
A Cost/Benefit Approach to Performance Analysis

David Maplesden
Dept. of Computer Science
The University of Auckland

dmap001@aucklanduni.ac.nz

Ewan Tempero
Dept. of Computer Science
The University of Auckland

e.tempero@auckland.ac.nz
John Hosking

Faculty of Science
The University of Auckland

j.hosking@auckland.ac.nz

John C. Grundy
School of Software and Electrical Engineering

Swinburne University of Technology
jgrundy@swin.edu.au

ABSTRACT
Most performance engineering approaches focus on under-
standing the use of runtime resources. However such ap-
proaches do not quantify the value being provided in return
for the consumption of these resources. Without such a mea-
sure it is not possible to compare the efficiency of these
components (that is whether the runtime cost is reasonable
given the benefit being provided). We have created an em-
pirical approach that measures the value being provided by
a code path in terms of the visible data it generates for the
rest of the application. Combining this with traditional per-
formance cost data, creates an efficiency measure for every
code path in the application. We have evaluated our ap-
proach using the DaCapo benchmark suite, demonstrating
our analysis allows us to quantify the efficiency of the code
in each benchmark and find real optimisation opportunities,
providing improvements of up to 36% in our case studies.

General Terms
Performance,Measurement

Keywords
efficiency analysis, blended analysis, profiling, runtime bloat

1. INTRODUCTION
Performance is a vital yet elusive attribute for much of

the software developed today. Software engineering prac-
tices that focus on increasing developer productivity and
software reuse have inevitably led to software built upon
generalised frameworks and libraries. This often results in
software with many layers of abstractions and very complex
runtime behaviour. For example an enterprise Java service-
oriented application may implement SOAP web services us-
ing the Axis web services framework in front of a Hibernate
backend accessing a relational database and be deployed in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICPE’16, March 12–18, 2016, Delft, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4080-9/16/03...$15.00.
DOI: http://dx.doi.org/10.1145/2851553.2851558.

a J2EE application server. This approach means that even
simple requests induce a chain of furious activity requiring
hundreds, maybe thousands, of method calls and data trans-
formations to complete [13]. The tendency of modern ap-
plications to engage excessive activity to complete straight-
forward tasks has become known as runtime bloat [11, 21].

Most performance engineering approaches focus on un-
derstanding an application’s cost i.e. its use of runtime re-
sources. However understanding cost alone does not nec-
essarily help find optimisation opportunities. One piece of
code may take longer than another simply because it is per-
forming more necessary work. For example it would be no
surprise that a routine that sorted a list of elements took
longer than a routine that returned the number of elements
in the list. The fact that the costs of the two routines are
different does not help us understand which may represent
an optimisation opportunity. However if we had two differ-
ent routines which both achieved the same result e.g. two
different sorting algorithms, then determining which is the
more efficient solution becomes a simple cost comparison.

The key is to understand the runtime value provided by a
piece of code. Without this understanding it is not possible
to compare different branches of code to find the superfluous
activity that characterises runtime bloat. Existing perfor-
mance analysis approaches generally do not measure value,
traditionally this has been left to the engineer to determine
through experience, intuition or guesswork. The challenge
of intuitively divining value becomes much more difficult in
modern, large-scale applications. Large-scale applications
have thousands of methods interacting to implement run-
time behaviours with millions of code paths[6]. Establishing
the value provided by each method via manual inspection is
not practical with such numbers of method calls. If we were
able to empirically measure runtime value then we could
combine this with traditional runtime cost information to
establish the efficiency of each code path in the application.

This then is the key idea presented in this paper, we de-
scribe an approach to empirically quantify the runtime value
of all code paths in an application so we can measure their
efficiency. This allows us to find the most inefficient code
paths in the application and analyse them for optimisation
opportunities.

The main contributions of this paper are:

• We introduce the concept of focussing on the efficiency
rather than purely on the cost of runtime behaviour.

15

• We describe blended efficiency analysis, a blended anal-
ysis approach to measuring code efficiency.

• We empirically evaluate our approach over standard
benchmarks to characterise typical efficiency attributes.

• We demonstrate the utility of blended efficiency analysis
in several case studies.

The remainder of this paper is structured as follows. Sec-
tion 2 motivates our work and presents background infor-
mation. Section 3 covers related work. Section 4 describes
our approach. Section 5 presents an evaluation using the
DaCapo benchmark suite and several case studies. Section
6 discusses the results of our evaluation and areas of future
work. We conclude in Section 7.

2. MOTIVATION AND BACKGROUND
Traditional profiling tools typically record measurements

of execution cost per method call. The costs are usually
captured with calling context information, that is, the hier-
archy of active methods calls leading to the current call, and
are aggregated in a calling context tree (CCT) [1].

A CCT is a data structure that records all distinct calling
contexts of a program. Each node in the tree has a method
label representing the method call at that node and has a
child node for each unique method invoked from that calling
context. Therefore the method labels on the path from a
node to the root of the tree describe a complete and distinct
calling context.

Figure 1 in Section 4 shows an example CCT. Each node
records the aggregated execution costs for a specific calling
context. The execution cost recorded at a node does not
include the cost of any child method calls, therefore it is
known as the exclusive cost. The inclusive cost at a node
does include the cost of child method calls and is the sum of
the exclusive costs of all the children in the sub-tree rooted
at the node.

The difficulty in analysing a CCT profile is that large-
scale applications tend to have runtime costs that are thinly
distributed across thousands of methods, meaning there are
few obvious hotspots to target [21]. Table 1 shows the top
ten hot methods from the h2 DaCapo benchmark and illus-
trates the typical challenges. Five of the ten hot methods
are low level utility methods from the Java system library,
methods that are typically very difficult to optimise or avoid.
Four of the remaining five methods (numbers 2, 4, 7 & 9) are
core routines in the H2 implementation that are again both
simple and widely used, e.g. Row.getValue() is a basic get-
ter method that occurs in over 3000 locations in the CCT.
This leaves only TPCC.calculateSumDB, which we discuss in
Section 5.1.1, as a realistic optimisation opportunity from
the top ten hot methods.

Intuitively then nine of the ten hot methods are hot simply
because they are being frequently executed and not because
they are inherently inefficient. In our experience this is typ-
ical of many large-scale object oriented programs. However
within the h2 benchmark there exist a number of optimi-
sation opportunities not easily discoverable from the tradi-
tional performance profile, in fact over 10% of the bench-
mark’s cost is spent in methods that achieve nothing at all.

An example of one of these no effect methods is JdbcRe-
sultSet.checkColumnIndex(), which is called every time a
field is retrieved from a result set. It is responsible for rais-
ing a suitable exception should the column index not be in

Table 1: Top 10 Hot Methods — h2
Method %Cost

org.dacapo.h2.TPCC.calculateSumDB(String, int) 08.011

org.h2.index.BaseIndex.compareRows(Row, Row) 06.159

java.lang.String.charAt(int) 05.767

org.h2.index.BaseIndex.compareValues(Value, Value, int) 04.063

java.lang.Integer.getChars(int, int, char[]) 03.922

java.lang.System.arraycopy(Object, int, Object, int, int) 02.967

org.h2.table.TableFilter.next() 02.954

java.lang.String.length() 02.473

org.h2.result.Row.getValue(int) 02.321

java.lang.AbstractStringBuilder.append(String) 01.964

the valid range for the result set. However it also checks
that both the underlying JDBC statement and connection
are still open. In the course of our benchmark run these
conditions were always satisfied, so in practice the method
never raised an exception and hence its runtime value was
zero – it was making no practical contribution to the bench-
mark processing. Reviewing the implementation we found
that the checks on the statement and connection were un-
necessary as neither were used during a field access. All
field data is loaded into memory when the result set cursor
is advanced to the current row via JdbcResultSet.next().
Both the statement and connection are confirmed to be open
at this point, making the repeated checking on every field
access redundant. We were able to refactor the checks per-
formed on every field access and almost completely eliminate
their runtime cost. This change reduced the total amount
of benchmark code that was having no effect by over 75%
and reduced the overall benchmark time by 8%.

3. RELATED WORK
There is a large body of work into investigating software

performance that we cannot adequately describe here due to
space limitations. We discuss the most closely related work
below but a full review of relevant empirical performance
analysis approaches can be found in our review paper [9].

3.1 Runtime Bloat Analysis
The body of work that most closely matches ours in its

motivation is the existing research into runtime bloat [21].
Generally the research has focussed on memory bloat (exces-
sive memory use)(e.g. [5, 2]) or they have taken a data-flow
centric approach [12, 13], looking for patterns of inefficiently
created or used data structures, collections and objects [17,
19, 22, 18, 20, 23, 14]. Most of these approaches are looking
for optimisation opportunities of a similar nature to those
we are searching for, but our more generalised notion of
understanding the value provided by all code paths in an
application, rather than focussing primarily on understand-
ing the use of data structures, allows us to discover a variety
of different optimisation opportunities. Our previous work
[10] on subsuming methods analysis aimed to finding com-
pact repeated patterns of method calls that represented a
significant hotspot and optimisation opportunity.

3.2 Blended Analysis
Blended analysis (a term first coined by Dufour et al in

their work on blended escape analysis [7, 8]) is a combination
of dynamic and static analysis, where the dynamic analysis
determines the program region over which the static analysis
is performed. With the notable exception of the work by Du-

16

four et al, very little existing performance analysis research
uses either static or blended analysis to aid in the gather-
ing or interpretation of performance data [9]. In particular
the majority of the runtime bloat research instead uses pure
dynamic analysis in the form of specialised profiling imple-
mented by modifying an open-source research JVM, often
incurring very high runtime overheads.

We have implemented our efficiency analysis as a blended
analysis, leveraging both dynamic profiling information and
an intra-procedural forward data flow static analysis. Using
blended analysis allows us to leverage the benefits of both
static and dynamic analysis. To quote from Dufour et al [8]:

Blended analysis offers many advantages com-
pared to a purely static or dynamic analysis. First,
blended analysis limits the scope of the static
analysis to methods in the program that actu-
ally were executed, thus dramatically reducing
the cost of a very precise static analysis by re-
ducing its focus, allowing achievement of high
precision over an interesting portion of the pro-
gram. Second, blended analysis only requires a
lightweight dynamic analysis, thus limiting the
amount of overhead and perturbation during ex-
ecution.

We gained the same advantages, allowing us to implement
an offline analysis that could measure the runtime value of
all code paths captured by a lightweight dynamic profile.
Where the focus of Dufour et al’s work was to understand
the use of temporary objects our more general focus was
to appreciate the value being provided by the code paths
captured in an application profile.

4. BLENDED EFFICIENCY ANALYSIS
We wish to quantify the efficiency of the code in an ap-

plication. Our approach to achieving this is to calculate a
measure of value for every node in a captured calling con-
text tree profile. We can then trivially combine this with the
traditional cost measures captured in the profile to calculate
the efficiency at every calling context:

CCeff = CCvalue/CCcost

We can also similarly calculate the efficiency of any method
using the aggregated method value and cost. Our measure of
value at each calling context is an inclusive measure for the
entire sub-tree rooted at that node. Therefore the efficiency
measure is not just for the activity in the method at that
node but all the activity in the sub-tree.

Our approach to quantifying value is to measure the vol-
ume of data created by a method that becomes visible to
the rest of the application i.e. it escapes the context of the
method. Our rationale is that the value a method is provid-
ing can only be imparted by the data it creates that is subse-
quently visible outside of the method. Intermediate objects
and calculations that are created during processing but then
discarded do not contribute to this final value. Intuitively
two method calls that produce identical results (given the
same arguments) and have no other side effects, are provid-
ing the same value, regardless of their internal implementa-
tion.

Specifically we track the number of object field updates
that ultimately escape their enclosing method. An object

field update is any assignment to an object field or array
element e.g. foo.value = 1 or bar[0] = 1. For brevity we
will refer to such an assignment as a write. Writes to static
fields are handled as a special case of an object field write
that is being applied to a special global object. Assignments
to primitive local variables are not recorded as writes as
they hold only intermediate values that must be copied to
an object field in order to escape the current calling context.

To escape the current calling context, a write must be
applied to either:

• a globally accessible field or object (globally escaping)
• a method operand (operand or argument escaping)
• an object returned from the method (returned)

To these traditional escape states we also track when an
object has been passed to an IO output routine (output
escaping) as the data has escaped to an external source.

Our concept of escaping writes is similar to object escape
analysis[4]. Escape analysis is a method of characterising
the effective lifetime of objects, it calculates whether newly
created objects become visible outside of the method which
created them. Our tracking of writes rather than objects
gives us a more fine-grained view of the work being done
and our concept of output escaping writes has no parallel in
object escape analysis.

Each write that occurs at a calling context we call a local
write. The total writes for a calling context is the sum of
the total writes of its child methods plus its local writes.
Therefore the sum of the local writes in any sub-tree will
equal the total writes for the node at the root of the sub-
tree. Each one of the total writes either escapes the calling
context or we say it is non-escaping. Escaping writes are
categorised as global, operand, returned or output depending
on how they escape. An escaping write may satisfy more
than one of these classifications simultaneously. For example
a write to an object that is both an operand and returned
will be counted as both an operand and returned write, but
only a single escaping write.

Operand and returned writes may be captured by a parent
context if, for example, an object created and returned by
one method is then discarded by the calling method. Global
and output writes however are globally escaping, they can
never be captured. To be exact the captured writes for a
calling context is the number of local and child escaping
writes that do not escape the context. This definition means
the sum of the captured writes in any sub-tree will equal the
non-escaping writes for the node at the root of the sub-tree.

Finally the value for each calling context is the number
of escaping writes at the node plus, for methods with prim-
itive non-void return types, we add the method invocation
count. This ensures they have a value of at least one for each
invocation, to reflect the value of the primitive they return.

Example 1 lists some examples from Java library code:

• Arrays.copyOf() – has only returned writes as it re-
turns the new array object it creates and populates.
There are no operand, global, output or captured writes.

• String.getChars() – has only operand writes as it sim-
ply populates the buffer passed as its third operand

• AbstractStringBuilder.expandCapacity() – has only
operand writes, as it only updates the state of the this

object to create a new larger internal buffer
• AbstractStringBuilder.append(String) — has both

operand and returned writes as it updates its internal
state and then returns a reference to itself

17

Example 1 Selected Java library methods
1: public class AbstractStringBuilder {
2: public AbstractStringBuilder append(String str) {
3: if (str == null) str = "null";
4: int len = str.length();
5: ensureCapacityInternal(this.count + len);
6: str.getChars(0, len, this.value, this.count);
7: this.count += len;
8: return this;
9: }

10: private void ensureCapacityInternal(int minimumCapacity) {
11: if (minimumCapacity - this.value.length > 0)
12: expandCapacity(minimumCapacity);
13: }

14: void expandCapacity(int minimumCapacity) {
15: int newCapacity = this.value.length * 2 + 2;
16: if (newCapacity - minimumCapacity < 0)
17: newCapacity = minimumCapacity;
18: if (newCapacity < 0) {
19: if (minimumCapacity < 0) // overflow
20: throw new OutOfMemoryError();
21: newCapacity = Integer.MAX_VALUE;
22: }
23: value = Arrays.copyOf(this.value, newCapacity);
24: }
25: }

26: public class String {
27: public void getChars(int bgn,int end, char dst[],int pos) {
28: System.arraycopy(this.value, bgn, dst, pos, end - bgn);
29: }
30: }

31: public class Arrays {
32: public static char[] copyOf(char[] orig, int len) {
33: char[] c = new char[len];
34: System.arraycopy(orig,0,c,0,Math.min(orig.length,len));
35: return c;
36: }
37: }

Our blended efficiency analysis consists of three phases:

• the capturing of a dynamic calling context tree profile
during the execution of an application

• a pure intra-procedural static analysis for each method
captured in the dynamic profile

• a final analysis phase where the results of the static
analysis are combined with the dynamic profile to build
a complete inter-procedural write analysis

Our implementation is built to work with Java applica-
tions, but the concepts are easily transferable to any object-
oriented language.

4.1 Profiling
We used the JP2 profiler developed at the University of

Lugano [15, 16] to capture our CCT profiles. JP2 is an in-
strumentation based profiler that captures basic block level
profiles in a calling context tree data structure. Each node
has an array of invocation counts, one for each basic block in
the method. JP2 calculates the runtime cost for each node
as the number of bytecode instructions executed. This plat-
form independent metric appealed to us for our experiments
because it was portable and reproducible.

We made one extension to JP2 to support our specific pro-
filing needs. System.arraycopy() is a native method used
to copy array content from a source array to a destination
array and it is passed a length parameter which defines the
number of elements copied. We felt it important to be able
to record its activity, because it is a very frequently invoked

method whose sole purpose is to populate an array i.e. create
writes. Because it is a native method we cannot record its
activity using normal bytecode instrumentation. Therefore
we augmented JP2 to record the length parameter at run-
time and aggregate it into a cumulative count kept alongside
the basic block counts for each System.arraycopy() node in
the CCT. This allows us to know precisely how many writes
have been performed at each of these nodes in the CCT.

4.2 Static Write Analysis
The static analysis we use is an intra-procedural forward

data flow analysis (implemented using the ASM 5.0.4 byte-
code manipulation library1) that tracks the origin of each
object reference utilised within the method. We first find
and record the basic blocks within the method before then
performing the data flow analysis. Like all forward data flow
analyses our analysis simulates all execution paths through
the method and maintains a complete stack frame for each
instruction representing the possible values of all local vari-
ables and method operands after that instruction. The key
implementation points of our analysis are:

• Each object reference has a value (we call its origin
value) indicating its possible origin, being one of:
– Operand – a method operand
– Local – a new locally created object
– ReturnValue – the result of a child method call
– Global – retrieved from a global (static) field
– Output – an operand to an IO output method
– a composite value made up of a set of the above values

• The initial stack frame is initialised with Operand values
for the method operands

• New Local, ReturnValue and Global values are created
in response to the new object, invoke method and get
static field instructions respectively

• The result of referencing an object field (via the get field
instruction) is the value of the parent object e.g. the
field of a Local is a Local

• For each put field instruction we record a write against
the current basic block with the origin value of both the
updated field and the value being put

• We also record a write for each newly created object or
array so that new objects, even with no explicit field
puts, have a non-zero write count

• Arrays are handled the same way as objects, with the
new array instruction creating a new Local value and
getting or setting of an array element being treated the
same as an object field get or put

• For each child method call instruction we record the
origin values of the method operands used for the call

• For each return instruction we record against the cur-
rent basic block the origin value of the returned object

At the completion of the analysis we have recorded for
each method:

• the child method call information, including the origin
value for every operand to those calls

• the basic blocks in the method, and for each basic block:
– every field write, including the origin value of both

the updated and put objects
– the origin value of any return instruction (there can

be at most one in a basic block)

1http://asm.ow2.org/

18

This information gives us the static escape information for
each potential write performed by the method. However it is
not until we combine it with the runtime profile information
that we can determine how many writes were performed and
what the escape status of those writes is.

For example the static information for Arrays.copyOf()

from Example 1 can tell us that:

• There is one new object (an array) created at line 33,
which we denote Local[33]

• There is one method call made to System.arraycopy()

where we pass Operand[0] as the first parameter and
Local[33] as the third parameter

• We return Local[33]

At this intra-procedural static analysis phase we do not
know what, if any, writes System.arraycopy() may per-
form and therefore we do not know the actual number of
returned writes in Local[33] or operand writes applied to
Operand[0].

4.3 Inter-Procedural Write Analysis
The final stage of the blended analysis completes the inter-

procedural write analysis using a post-order (i.e. child-first)
traversal of the CCT to merge the dynamic profile data with
the static write information. The essence of the process is
to use the basic block count information from the dynamic
profile to determine which statically recorded writes actu-
ally occurred. We use this write information to construct
an object update graph that represents which objects are as-
signed to the fields of which other objects. This allows us to
account for situations such as when a write is applied to a
Local object which is then put into an Operand object. The
initial write has been propagated to an operand and needs
to be counted as operand escaping.

The actual steps performed for each node in the CCT are:

• find the node’s runtime return value
• build the node’s object update graph
• use the object update graph to find the escape status

for each occurring write and record these writes
• aggregate the write information from the child nodes to

complete the write counts at this node

We also need to resolve any ReturnValue origin values
from the static analysis phase. Resolving an origin value is
the process of determining a concrete runtime origin value
for ReturnValue types i.e. whether it is in fact a Local,
Global or Operand object. We do this by finding the actual
child in the CCT associated with the method call from the
ReturnValue origin value and using the runtime return value
from that node. If this runtime return value refers to an
Operand origin value we then need to use our recorded child
call information to determine the value of the operand when
the method was called. So consider resolving the call to
StringBuilder.append(String) at line 4 (we denote this
as ReturnValue[append()@4]) in the method below:

1: public static String buildString() {
2: final StringBuilder sb = new StringBuilder();
3: return sb.append("Hello")
4: .append("World").toString();
5: }

We know that StringBuilder.append(String) returns
this so the child node in the CCT will have a return value
of Operand[0]. Looking at the static call information for
the [append()@4] method call we can see that operand 0

for that call is ReturnValue[append()@3] i.e. the result of
the append on line 3. So we then resolve the call to Return-

Value[append()@3]. The associated child node will again
have a return value of Operand[0] but this time the static
call information for [append()@3] tells us that operand 0
is Local[2] (the new StringBuilder created at line 2 as-
signed to the sb variable). Therefore the final resolved value
for ReturnValue[append()@4] is Local[2].

The complete algorithm for resolving values is listed in
Algorithm 1. Note that when processing the child return
value cv there is no need to handle ReturnValue types as
these child return values have themselves already been re-
solved i.e. they cannot have a ReturnValue type.

Algorithm 1 Resolve Value

function resolve(OriginValue v, CCTNode node)
if isComposite(v) then

OriginValue result← null
for all OriginValue next in v.values do

OriginValue r ← resolve(next, node)
result← merge(result, r)

return result
else if isReturnValue(v) then

CCTNode child← node.getChild(v.call.method)
OriginValue cv ← child.returnV alue
OriginValue result← null
if isOperand(cv) then

OriginValue op← v.call.arg[cv.opIndex]
OriginValue r ← resolve(op, node)
result← merge(result, r)

if isLocal(cv) then
result← merge(result, Local)

if isGlobal(cv) then
result← merge(result, Global)

return result
else
return v

The algorithm for finding the runtime return value for a
node is listed in Algorithm 2. The basic idea is that we merge
together the possible return values from the basic blocks
with non-zero invocation counts. Any basic block with a zero
invocation count has not been executed and therefore we
can exclude it from the runtime return value for the current
node. Finally we resolve this merged runtime value (using
Algorithm 1) to remove any references to ReturnValue types
giving us a runtime return value purely in terms of Local,
Global and Operand origin values.

Algorithm 2 Runtime Return Value

function findRuntimeReturnValue(CCTNode node)
OriginValue result← null
int i← 0
for all BasicBlock bb in node.method.blocks do
if node.blockCount[i] > 0 then
result← merge(result, bb.returnV alue)

i← i + 1

return resolve(result, node)

An overview of the algorithm used to build the object
update graph is listed in Algorithm 3. In the first stage we
iterate over every recorded write from a basic block with a
non-zero invocation count and add an edge from the putted
value to the updated value. In the second stage we iterate
over the child nodes in the CCT and merge in the parts
of their object update graphs that impact the objects in
the current node. That is every edge in the child graph
that leaves an operand type or the returned object. When

19

we merge edges from the child graphs we need to resolve
operand types in the child to their values in the parent using
the recorded child call information. In the final stage, if the
method at the current node is an IO output method, we
add an edge from each output operand to the special Output
origin value type.

Algorithm 3 Building the Object Update Graph

function buildUpdateGraph(CCTNode node)
Graph result← new Graph
int i← 0
for all BasicBlock bb in node.method.blocks do
if node.blockCount[i] > 0 then
for all Write w in bb.writes do

OriginValue from←resolve(w.putted, node)
OriginValue to←resolve(w.updated, node)
graph.addEdge(from, to)

i← i + 1

for all CCTNode child in node.children do
for all OriginValue from in child.graph do
if isOperand(from) then

Call call← node.method.getCall(child.method)
OriginValue op← call.arg[from.opIndex]
OriginValue value← resolve(op, node)
for all OriginValue to in child.graph do
if child.graph.hasPath(from,to) then
if isOperand(to) then
to← call.arg[to.opIndex]
to← resolve(to, node)
graph.addEdge(value, to)

if isGlobal(to) then
graph.addEdge(value, Global)

if isOutput(to) then
graph.addEdge(value, Output)

if child.isReturned(to) then
graph.addEdge(value, Local)

if isOutput(node.method) then
for all int op in node.method.operands do
if isOutputArgument(op) then
graph.addEdge(Operand[op], Output)

return graph

Once the object update graph has been built it is straight-
forward to count the object writes performed at the current
node. We iterate again over the writes from the basic blocks
with non-zero counts. For each write we use the object up-
date graph to determine the escape status of the write and
then account for the write accordingly.

The final stage of the process is to aggregate the child
write information so that we have at each node the complete
aggregate write information for the sub-tree. Total, global,
output and non-escaping writes can be aggregated directly
from the child nodes as for each of these types of writes
the status is preserved from the child to the parent e.g. a
global write in the child will always be a global write in the
parent. The difficulty comes in determining the status of the
operand and returned writes from the child, whether they
escape the parent or are captured.

To accurately aggregate the child escaping write informa-
tion we replay the operand and returned writes recorded
by the child node, after again resolving the operands to
their appropriate origin values in the current node using
the recorded child call information. This allows us to eval-
uate the escape status for these writes in the current node
and account for them accordingly. When we account for a
write at a given node we keep a record of that accounting so
that the parent can later use it to replay the operand and
returned writes. These write records include the relevant
writes from all child nodes, therefore a node only needs to

check the write records of its direct children and not all the
nodes further down the sub-tree.

The final task is to calculate a value for each CCT node.
This is simply the number of escaping writes at the node plus
an adjustment for methods with primitive non-void return
types. For these methods we added the method invocation
count to the value, effectively giving them a value of at least
one for each invocation, to reflect the primitive data value
they return.

4.4 Example - Time Formatting
Consider the example code listed in Example 2. The

CCT with the calculated write information for this code is
shown in Figure 1 and the final write statistics aggregated
by method are shown in Table 2.

Example 2 Time formatting
1: public static void outputTime(OutputStream out) {
2: final StringBuilder sb = new StringBuilder();
3: formatTime(sb, 123456789, false);
4: out.write(sb.toString().getBytes());
5: }

6: public static void formatTime(StringBuilder sb, long time,
7: boolean appendMillis) {
8: long seconds = time / 1000;
9: long minutes = seconds / 60;
10: long hours = minutes / 60;
11:
12: sb.append(zeroPad(4, hours)).append(" hours ");
13: sb.append(zeroPad(2, minutes % 60)).append(" minutes ");
14: sb.append(zeroPad(2, seconds % 60));
15: if (appendMillis) {
16: sb.append(".").append(zeroPad(3, time % 1000));
17: }
18: sb.append(" seconds");
19: }

20: public static String zeroPad(int l, long v) {
21: String result = "" + v;
22: while (result.length() < l) {
23: result = "0" + result;
24: }
25: return result;
26: }

This code outputs a formatted time string to the given
OutputStream. The code as written with the hard-coded
value of 123456789 outputs the string "0034 hours 17 min-

utes 36 seconds" (32 characters). We begin our analysis
with the zeroPad method. This method constructs a zero-
padded string representation of a long that is at least a given
minimum length. On every invocation the statement on line
21 creates a new StringBuilder and calls append(long)

and then toString() on it. When the result needs to be
zero-padded, the statement on line 23 creates an additional
StringBuilder (this time via the <init>(String) construc-
tor) and more calls to append(String) and toString(). In
our example zeroPad is invoked 3 times, and on one of these
invocations it twice iterates around the zero-pad loop, so
in total we have 5 calls to toString() which cumulatively
have 33 returned writes. The return value for zeroPad is
the result of these toString() calls so the number of re-
turned writes for zeroPad is 33. These are the only escaping
writes for the method, all writes generated by the use of the
StringBuilder objects are captured by the method.

The formatTime method populates a StringBuilder ob-
ject (passed as operand 0) with a formatted time string for
a given long value. It calls append(String) 6 times, 3 times

20

Figure 1: CCT annotated with write information for Example 2
The shaded blocks represent sub-trees that have been truncated for simplicity, most of these are shown in full elsewhere in the tree. The number
in parentheses is the node’s invocation count, where it is not shown the invocation count is the same as for the parent node. All non-zero write
counts for each node are also shown, where a count for a particular type of write is not given it can be taken as 0.

Table 2: Aggregated Method Write Counts - Example 2
Method Inv. Cost Value Efficiency Total Esc Non-Esc Cap Out Ret Op Local
outputTime(OutputStream) 1 3563 33 00.926 229 33 196 95 33 0 0 1
System.arraycopy(...) 18 924 132 14.285 132 132 0 0 0 0 132 132
formatTime(StringBuilder,long,boolean) 1 2100 56 02.666 124 56 68 33 0 0 56 0
StringBuilder.toString() 6 675 75 11.111 69 69 0 0 0 69 0 6
zeroPad(IJ) 3 1291 36 02.788 68 33 35 35 0 33 0 5
StringBuilder.append(String) 10 1069 67 06.267 67 67 0 0 0 67 67 0
AbstractStringBuilder.append(String) 10 1009 67 06.640 67 67 0 0 0 67 67 10
String.getBytes() 1 1121 33 02.943 66 33 33 0 0 33 0 0
StringEncoder.encode(char[],int,int) 1 906 33 03.642 66 33 33 33 0 33 0 1
String.<init>(char[],int,int) 6 621 63 10.144 63 63 0 0 0 0 63 12
Arrays.copyOfRange(char[],int,int) 6 477 51 10.691 51 51 0 0 0 51 0 6
String.getChars(int,int,char[],int) 10 473 39 08.245 39 39 0 0 0 0 39 0
Arrays.copyOf(byte[],int) 1 243 33 13.580 33 33 0 0 0 33 0 1
UTF 8$Encoder.encode(char[],int,int,byte[]) 1 603 33 05.472 32 32 0 0 0 0 32 32
AbstractStringBuilder.expandCapacity(int) 1 153 18 11.764 18 18 0 0 0 0 18 1
AbstractStringBuilder.ensureCapacityInternal(int) 13 247 18 07.287 18 18 0 0 0 0 18 0
Arrays.copyOf(char[],int) 1 132 17 12.878 17 17 0 0 0 17 0 1
AbstractStringBuilder.<init>(int) 6 42 12 28.571 12 12 0 0 0 0 12 12
AbstractStringBuilder.append(long) 3 414 9 02.173 9 9 0 0 0 9 9 3
StringBuilder.append(long) 3 432 9 02.083 9 9 0 0 0 9 9 0
StringBuilder.<init>(String) 2 186 8 04.301 8 8 0 0 0 0 8 0
StringBuilder.<init>() 4 44 8 18.181 8 8 0 0 0 0 8 0
Long.getChars(long,int,char[]) 3 228 6 02.631 6 6 0 0 0 0 6 6
String.length() 17 68 17 25.000 0 0 0 0 0 0 0 0
Math.min(int,int) 9 47 9 19.148 0 0 0 0 0 0 0 0
Long.stringSize(long) 3 78 3 03.846 0 0 0 0 0 0 0 0
Totals 196 229

21

with the result of a call to zeroPad and 3 times with string
literal values. These 6 calls induce 56 operand escaping
writes to the StringBuilder made up of:

• 32 individual character writes
• 6 writes (one per call) to the builder’s count variable
• 18 further writes that occur when the builder needs to

expand the capacity of its internal buffer - this expan-
sion creates a new buffer (1 write), copies the existing
16 characters into it and assigns it (1 more write) to its
buffer variable

The 33 returned writes from zeroPad are all captured by
formatTime as the strings returned from zeroPad do not es-
cape formatTime. Therefore we have 68 non-escaping writes
(the 33 captured by formatTime plus the 35 captured by ze-

roPad), 56 escaping writes and 124 writes in total.
The outputTime method creates a StringBuilder, passes

it to formatTime, then calls toString() and finally get-

Bytes() on the result to create a byte array it can pass to the
given OutputStream. The writes associated with the builder
(3 from its construction and 56 operand writes from format-

Time) plus the 36 writes returned from toString() make up
the 95 captured writes as neither of these objects escape the
method. The 33 returned writes from getBytes() are out-
put escaping because the returned byte array is passed to
our IO output method. There are 33 returned writes for our
32 length byte array because of the one write allocated for
each newly constructed object, in this case the byte array
itself. The getBytes call also has 33 non-escaping writes be-
cause the string encoder does not know the exact length of
the byte array to allocate ahead of time. Therefore it needs
to encode into an oversized byte array and copy the array
when it is finished to return an array of the exact size.

Even from this simple example there are some points of
note in the method write statistics in Table 2.

• The methods with the most obvious inefficiencies (such
as zeroPad and formatTime) had high numbers of cap-
tured writes and low efficiency values.

• The difference in efficiency between the builder’s ap-

pend(String) and append(long) methods shows how
much more work has to be done to convert a two’s
complement form value into a string when compared
to simply copying existing character data.

• System.arraycopy was the root source of more than
half of all the writes in our example. Whilst this is a
contrived example this was a trend we also noticed in
our later experiments.

5. EVALUATION
In order to evaluate our blended efficiency analysis we

have conducted experiments with the 14 benchmark appli-
cations in the DaCapo-9.12-bach suite [3]. Using the results
of those experiments we have undertaken:

• A study of the characteristics of application efficiency
• Three detailed case studies that describe real optimi-

sations we made in the benchmark applications based
upon our efficiency analysis results

All benchmarks were run with their default input size. All
experiments were run on a quad-core 2.4 GHz Intel Core i7
with 8 GB 1600 MHz DDR3 memory running Mac OS X
10.9.3. We used Oracle’s Java SE Runtime Environment
(build 1.7.0 71-b14) with the HotSpot 64-Bit Server VM
(build 24.71-b01, mixed mode).

We profiled the benchmarks in the same manner that we
conducted our experiments in our previous paper [10]. That
is we executed the majority of the benchmarks in the fash-
ion outlined in the most recent JP2 paper [15], but for the
client/server benchmarks (tomcat, tradebeans and trades-

oap) and the benchmarks with background worker threads
(eclipse and xalan) we used our own wrapper which ac-
tivated profiling for the entire run of the benchmark. We
also had to disable intrinsic methods (a feature of the JIT
compiler) in order to obtain complete profiles as otherwise
our instrumentation was by-passed for these methods.

Once we had obtained our captured profiles we ran our
offline blended analysis over the profiles to analyse the run-
time behaviour and efficiency of the benchmarks. Our re-
sults are summarised in Table 3. The table shows for each
benchmark:

• the size of the captured CCT
• the number of unique methods in the CCT
• the cost – the number of bytecode instructions executed
• the number of IO output writes
• the efficiency rating, this is output/cost

The next three columns show the percentage of the total
benchmark activity that had certain properties:

• had no side effects – no output, operand or global writes
• had no effect – no side effects and no return value
• had low efficiency – when value/cost < 0.1

We were also interested in the distribution of inefficient be-
haviour within the benchmarks. Therefore we analysed the
percentage of the captured writes across each benchmark
that were attributed to different locations, specifically:

• the top single capturing node in the CCT
• the top capturing method
• the ten top capturing methods

To analyse the importance of System.arraycopy we calcu-
lated the percentage of writes for which it is responsible.
Finally we list the time taken for the analysis to complete.

The results show that across the benchmarks, using me-
dian values:

• 42.2% of all activity was side effect free
• 2.0% of all activity had no effect
• 25.3% of all writes were caused by System.arraycopy

• 78.4% of all captured writes came from the top ten cap-
turing methods

5.1 Case Studies
To evaluate the full potential of our blended efficiency

analysis we investigated several of the benchmarks in more
detail. For each we used the results of our analysis to iden-
tify several optimisation opportunities. We implemented
improvements for these opportunities and re-ran the bench-
marks to confirm the improvement. Here we present the
results of the first case study in some detail, before sum-
marising the other case studies2.

5.1.1 Case Study: h2
The h2 benchmark runs a series of SQL load tests using

the H2 pure Java relational database implementation. We
ran our blended efficiency analysis and reviewed the top ten:

• side effect free methods (Table 4)

2https://www.cs.auckland.ac.nz/~dmap001/efficiency
has more details and complete results.

22

https://www.cs.auckland.ac.nz/~dmap001/efficiency

Table 3: Results for DaCapo benchmarks

Benchmark
CCT
Nodes

Method
Count

Cost
millions

Output
thousands

Effncy
Side Effect

Free
Effect
Free

Low
Effncy

Captured Writes System
arraycopy

Analysis
Time (s)1 Node 1 Meth 10 Meth

lusearch 127,386 2,592 9,131 421,942 04.621 22.07% 00.86% 05.85% 46.77% 46.77% 98.34% 24.75% 2.8

avrora 271,610 3,448 8,434 600 00.007 26.22% 05.07% 06.34% 00.67% 00.69% 01.75% 00.88% 12.9

luindex 279,484 3,435 2,869 92,555 03.226 28.37% 03.01% 10.93% 42.31% 44.57% 97.18% 12.31% 6.2

h2 412,539 4,580 13,934 11,108 00.079 75.83% 10.25% 72.49% 44.80% 54.42% 96.42% 24.01% 7.9

sunflow 432,017 4,473 50,430 17 00.000 21.15% 00.80% 18.17% 14.24% 79.98% 99.27% 00.14% 9.4

xalan 506,441 4,545 9,218 237,653 02.578 36.24% 01.59% 14.40% 02.39% 28.62% 82.36% 21.78% 21.4

batik 782,742 7,645 2,549 18,339 00.719 14.33% 00.48% 05.19% 27.93% 27.93% 73.94% 16.27% 26.8

fop 814,713 7,572 1,015 16,642 01.639 46.60% 02.69% 21.82% 09.85% 14.81% 76.50% 40.67% 365.0

tomcat 3,360,093 13,802 5,488 92,593 01.687 41.24% 01.40% 17.85% 13.63% 17.00% 67.73% 57.46% 361.5

pmd 5,314,934 5,425 2,630 65 00.002 43.24% 03.34% 31.17% 01.69% 36.82% 85.96% 25.88% 129.9

tradebeans 9,859,665 29,764 28,187 85,040 00.301 63.53% 04.26% 31.48% 02.88% 27.05% 78.76% 47.54% 575.4

tradesoap 10,558,423 30,387 31,993 284,125 00.888 50.16% 02.01% 21.10% 03.41% 16.24% 71.72% 50.22% 569.9

eclipse 22,720,671 17,124 99,268 2,271,788 02.288 63.25% 01.15% 31.82% 05.04% 20.23% 77.96% 47.97% 1,579.6

jython 26,501,991 9,082 15,879 863 00.005 70.36% 01.97% 36.33% 05.72% 12.03% 64.74% 56.55% 1,264.1

Minimum 14.33% 00.48% 05.19% 00.67% 00.69% 01.75% 00.14%

Median 42.24% 01.99% 19.63% 07.79% 27.49% 78.36% 25.32%

Maximum 75.83% 10.25% 72.49% 46.77% 79.98% 99.27% 57.46%

• effect free methods (Table 5)
• low efficiency methods (Table 6), and
• capturing methods (Table 7)

From these methods we targeted the following opportunities:
JdbcResultSet.checkColumnIndex() — The top four no

effect methods are all closely related in that checkColumnIn-
dex calls checkClosed on the result set which in turn calls
checkClosed on the connection. We discussed the improve-
ment we were able to make to checkColumnIndex in our
motivating example in Section 2. We were able to almost
completely eliminate the cost of checkColumnIndex.

Much of the remaining effect free cost is due to TraceOb-

ject.debugCodeCall(), which uses debug logging to record
the value of every API method call. This method is effect
free when debug level logging is disabled. This cost could be
trivially eliminated from a production build if trace logging
was never to be used in production.
TPCC.calculateSumDB() — This method was the top low

efficiency method and the second highest capturing method
in the benchmark. This is part of the DaCapo benchmark
harness that generates the SQL load against the database.
The method calculates a checksum for the database state
so that it can be verified the database has been reset be-
tween each benchmark iteration. It uses a very inefficient
procedure for creating the checksum, converting every field
retrieved from the database into a string before processing
the strings into a digested checksum. We were able to change
the implementation to avoid this conversion into strings for
number and timestamp fields, reducing the cost of calcu-

lateSumDB by 62%.

Table 4: Top 10 No Side Effect Methods — h2
Method %Cost

org.h2.index.BaseIndex.compareRows(SeachRow,SeachRow) 18.057

org.h2.value.ValueTimestamp.getString() 14.745

java.sql.Timestamp.toString() 14.585

org.h2.index.BaseIndex.compareValues(Value,Value,int) 10.068

org.h2.expression.Expression.getBooleanValue(Session) 09.535

org.h2.expression.ConditionAndOr.getValue(Session) 08.396

org.h2.expression.Comparison.getValue(Session) 08.133

org.h2.index.TreeIndex.findFirstNode(SearchRow,boolean) 08.006

org.h2.jdbc.JdbcResultSet.checkClosed() 06.183

org.h2.jdbc.JdbcResultSet.checkColumnIndex(int) 06.142

ConditionAndOr.getValue() — The third and fourth top
low efficiency methods are part of the database engine that
evaluates conditional matching clauses in SQL statements.
The profile for these methods shows a very large proportion
of their cost was being spent doing string comparisons. We
changed the string comparison code to only perform a full
comparison if the strings hashcode values matched, reducing
the cost of ConditionAndOr.getValue() by 19%. This was
effective because:

• the vast majority of comparisons are between strings
that do not match, meaning the hashcode check can be
used to cheaply avoid most full comparisons

• H2 internally caches and reuses string values, so the cost
of calculating the hashcode value is amortised over the
number of times the string is compared

JdbcResultSet.getColumnIndex() – Internally H2 stores
the result set data in indexed arrays, so getColumnIndex()

is used to convert a column or alias name into an index to re-
trieve the appropriate data. To do this efficiently the imple-
mentation builds a map from the column and alias names to
column index values the first time it is called. However, be-
cause H2 uses case-insensitive column names, it blindly con-
verts all column and alias names to upper case before storing
them in the map. It therefore needs to convert the passed
column name to upper case on every subsequent method call
so it can check the map for the correct index. We found it
much more efficient to instead use the map as a cache of in-
dex values for previously seen column names, and search for
the column index by brute force when it is not found in the
map. This avoids the need for the converting of strings to

Table 5: Top 10 No Effect Methods — h2
Method %Cost

org.h2.jdbc.JdbcResultSet.checkClosed() 06.183

org.h2.jdbc.JdbcResultSet.checkColumnIndex(int) 06.142

org.h2.jdbc.JdbcConnection.checkClosed(boolean) 03.547

org.h2.jdbc.JdbcConnection.checkClosed() 01.936

org.h2.message.TraceObject.debugCodeCall(String,long) 01.166

org.h2.message.TraceObject.debugCodeCall(String) 00.121

org.h2.command.Prepared.checkParameters() 00.075

org.h2.command.CommandContainer.recompileIfRequired() 00.017

org.h2.table.Column.updateSequenceIfRequired(Session,Val) 00.015

org.h2.table.TableData.checkRowCount(Session,Index,int) 00.015

23

Table 6: Top 10 Low Efficiency Methods — h2
Method %Cost

org.dacapo.h2.TPCC.calculateSumDB(String,int) 48.969

org.dacapo.h2.TPCC.calculateSumDB() 48.969

org.h2.expression.ConditionAndOr.getValue(Session) 08.396

org.h2.expression.Comparison.getValue(Session) 08.133

org.h2.index.TreeIndex.findFirstNode(SearchRow,boolean) 08.006

org.h2.jdbc.JdbcResultSet.checkClosed() 06.183

org.h2.jdbc.JdbcResultSet.checkColumnIndex(int) 06.142

org.h2.expression.ExpressionColumn.getValue(Session) 04.998

org.h2.jdbc.JdbcConnection.checkClosed() 03.547

org.h2.result.Row.getValue(int) 02.321

Table 7: Top 10 Capturing Methods — h2
Method Captured

java.sql.Timestamp.toString() 85,455,479

org.dacapo.h2.TPCC.calculateSumDB(String,int) 54,946,291

org.h2.jdbc.JdbcResultSet.getColumnIndex(Strg) 4,939,507

java.math.BigInteger.toString(int) 1,047,292

org.h2.jdbc.JdbcSQLException.buildMessage() 993,060

java.text.MessageFormat.applyPattern(String) 935,691

java.math.BigDecimal.divideAndRound(...) 814,314

org.apache.derbyTesting

.system.oe.direct.Standard.payment(...)V 813,290

java.math.BigInteger.pow(I) 776,589

java.text.Format.format(Object) 698,562

upper case and the up front caching of every column name,
when only a few columns may be requested. This change
reduced the cost of getColumnIndex by 80%.
JdbcSQLException.buildMessage() — This method on

the JdbcSQLException class is used to generate the mes-
sage string returned from its getMessage() method. How-
ever buildMessage was often called multiple times during
the construction of an exception as different pieces of in-
formation about the exception were added to the exception
object, and then often the expensively constructed message
was never used by the exception handler that ultimately re-
ceived the exception. We changed the implementation to
instead lazily construct the message if and when it was first
requested. This change completely eliminated all calls to
buildMessage() in the benchmark.

With these combined changes we were able to reduce the
total runtime cost of the benchmark by 36%.

5.1.2 Case Study: fop
The fop benchmark uses the Apache FOP library to apply

an XSL-FO stylesheet to an XML document to create a PDF
document.
AbstractLayoutManager.addChildLM — The top captur-

ing write method in the benchmark is responsible for adding
a child layout manager to an existing parent. However the
method constructs a string for a trace level logging call that
was not guarded by a check that trace level logging was en-
abled, so the string was expensively constructed on every
call even though in practice it was never used. We guarded
the construction of the string with a log.isTraceEnabled()

call and reduced the cost of this method by 97%.
Glyphs.charToGlyphName — The top six low efficiency

methods recorded in the benchmark were all related to this
one method that is used during the postscript header gen-
eration. During the encoding of font information in the
postscript header several common character sets are encoded
using information loaded from text files. This encoding in-

formation was loaded into a number of large arrays which
were then searched in a brute force manner for the correct
encoding information, resulting in many thousands of string
comparisons. We loaded the encoding information into maps
instead, resulting in a much more efficient lookup process,
reducing the cost of this method by 99%.
PSRenderer.renderText – The second top capturing write

location is responsible for generating the correct postscript
command for generating a specific piece of text. This method
takes an input string and constructs another (usually very
similar) string from it, applying font mapping and postscript
character escaping. For many values the input text was un-
changed. We added code to handle this common case much
more efficiently, falling back to the original behaviour when
necessary, reducing the cost of method by 89%.

With these three changes we were able to reduce the over-
all runtime cost of the benchmark by 28%.

5.1.3 Case Study: luindex
The luindex benchmark uses the Apache Lucene library

to index a set of text documents.
Token.initTermBuffer — The top effect free method in

the benchmark is responsible for checking and maintaining
a consistent internal state in the Token data structure. This
data structure is used to represent a string and some ad-
ditional meta data about the context in which the string
occurred. The string value can be initialised as either a
Java String or char [] and the data structure has differ-
ent fields that store these values respectively. The init-

TermBuffer method is used internally to convert the Java
String value (if it exists) to the equivalent char [] value as
necessary. The majority of the methods on Token wish to
process the string value as a char [] and therefore init-

TermBuffer is called very frequently to ensure the char []

value is available. Given that the value is almost always a
char [] already, often this work is unnecessary. We changed
the implementation to convert the Java String value to a
char [] when the value was initialised so that we then never
had to check a later point if the char [] value existed. This
removed the cost of this method entirely from the bench-
mark and reduced the overall cost of the benchmark by 4%.

6. DISCUSSION
The overall results show that there is a significant pro-

portion of the activity in the benchmarks that is side effect
free, effect free or has low efficiency. This is important be-
cause each of these represent potential optimisation oppor-
tunities. With side effect free activity the implementation
can be treated as a black box that can have its results cached
or be completely replaced. Effect free methods represent be-
haviour that could potentially be eliminated completely as it
is having no practical benefit. Low efficiency methods have
a poor cost / benefit ratio, meaning they too represent po-
tential optimisation opportunities, albeit ones that are more
difficult to realise than with either side effect free or effect
free methods.

Interpreting the overall application efficiency measure for
the benchmarks needs to be done with caution. Whilst we
feel that our chosen measure has value for many real-world
applications it is not appropriate for some of the bench-
marks (e.g. avrora, pmd and jython) that are not focussed
on producing output. In the other benchmarks it perhaps
gives some insight into the nature of the benchmark rather

24

than being a fair absolute measure of efficiency. For exam-
ple the low efficiency number for sunflow is understandable
given the computational nature of graphics rendering. The
overall efficiency measure is useful when comparing similar
applications, or different releases of the same application.

As was evident in the case studies, measuring and com-
paring efficiency at the individual method level within an
application is more valid. Activity within a single applica-
tion is more homogeneous, making efficiency outliers more
unusual and interesting.

In our case studies we highlighted a selection of the op-
timisation opportunities we found and how we were able to
effectively address them. These were not the only optimisa-
tion opportunities that we discovered, there were numerous
others, and in analysing these we noted a number of trends.

String processing is often inefficient – Many of the
optimisation opportunities we found involved the processing
and manipulation of strings. There seemed to be two root
causes for many of these problems:

1) Transcoding between the JVM’s UTF-16 based char
representation and the most common 8-bit character sets
(e.g. ISO-8859-1 or UTF-8). Frequently input data would
be received as UTF-8, be decoded to a Java string, passed
around and manipulated before being encoded back to UTF-
8 on output. If the underlying representation of a string in
Java had been based on UTF-8 rather than UTF-16 then
much of this transcoding would be unnecessary.

2) APIs that use Java strings instead of mutable String-

Builder objects. There are many routines that build up a
large text results out of smaller values but many of these
accept and return the immutable Java String object as val-
ues. Consequently when the results of these methods are
composed the character content is copied into a new string
object each time. If more of these methods accepted String-

Builder or CharBuffer objects then much of this repeated
copying could be avoided.

No effect methods are common – We found a great
number of methods that were having no practical effect. In
almost all cases the method would check some condition to
determine whether or not to take an action, and in practice
the condition never held true. The most common examples
were assertion checkers such as ArrayList.rangeCheck(),
responsible for raising an exception if some condition did
not hold, and debug logging methods. Often these can be
eliminated with the trade-off of less flexible logging or less
precise exception reporting.

Captured write locations are often quick wins –
Through our analysis we were able to find different types of
optimisation opportunities but often the top captured write
methods were the easiest to address. Locations with a high
number of captured writes naturally contained code that
performed work that was then discarded. Often it was pos-
sible to quickly understand what work was being wasted and
could be somehow avoided or reused.

Inefficient activity is very localised – Our results
show that the top ten capturing methods accounted for a
median value of 78.4% of all captured writes in each bench-
mark. This means that an engineer often has only a very
few, usually high value, locations to inspect to attempt to
substantially improve efficiency.

System.arraycopy is the source of many writes –
Across our benchmarks System.arraycopy accounted for a

median value of just over 25% of all writes. For the bench-
marks most similar to many real world applications (tomcat,
tradebeans, tradesoap, and eclipse) this was even higher,
accounting for at least 47% of all writes. This is impor-
tant because it shows that arraycopy is a significant hotspot
for many applications and yet in our experience most Java
profilers fail to show this, probably because it is a native
method. In our experiments we had no evidence that ar-

raycopy was such an important source of activity until we
specifically customised the JP2 profiler to record its writes.

6.1 Threats to Validity
The most obvious threat to validity for our analysis is

that our measure of value may not accurately reflect a true
measure of value. In our case studies we have found the con-
cept of escaping writes to be intuitive and useful. It seems
to naturally quantify the amount of useful work a method
is producing and also works well to explain (via captured
writes) how work done by some methods is then wasted by
a calling method. Our value measure however does not re-
flect the complexity of the data escaping a method. For
example a method which compresses a large byte array be-
fore returning it would be valued less than one that did not,
even though intuitively the results are equivalent.

There are also some sources of imprecision in our analysis
which can lead us to overstate the value being provided by
a particular execution path.

Our analysis does not account for situations where a sin-
gle field is being repeatedly overwritten with new values. In
this case the actual amount of new data escaping a method
may be less than the number of writes the method is per-
forming. Ideally we would like to classify the writes that are
overwritten as being captured.

The approach we take to handling object field references
again means that we can overstate the value provided by
many methods. A future improvement would be to more
precisely model the use of field references so we can track
the escape status of writes to individual fields. Presently all
writes to any field of an object are regarded as escaping a
method if any other field in the object escapes the method.

We do not distinguish between different types of output.
For example debug logging being sent to a file on disk is cate-
gorised in a similar manner to an HTTP response being sent
over the network. It is likely that these two types of output
would be valued differently by an engineer investigating the
performance of their application.

Despite these sources of imprecision causing us to over-
value some execution paths we were still able to find real
optimisation opportunities. Our analysis is deliberately con-
servative so that none of these problems cause us to under-
state the value of a method. Therefore we can take our
current measures for the percentage of activity that is side
effect free, effect free and low efficiency as lower bounds on
their real values. Future work to help improve the accuracy
of our analysis should make it even more effective.

Finally we would like to evaluate our efficiency analysis
on real world large scale object oriented software. We are
encouraged by the results we have achieved with the Da-
Capo benchmarks, which we believe are representative of
many Java applications and therefore we are confident that
our results are applicable for many real world applications.
However we would like to validate our approach with a real
world case study.

25

7. CONCLUSION
Existing performance analysis tools and approaches fo-

cus on understanding the distribution of runtime costs in
an application. However without understanding the value
being provided in return for this expense it is difficult to es-
tablish where effort is being wasted and where optimisation
opportunities might truly exist. In this paper we present a
blended analysis approach to quantifying the value provided
by all execution paths in an application, thereby enabling an
analysis of their efficiency and a practical cost/benefit ap-
proach to performance analysis. This allows the discovery
of new optimisation opportunities not readily apparent from
the original profile data. The results of our experiments and
the performance improvements we made in our case studies
demonstrate that efficiency analysis is an effective technique
that can be used to complement existing performance engi-
neering approaches.

8. ACKNOWLEDGMENTS
David Maplesden is supported by a University of Auck-

land Doctoral Scholarship.

9. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting

hardware performance counters with flow and context
sensitive profiling. Proc. of the Conf. on Prog.
Language Design and Impl., pages 85–96, 1997.

[2] S. Bhattacharya, M. G. Nanda, K. Gopinath, and
M. Gupta. Reuse, Recycle to De-bloat Software.
Lecture Notes in Comp. Sci., 6813:408–432, 2011.

[3] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khan, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java Benchmarking Development and
Analysis. Proc. of the Conf. on Object Oriented Prog.
Systems Languages and App., pages 169–190, 2006.

[4] B. Blanchet. Escape analysis for object-oriented
languages: application to java. Proc. of the Conf. on
Object Oriented Prog. Systems Languages and App.,
pages 20–34, 1999.

[5] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky,
P. O. Sullivan, T. Parsons, and J. Murphy. Patterns of
Memory Inefficiency. Lecture Notes in Comp. Sci.,
6813:383–407, 2011.

[6] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining
hot calling contexts in small space. Proc. of the Conf.
on Prog. Language Design and Impl., pages 516–527,
2011.

[7] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended
analysis for performance understanding of
framework-based applications. Proc. of the Int’l Symp.
on Soft. Testing and Analysis, pages 118–128, 2007.

[8] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable
technique for characterizing the usage of temporaries
in framework-intensive Java applications. Proc. of the
16th Int’l Symp. on Foundations of Soft. Eng., pages
59–70, 2008.

[9] D. Maplesden, E. Tempero, J. Hosking, and J. C.
Grundy. Performance Analysis for Object-Oriented

Software: A Systematic Mapping. IEEE Transactions
on Soft. Eng., 41(7):691–710, 2015.

[10] D. Maplesden, E. Tempero, J. Hosking, and J. C.
Grundy. Subsuming Methods: Finding New
Optimisation Opportunities in Object-Oriented
Software. 6th ACM/SPEC Int’l Conf. on Performance
Engineering, pages 175–186, 2015.

[11] N. Mitchell, E. Schonberg, and G. Sevitsky. Four
Trends Leading to Java Runtime Bloat. IEEE
Software, 27(1):56–63, 2010.

[12] N. Mitchell, G. Sevitsky, and H. Srinivasan. The diary
of a datum: an approach to modeling runtime
complexity in framework-based applications.
Library-Centric Software Design, page 85, 2005.

[13] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling
Runtime Behavior in Framework-Based Applications.
Lecture Notes in Comp. Sci., 4067:429–451, 2006.

[14] K. Nguyen and G. Xu. Cachetor: detecting cacheable
data to remove bloat. Proc. of the 9th Joint Meeting
on Foundations of Soft. Eng., pages 268–278, 2013.

[15] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, and
M. Mezini. JP2: Call-site aware calling context
profiling for the Java Virtual Machine. Science of
Computer Programming, 79:146–157, 2014.

[16] A. Sarimbekov, A. Sewe, W. Binder, P. Moret,
M. Schoeberl, and M. Mezini. Portable and accurate
collection of calling-context-sensitive bytecode metrics
for the Java virtual machine. Proc. of the Int’l Conf.
on Principles and Practice of Prog. in Java, page 11,
2011.

[17] O. Shacham, M. Vechev, and E. Yahav. Chameleon:
Adaptive Selection of Collections. Proc. of the Conf.
on Prog. Language Design and Impl., pages 408–418,
2009.

[18] G. Xu. Finding reusable data structures. Proc. of the
Conf. on Object Oriented Prog. Systems Languages
and App., page 1017, 2012.

[19] G. Xu, N. Mitchell, M. Arnold, A. Rountev,
E. Schonberg, and G. Sevitsky. Finding low-utility
data structures. Proc. of the Conf. on Prog. Language
Design and Impl., pages 174–186, 2010.

[20] G. Xu, N. Mitchell, M. Arnold, A. Rountev,
E. Schonberg, and G. Sevitsky. Scalable Runtime
Bloat Detection Using Abstract Dynamic Slicing.
ACM Transactions Soft. Eng. Methodology,
23(3):23:1–23:50, 2014.

[21] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and
G. Sevitsky. Software Bloat Analysis: Finding,
Removing, and Preventing Performance Problems in
Modern Large-Scale Object-Oriented Applications.
Proc. of the FSE/SDP Workshop on the Future of
Soft. Eng. Research, pages 421–425, 2010.

[22] G. Xu and A. Rountev. Detecting inefficiently-used
containers to avoid bloat. Proc. of the Conf. on Prog.
Language Design and Impl., pages 160–173, 2010.

[23] D. Yan, G. Xu, and A. Rountev. Uncovering
performance problems in Java applications with
reference propagation profiling. Int’l Conf. on Soft.
Eng., pages 134–144, 2012.

26

	Introduction
	Motivation and Background
	Related work
	Runtime Bloat Analysis
	Blended Analysis

	Blended Efficiency Analysis
	Profiling
	Static Write Analysis
	Inter-Procedural Write Analysis
	Example - Time Formatting

	Evaluation
	Case Studies
	Case Study: h2
	Case Study: fop
	Case Study: luindex

	Discussion
	Threats to Validity

	Conclusion
	Acknowledgments
	References

