using a finer 
grained synchronization.  

This change, which is tracked by JDK RFE JDK-8098581, helps 
improve the throughput of a secure random micro benchmark by 
more than three times.  With this change, the average response 
time and the number of page views improve by additional 19% for 
the configuration with 490 simultaneous users.  

5.3.3 Registration of CSP Services 
We also noticed a hot lock when getting services from a CSP. By 
design, there is a map maintaining the services offered by each 
CSP, and the constructor for a CSP object should record the 
supported services in this map. When an application gets service 
from a particular CSP, it looks up the map to find the supported 
services. However, in our EEJS experiments, we found that with 
the exception of the PKCS11 provider, other CSPs do not register 
the services in their respective constructor. As a consequence, 
when an application looks up the map, it always returns a null 
map. When the application finds a null map, it falls back to check 
a legacy map for services. It first checks a transient variable 
to see if the legacy map has been modified and then get the 
services from the legacy map.  

Ideally, a single map should suffice. When service map is null, 
falling back to legacy map incurs the overhead of exercising extra 
code path. In addition, as the method for getting services is 
synchronized, it causes performance regression when multiple 
threads are involved. This issue is currently tracked by JDK RFE 
JDK-8133906. 

5.4 Performance Optimization Results 
We measured the combined effect of all the changes mentioned in 
Section 5. With the officially released binaries of JDK 8u60, 490 
simultaneous user sessions can be achieved while maintaining 
QoS requirements. With the changes described in this section, 800 
simultaneous user sessions can be achieved. This is a 1.6 times 
improvement in terms of throughput. Table 2 shows these 
performance optimization results. If we restrict the load to 490 
simultaneous user sessions, the aforementioned changes lead to an 
improvement of 34.6% in average response time, 34.6% 
improvement in page views, and 2.36 times improvement in login 
latency. 

6. SUMMARY 
In this paper, we describe the motivation of EEJS workload, its 
use in conducting performance evaluation, and the performance 
optimization results from it. Performance evaluations using JDK 
8u40 running on SPARC servers lead to the conclusion that using 
JVM intrinsics for AES and SHA ciphers and using  
OracleUcrypto for RSA encryption and decryption provides the 
best performance among the configurations evaluated. There is 
ongoing work around out-of-the-box CSP configuration to 
provide the best combination of CSPs based on the underlying 
platform.  

                                                                 
9 The input random bytes were generated from an earlier 

operation invoking a secure random algorithm such as 
SHA1PRNG. 

Table 2: Performance results comparison between JDK 8u60 
and improvements from Section 5  

 
Since the EEJS workload is heavy on the SSL handshakes, it is 
also used to demonstrate the clear advantage of hardware 
cryptography acceleration. This is accomplished by comparing a 
configuration using hardware cryptography with one that uses 
conventional instruction set.  

We have identified a number of JSSE enhancements by analyzing 
performance characteristics of EEJS workload. Several of these 
enhancements are in the process of being incorporated into future 
JDK releases.  
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