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ABSTRACT
Experimental analysis of computer systems’ power consump-
tion has become an integral part of system performance eval-
uation, efficiency management, and model-based analysis.
As with all measurements, repeatability and reproducibility
of power measurements are a major challenge.

Nominally identical systems can have different power con-
sumption running the same workload under otherwise iden-
tical conditions. This behavior can also be observed for in-
dividual system components. Specifically, CPU power con-
sumption can vary amongst different samples of nominally
identical CPUs. This in turn has a significant impact on the
overall system power, considering that a system’s proces-
sor is the largest and most dynamic power consumer of the
overall system. The concrete impact of CPU sample power
variations is unknown, as comprehensive studies about dif-
ferences in power consumption for nominally identical sys-
tems are currently missing.

We address this lack of studies by conducting measure-
ments on four different processor types from two different
architectures. For each of these types, we compare up to
30 physical processor samples with a total sum of 90 sam-
ples over all processor types. We analyze the variations in
power consumption for the different samples using six dif-
ferent workloads over five load levels. Additionally, we ana-
lyze how these variations change for different processor core
counts and architectures.

The results of this paper show that selection of a processor
sample can have a statistically significant impact on power
consumption. With no correlation to performance, power
consumption for nominally identical processors can differ as
much as 29.6% in idle and 19.5% at full load. We also show
that these variations change over different architectures and
processor types.
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1. INTRODUCTION
Energy efficiency of computing systems has become a sig-

nificant issue over the past decades. Server systems play a
significant part in the overall power consumption. In 2010,
the U.S. Environmental Protection Agency (U.S. EPA) esti-
mated that 3% of the entire energy consumption in the U.S.
is caused by data center power draw [20]. According to a
New York Times study from 2012, data centers worldwide
consume about 30 billion watts per hour. This is equivalent
to the approximate output of 30 nuclear power plants [3].

Governments, manufacturers, and academic researchers
are addressing this problem with various approaches. Sys-
tems benchmarking is central to these, as it helps to collect
comparable information, enabling better development and
purchasing decisions [19].

To ensure comparability, benchmark results must meet a
number of criteria including repeatability [16], reproducibil-
ity, and verifiability [25]. As a result industry standard
benchmarks, such as SPECpower ssj2008 [18], require full
disclosure of all system hardware components and software,
as they can significantly affect power consumption and en-
ergy efficiency [27]. However, even nominally identical sys-
tems running the same hardware and software may produce
different benchmark results. Reasons for this behavior can
be found both in random measurement errors, as well as
systematic errors due to minor differences in the nominally
identical hardware components.

For servers, the CPU is not only the largest consumer
of power, but is also responsible for most of the dynamic
changes to system power consumption [10]. Consequently,
it stands to reason that CPUs are also the major factor
in power variation for otherwise identical systems. Many
studies analyzing differences in server power consumption
with focus on CPU and CPU workloads exist [5, 6]. These
studies show that CPU power may vary depending on many
factors, such as CPU load, workload type, used execution
units, and so on. Yet none of these studies analyze the error
that results from different samples of the same CPU.

In our experience, power consumption for identical CPUs
can vary significantly. Yet comprehensive public studies on
the size and impact of these variations are missing. Such an
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analysis is necessary for many fields of research even beyond
benchmarking. For example, power management mecha-
nisms and predictive power models [4] rely on low variations
in power consumption for nominally identical systems and
components. The actual variation in power consumption
sets an upper bound for the accuracy of those approaches.

In this paper, we evaluate the power consumption and
energy efficiency of four different processor types from two
generations with 20 – 30 separate nominally identical physi-
cal processors (processor samples) for each of those types. In
addition, as many publicly available results are not based on
the publicly available final production samples of processors,
we test eight separate qualification processors corresponding
to two of the production batches under test. We measure
energy efficiency, as well as system and CPU power con-
sumption, for multiple workloads and load levels under two
different system power management configuration. We ex-
amine the power measurements for each of the physical pro-
cessor samples and compare the different distributions for
the nominally identical processors. We correlate the power
deviations with further measured data, such as CPU tem-
perature and frequency.

The goal of this paper is to gain insight into the varia-
tions in power consumption for nominally identical proces-
sors and into the major impact factors contributing to these
variations. The major contributions of this paper are:

1. We explore the differences in power consumption of
nominally identical CPUs for multiple workloads show-
ing that these different CPU samples exhibit statisti-
cally significant differences in power consumption.

2. We investigate correlations between the power con-
sumption variations and additional metrics, such as
throughput, CPU temperature and frequency.

3. We explore the impact of different target load levels
and CPU power management configurations on varia-
tions in power consumption and energy efficiency.

Our measurements show that nominally identical proces-
sor samples can cause significant differences in CPU power
consumption of up to 29.6%. This in turn propagates to a
difference in system power of up tp 12.1%. These differences
exhibit no significant correlation to CPU temperature and
system performance. However, the actual observed varia-
tions in power consumption for nominally identical proces-
sors differ significantly depending on processor architecture.

The remainder of this paper is structured as follows: We
discuss related work in Section 2. Section 3 details the ex-
perimental setup. Section 4 explores power variations dur-
ing a single measurement, whereas Section 5 evaluates power
variations between samples of the same processor type, and
Section 6 compares measurement results and CPU sample
differences over multiple processor types, deriving overall
take-away lessons. We conclude the paper in Section 7.

2. RELATED WORK
A number of studies analyzing the power consumption of

servers and processors exist. These studies analyze varia-
tions in power consumption for individual processors with
focus on the major impact factors that can cause a differ-
ence in power consumption:

[15] and [11] analyze CPU power consumption at the cir-
cuit level. They examine individual transistors and their

integration with the goal of power characterization and sim-
ulation. When analyzing power consumption of most com-
mercially available processors, this circuit level power con-
sumption is usually considered as a black-box, as informa-
tion on processor internals is commonly not available. This
black-box behavior may lead to issues with repeatability of
power measurements and variations in power consumption.

[6] and [23] analyze power consumption depending on work-
load with a focus on the executed CPU instructions. They
characterize CPU power based on performance counter data.
Similarly, [8] build a power model using performance coun-
ters. As in our case, they use industry standard benchmarks,
such as SPEC CPU2006 [13] for a thorough and representa-
tive analysis.

Processor power management exists at many system lev-
els. All of these may cause variations in power consumption.
[12] and [14] examine the impact of the physical location
where a task is executed inside the CPU on power consump-
tion and heat generation. Other management techniques,
such as dynamic voltage and frequency scaling (DVFS) [24,
5], also have significant impact on CPU power consumption
and heat. Such temperature-sensitive management tech-
niques can add randomness to power measurements as they
are influenced by environmental factors that may not be un-
der the full control of the system’s administrator.

The black-box-like behavior of some system components
and the apparent randomness of environmental factors have
contributed to research attempting to characterize power
consumption on higher abstraction levels. Such characteri-
zations rely on workload classifications and system level met-
rics, such as utilization [27, 7]. Results of these analyses are
usually correlated to create full-system power models on a
higher abstraction level [22, 21].

This paper addresses the power differences and variations
that are caused by black-box behavior and environmental in-
fluences. We first evaluate how much the power consumption
of a system can vary without any changes in the hardware,
software, or system settings. We then go a step further by
evaluating variations in systems that are identical in terms
of technical specifications. We focus on CPUs and exchange
system CPUs with nominally identical ones to analyze the
impact the black-box behavior of the new sample can have
on power consumption.

3. MEASUREMENT METHODOLOGY
We test four processor types on three different systems

using two test suites. All systems are tested with at least 20
samples of one production processor type. Additionally, two
of the systems are measured using four corresponding qual-
ification samples with one further measurement using a mix
of six qualification and six production samples. Power con-
sumption is measured for both the entire system under test
(SUT) and the processor only. Measurements are carried
out following the guidelines described in the SPEC power
methodology [2].

3.1 Workloads
We run two test suites on the SUT: SERT [20] and LIN-

PACK [9]. SERT is a rating tool for analysis and evaluation
of the energy efficiency of server systems, developed by the
SPEC OSG Power Subcommittee. It is not intended as a
benchmark for a single system energy-efficiency score, but
instead runs a number of different micro workloads, called
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Worklets that exercise different parts of the SUT. It fea-
tures seven separate CPU Worklets that are primarily CPU
bound, but may also exercise some additional parts of the
SUT (such as memory). Due to the CPU focus in this pa-
per, we chose those worklets that have been found to be the
most CPU bound [27]:

1. LU: Implements a transaction that computes the LU
factorization of a dense matrix using partial pivoting.
It exercises linear algebra kernels (BLAS) and dense
matrix operations. LU is almost exclusively CPU bound
and scales mostly with CPU frequency.

2. Compress: Implements a transaction that compresses
and decompresses data using a modified Lempel-Ziv-
Welch (LZW) method following an algorithm intro-
duced in [28]. It finds common substrings and replaces
them with a variable size code. This is determinis-
tic and it is done on-the-fly. Thus, the decompression
procedure needs no input table, but tracks the way the
initial table was built.

3. SOR (Jacobi Successive Over-Relaxation): Implements
a transaction that exercises typical access patterns in
finite difference applications, for example, solving La-
place’s equation in 2D with Drichlet boundary condi-
tions. The algorithm exercises basic ”grid averaging”
memory patterns. Like LU, this worklet is also mostly
CPU bound. As such, we use it as our second worklet
for CPU-heavy heterogeneous workloads.

4. SHA256: Utilizes standard Java functions to perform
SHA-256 hashing and encryption/decryption transfor-
mations on a byte array. This byte array is perturbed
by one byte for each transaction.

5. Idle: Keeps the CPU in an active idle state where it
is ready to receive work.

SERT can run worklets (except Idle) at different target
load levels. These are defined as the percentage of maxi-
mum throughput achievable on the SUT. To achieve a stable
steady state, work units are dispatched with random expo-
nentially distributed inter-arrival times. The mean of those
inter-arrival times is selected as the inverse of the target
throughput. All worklets except Idle are executed at the
25%, 50%, 75%, and 100% load levels.

LINPACK is a benchmark measuring a computer’s ability
to solve a system of linear equations. We run the Shared
Memory Version (SHM) of the standalone LINPACK on
each SUT. The server consumes a significant amount of
power during its execution phase, eclipsing all of the SERT
worklets in respect to power consumption. In contrast to
SERT and its workloads, it does not explicitly take care to
preserve a steady system state for stable energy measure-
ments.

3.2 Systems under Test
We run our workloads on three different systems. For

each of those systems, we pick a processor type and ex-
change samples after each run. Each system only has one
socket populated to minimize multiple processor samples in-
fluencing one another. The system under test also remains
identical for all samples of the same processor type. The
SUTs are:

• Fujitsu RX2540 M1 system with 4 x 16 GB RAM.
We test 30 different samples of Intel’s Xeon E5-2680 v3

processor on this system. It features 12 cores and a
base frequency of 2.5 GHz (up to 3.3 GHz with turbo,
120 W TDP). Each sample is tested twice: Once with
turbo turned on and once with turbo turned off. We
also test 12 samples of the Xeon E5-2699 v3 processor
on this system (six production and six qualification
samples). It is an 18 core processor with a base fre-
quency of 2.3 GHz (3.6 GHz with turbo, 145 W TDP).

• Dell PowerEdge R730 system with 4 x 16 GB RAM.
We use this system to test 20 different samples of
Intel’s Xeon E5-2660 v3 processor with 10 processor
cores at a base frequency of 2.6 GHz (up to 3.3 GHz
with turbo, 105 W TDP). We also test each sample
with and without turbo on this system.

• Sun Server X3-2 system with 4 x 4 GB RAM. This
historical system is used to test 20 samples of the
older Intel Xeon E5-2609 processor (80 W TDP). This
processor from Intel’s Sandy Bridge generation is the
smallest CPU to be tested. It has four cores running at
a frequency of 2.4 GHz. This system does not feature
a turbo mode. Instead, we perform a series of tests
with all BIOS power management disabled.

All systems run Red Hat Enterprise Linux (RHEL) 6.6
and use the Oracle Java HotSpot VM for executing SERT’s
Java-based worklets.

3.3 Measurement Data
For the SERT measurements, throughput data is collected

on a per second resolution by SERT’s Chauffeur harness [1].
Wall power is measured using the SPEC PTDaemon, which
can autmatically cooperate with SERT, but can also collect
data separately of any SERT execution. In addition, we
measure CPU package power, temperature, and frequency
using the RAPL hardware counters provided by Intel’s pro-
cessors. We use Intel’s publicly available Performance Counter
Monitor [17] to read these counters for every second during
workload execution.

For system power measurements (wall power) we use Yoko-
gawa’s WT210 analyzer and the ZES Zimmer LMG95 power
meter. Both report the power measurement uncertainty
with a specified maximum measurement error of less than
1%. For our measurement the WT210 never exceeds 0.7%
uncertainty and the LMG95 does not exceed 0.2% uncer-
tainty.

SERT worklets are executed in intervals with measure-
ment phases lasting 120 seconds. All power, performance,
and additional data is logged at each second during the run,
providing 120 data points for each worklet at each target
load level. In addition to the measurement phases, SERT
also runs a number of calibration, warmup, pre-measurement,
and post-measurement phases, all designed to ensure a steady
measurement state. These phases are explained in more de-
tail in [26].

LINPACK also features distinct phases with the main ex-
ecution phase featuring a relatively stable interval of max-
imum power consumption. We detect this phase and then
collect all relevant data with the corresponding time stamps.
As with SERT, we collect wall power using the SPEC PT-
Daemon and CPU package power, temperature, and fre-
quency using the Performance Counter Monitor for each
second during LINPACK execution.
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4. VARIATIONS DURING A SINGLE
MEASUREMENT RUN

Before analyzing the variations between different samples
of the same processor, we study how power variance changes
depending on workload, load level, and BIOS setting. The
results of this section also help to indicate how stable power
consumption can be during an interval of usage at a given
stable load level. Stability in power consumption is a result
of both stable CPU power management and stable work-
loads as part of our test suites. Both are prerequisites for
the comparisons of different CPU samples in subsequent sec-
tions.

For this analysis, we choose the median sample of the
Xeon E5-2680 v3 processor in the Fujitsu system, which was
measured using our most accurate power analyzer. Addi-
tionally, we evaluate the impact of separate measurement
runs on the same sample using the Xeon E5-2609 on the
Oracle system.

power_graph_22

Compress Idle LINPACK_on LU SHA256 SOR

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

20

40

60

80

100

120

140

160

180

200

M
e

a
n

 P
o

w
e

r 
(W

)

Figure 1: System power consumption of the Fujitsu
server with median Xeon E5-2680 v3 processor.

System power consumption for all workloads on the Fu-
jitsu system is shown in Figure 1. The figure displays the
power consumption (in Watt) for each of the workloads over
the full range of load levels. In contrast to the other work-
loads, Idle and LINPACK feature only one load level each.
Idle power is the smallest consumer, whereas LINPACK is
the largest consumer followed by LU at full load. The work-
loads scale almost linearly over load levels, increasing in
power consumption with each additional level. The rest of
this section will focus on the variances of the power measure-
ment for each separate load level / workload combination.
A thorough analysis of power scaling for the worklets over
the different load levels can be found in [27].

We analyze the coefficient of variation (CV) for the power
measurements. It is a normalized value defined as the ration
of the standard deviation divided by the sample’s mean. In
contrast to a comparison of the raw standard deviation, the
CV allows comparing workloads and load levels with dif-
ferent mean power consumption, such as Idle with a mean
power consumption of 51.934 W and LINPACK with its
mean power of 205.789 W on the Fujitsu system with the
median CPU sample.

Table 1 shows the CV for CPU power consumption as
measured by the Intel RAPL counter. It shows that varia-
tion during a 120 second measurement interval is relatively
low and stable at a CV between 0.3% and 1.44%. This varia-

tion is independent of the processor’s current load level and
turbo setting. It is also similar for many workloads. The
compression workload varies more in its power consump-
tion. We attribute this behavior to the greater intensity of
its memory access which introduces more seemingly random
behavior in performance and power consumption.

Load Idle Com. LU SHA SOR LIN.

T
u
rb

o
o
n 0% 33.17

25% 5.63 0.53 1.20 3.63
50% 0.65 0.66 1.44 0.55
75% 0.61 0.66 1.23 0.42
100% 0.30 0.03 0.63 0.52 0.04

T
u
rb

o
o
ff 0% 0.84

25% 2.51 0.56 1.11 2.46
50% 0.57 0.60 1.23 0.39
75% 0.62 0.41 1.27 0.38
100% 0.38 0.40 0.61 0.05 0.04

Table 1: Coefficients of variaton (CV) in % for CPU
power consumption on median Xeon E5-2680 v3
sample.

The LINPACK workload behaves differently to the SERT
workloads and varies even less in its power consumption.
This difference is not surprising since LINPACK work units
are not dispatched using an exponentially distributed ran-
dom inter-arrival process, as SERT work units are. This
random arrival process for SERT transactions allows the
targeting of specified load levels, but adds some variation
to the power consumption.

The major outlier in Table 1 is the Idle workload. On a
single idle processor sample, power consumption can vary for
35.17% with turbo on, but only 0.84% without turbo. This
observation underlines our previous assertion that operating
system and CPU power management may lead to variations
in power consumption, as idle power minimization is a ma-
jor goal of those power saving mechanisms. This variation
can already be observed during the time frame of a single
measurement run. We back this assertion with the correla-
tion of CPU power consumption and frequency. For most
workloads, CPU power consumption and frequency correlate
little. To illustrate, LU’s CPU power / frequency correla-
tion coefficient ranges between 8.6% (25% load) and 33.3%
(100% load). Other workloads are similar, as frequency re-
mains relatively stable during the workloads’ execution. The
Idle workload, however, shows significant correlation. The
Idle interval with the turbo setting on, in particular, exhibits
a CPU power / frequency correlation coefficient of 94.2%.

Table 2 shows the variations in full system power for each
measurement interval. Most CVs are smaller than their
CPU power counterparts in Table 1. This indicates that
a majority of the variation is caused by CPU power vari-
ations, rather than power variations due to other system
components. This is especially true for the variations during
system idle time. Specifically, the Idle worklet with turbo
enabled features a CPU power standard deviation of 4.02 W
at a mean CPU power consumption of 12.11 W, whereas the
entire system features a similar standard deviation of 5.73 W
at a mean power consumption of 54.07 W. The correlation
coefficient of 99.93% between CPU and system power for
the Idle measurement underlines this observation that CPU
power directly influences system power.

LINPACK behaves differently, however. Its system power
CV is significantly larger than its CPU power CV. The same
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Load Idle Com. LU SHA SOR LIN.
T

u
rb

o
o
n 0% 10.47

25% 2.59 0.30 0.71 1.73
50% 0.36 0.46 0.90 0.30
75% 0.50 0.45 0.89 0.31
100% 0.36 0.19 0.29 0.33 4.14

T
u
rb

o
o
ff 0% 0.34

25% 1.00 0.31 0.63 1.25
50% 0.34 0.35 0.70 0.21
75% 0.39 0.30 0.82 0.25
100% 0.28 0.30 0.17 0.15 3.69

Table 2: Coefficients of variaton (CV) in % for sys-
tem power consumption on Fujitsu system, running
the median Xeon E5-2680 v3 sample.

is true for the standard deviation of its power consumption.
We attribute this effect the property of LINPACK to use
additional system resources, especially cooling, that are not
visible in the CPU power consumption.

To identify potential further stability issues with worklets
that might lead to erroneous conclusions later on, we repeat
our entire measurement suite 50 times on a single sample of
the E5-2609 processor on the Oracle system. Specifically, we
evaluate whether the variations for the median system are
representative by calculating the 2nd order CVs (the CVs of
the CVs) over all 50 measurement repeats. Being an older
system, this system does not support turbo mode. Instead
we test two different BIOS settings. We test a balanced
setting (comparable to the turbo off setting for the other
systems) and a performance setting with all BIOs power
management disabled. The results are displayed in Tables 3
and 4. They show CPU power and system power second
order CVs respectively. These 2nd order CVs show if varia-
tions between the different samples differ. Consistently high
or low CVs result in a low 2nd order CV, whereas differing
CVs show as high 2nd order CVs. Consequently, low values
should indicate a high representativeness of our previous ob-
servations based on a single sample.

Load Idle Com. LU SHA SOR LIN.

P
er

f.

0% 134.1
25% 19.15 22.35 10.87 19.87
50% 9.26 10.07 5.57 10.73
75% 7.10 20.36 3.91 13.93
100% 6.41 22.54 25.91 20.52 37.67

B
a
la

n
ce

d 0% 99.43
25% 13.36 23.51 7.84 15.76
50% 10.06 13.79 5.02 46.66
75% 8.07 22.63 7.22 10.11
100% 13.27 24.11 33.67 20.52 20.64

Table 3: Second order CVs in % for CPU power
consumption for measurement repeats on Xeon E5-
2609 sample.

Both tables show that differences between the variations
for the separate measurement runs are significant, but boun-
ded. For the balanced setting, worklet second order CPU
power variations range between 8.07% for Compression at
75% load and 46.66% for SOR at 50% load. Idle is the major
exception with a second order variance of 99.43%, reinforc-
ing the previous observation that Idle can be highly volatile.
System power shows smaller second order variations than
CPU power. Idle features the greatest variation of varia-
tions, yet it is only 13.62%. These variations are smaller,

Load Idle Com. LU SHA SOR LIN.

P
er

f.

0% 12.93
25% 2.48 9.56 6.52 9.32
50% 10.02 9.80 7.28 9.29
75% 9.20 8.87 9.83 8.72
100% 11.00 12.12 11.21 9.19 9.03

B
a
la

n
ce

d 0% 13.62
25% 10.80 12.17 8.38 10.36
50% 11.18 8.40 8.18 19.40
75% 10.23 11.89 8.96 11.35
100% 12.43 11.98 11.72 12.91 6.21

Table 4: Second order CVs in % for system power
consumption of Oracle system for measurement re-
peats on Xeon E5-2609 sample.

as system power is greater than CPU power. With the rest
of the system remaining relatively stable over the different
measurement runs, the differences in CPU power variations
are somewhat mitigated. Idle is affected even more by this
effect, as CPU power consumption during Idle is minimal
and smallest in relation to the rest of the system.

Disabling BIOS power management does not significantly
reduce second order variations. CPU power variations still
range between 3.91% (SHA at 74% load) and 134.06% (Idle).
Most notably, idle second order variation does not decrease
even though a potential source of volatility inducing power
management has been eliminated.

While the variations of variations are significant over mul-
tiple runs, the means of the respective measurements differ
little. With balanced power management, Idle CPU power
shows the smallest mean difference of 0.1 W (0.67%), rang-
ing between 14.83 W and 14.93 W. The largest mean differ-
ence for the SERT workloads is found for LU at 50% load.
However, it is only a total difference of 1.32 W (4.02%), with
the minimum being 32.82 W and maximum CPU power of
34.14 W.

Load Idle Com. LU SHA SOR LIN.

P
er

f.

0% 0.17
25% 0.06 0.31 0.23 0.25
50% 0.09 0.35 0.36 0.20
75% 0.11 0.59 0.41 0.15
100% 0.12 0.10 0.32 0.07 0.12

B
a
la

n
ce

d 0% 0.13
25% 0.15 0.26 0.24 0.13
50% 0.13 0.81 0.31 0.28
75% 0.11 0.60 0.31 0.21
100% 0.15 0.15 0.21 0.18 1.19

Table 5: CVs in % for mean CPU power consump-
tion for measurement repeats on Xeon E5-2609 sam-
ple.

Subsequently the coefficients of variation for the measure-
ment means in Table 5 are also very small. The greatest CV
is the CV for LINPACK (which also features the greatest
min / max difference) with 1.19%, the next greatest being
0.81% for LU at 50% load. These numbers do not change
significantly with BIOS power management disabled. Idle
min / max difference is still 0.1 W and the greatest min /
max difference is LU at 75% load with an absolute difference
of 0.8 W and a CV of 0.6%.

In contrast to the low CPU temperature correlation dur-
ing a single measurement, repeated power measurements ex-
hibit a correlation. All workload / load level combinations
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Load Idle Compress LU SHA256 SOR LINPACK
T

u
rb

o
o
n 0% 2.83 W (29.15%)

25% 4.92 W (13.20%) 4.87 W (15.58%) 5.53 W (13.01%) 4.28 W (11.24%)
50% 6.15 W (9.63%) 4.26 W (6.02%) 8.12 W (13.78%) 7.39 W (12.54%)
75% 9.65 W (11.22%) 7.22 W (7.02%) 11.01 W (14.43%) 10.62 W (14.09%)
100% 10.12 W (9.22%) 0.01 W (0.01%) 15.30 W (16.36%) 14.36 W (15.86%) 0.05 W (0.05%)

T
u
rb

o
o
ff 0% 2.32 W (23.87%)

25% 3.42 W (11.68%) 4.78 W (15.69%) 4.76 W (12.50%) 3.69 W (14.20%)
50% 5.87 W (10.55%) 5.71 W (8.78%) 5.65 W (11.12%) 5.55 W (10.95%)
75% 7.78 W (10.76%) 8.25 W (9.17%) 6.89 W (10.78%) 6.64 W (10.43%)
100% 10.78 W (12.12%) 7.44 W (6.61%) 7.75 W (10.14%) 7.47 W (10.01%) 0.04 W (0.03%)

Table 6: Min / max CPU power consumption differences over all Xeon E5-2680 v3 samples.

Load Idle Compress LU SHA256 SOR LINPACK

T
u
rb

o
o
n 0% 3.34 W (6.47%)

25% 5.83 W (6.22%) 5.91 W (6.97%) 6.96 W (7.16%) 5.17 W (5.58%)
50% 8.01 W (6.28%) 5.46 W (4.10%) 10.26 W (8.74%) 9.44 W (8.04%)
75% 12.53 W (7.96%) 8.52 W (4.89%) 14.40 W (10.31%) 14.01 W (10.11%)
100% 13.73 W (7.23%) 1.01 W (0.52%) 19.64 W (12.16%) 18.66 W (11.82%) 1.56 W (0.76%)

T
u
rb

o
o
ff 0% 3.66 W (7.18%)

25% 4.54 W (5.43%) 5.90 W (7.04%) 6.03 W (6.61%) 4.87 W (6.22%)
50% 7.93 W (6.84%) 7.74 W (6.17%) 7.45 W (6.98%) 7.38 W (6.91%)
75% 9.72 W (6.96%) 11.02 W (7.02%) 8.59 W (6.96%) 8.37 W (6.81%)
100% 13.58 W (8.38%) 10.79 W (5.82%) 10.35 W (7.44%) 10.12 W (7.40%) 1.85 W (0.90%)

Table 7: Min / max system power differences for Fujitsu system over all Xeon E5-2680 v3 samples.

show a positive correlation coefficient. This coefficient is the
largest at full load, with all coefficients greater than 84%
with the exception of SHA256 at 55% correlation.

Concluding, we learn that power measurements are very
stable both within one measurement run and in their means
for multiple runs. Variations can be inconsistent over multi-
ple runs and differ significantly, yet the mean remains very
similar. The Idle workload is the odd man out. It can pose
challenges as unforeseen power management may cause sig-
nificant variation during single measurement intervals. How-
ever, mean idle power remains the most consistent over mul-
tiple measurements. Because of this consistency over multi-
ple measurements and due to the importance of a processor’s
idle behavior, for many practical considerations, we still an-
alyze differences in idle consumption for the upcoming sec-
tions.

5. VARIATIONS BETWEEN SAMPLES OF
THE SAME CPU

Having analyzed the differences between power consump-
tion and power variations, we analyze the power consump-
tion differences for multiple nominally identical processor
samples. We answer the question of how much power con-
sumption can differ over multiple samples and if these dif-
ferences are statistically significant beyond the power differ-
ences occurring within a single sample. We also examine
variances in processor performance and how these correlate
with power consumption. Finally, we take a look at addi-
tional impact factors and correlations, including tempera-
ture and frequency.

For this analysis, we must consider that the nature of out-
liers is different when comparing measurements on different
samples, rather than comparing multiple measurement iter-
ations from the same sample. Section 4 shows that, for sin-
gle samples, variations are due to environmental conditions,
such as temperature and unforeseen behavior of power man-
agement. When comparing multiple samples, differences can

also be caused by systematic differences in the integrated
circuits of the samples. With this in mind, outliers gain im-
portance as they may not be “random” flukes, but rather
rare samples with a systematic difference.

Table 6 shows the differences for the mean CPU power
consumption of the different Xeon E5-2680 v3 samples. These
differences in power consumption of different samples are
significantly larger, both absolutely and relatively, than the
intra-sample differences for repeat measurements of the same
sample (see Section 4). The greatest relative difference if for
CPU power consumption at 29.15% with turbo and 23.87%
without turbo. The greatest absolute difference is found for
SHA256 at 100% load with a difference of 15.3 W with turbo.
Incidentally, this is also the second highest relative variation.
With turbo enabled, the smallest relative difference is 0.01%
for LU at full load. Turbo disabled features the smallest rel-
ative difference of 0.03% for LINPACK. LINPACK and LU
are the two biggest power consumers in our test suite. With
both of these featuring the smallest differences, it stands to
reason that CPU power differences between samples dimin-
ish at the highest utilization. However, this only seems to be
the case for workloads that truly maximize their power con-
sumption on the processor and is helped by BIOS settings
that increase a workload’s ability to maximize consumption
(such as turbo). Other workloads do not manage to reach
this limit, as they do not consume as much power at their
highest load levels.

Table 7 shows the respective differences between mini-
mum and maximum system power consumption for the 30
processor samples. Due to the greater base power, relative
differences in power consumption decrease, even as absolute
differences increase. Workloads with lower absolute CPU
consumption are affected more by this. However, the in-
crease in absolute differences indicates that an increase in
CPU power consumption can lead to an increase in power
consumption of secondary subsystems, such as cooling.

System power and CPU power correlate strongly. For all
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workloads, the correlation coefficient for the means of those
power exceeds 98%. The only exceptions are LU at high
load and LINPACK. These two workloads show so little vari-
ance in CPU power consumption that the remaining system
power variation is seemingly random.

Load Idle Com. LU SHA SOR LIN.

T
u
rb

o
o
n 0% 6.95

25% 3.34 4.06 2.74 2.72
50% 2.34 1.69 3.21 2.96
75% 2.93 1.44 3.73 3.63
100% 2.93 0.00 4.27 4.32 0.01

T
u
rb

o
o
ff 0% 5.93

25% 2.97 4.07 2.42 3.68
50% 2.36 1.98 2.44 2.38
75% 2.37 2.13 2.40 2.35
100% 2.73 1.96 2.37 2.33 0.01

Table 8: CVs in % for mean CPU power consump-
tion over all Xeon E5-2680 v3 samples.

The observations from comparing min / max differences
are validated by the coefficients of variation over the mean
CPU power consumption of all 30 samples (see Table 8).
Again, Idle has the greatest variation, whereas LINPACK
and LU feature the least variation. The variation of means
also helps to expose the observation that only the greatest
power consumers decrease in variation at full load. With
turbo enabled, SOR and SHA256 have the second and third
greatest variations in power consumption at full load. These
two workloads are not near the CPU power limit, with SHA-
256 consuming a total average of 99.34 W and SOR a total
average of 96.28 W. LINPACK and LU, on the other hand,
consume 119.86 W and 119.88 W respectively.

We show the means and variations for SHA256 CPU power
consumption in Figure 2. The box-plot shows the distribu-
tions of the power consumption for the separate physical
CPU samples. Each colored box shows the range between
first and third quartile and the horizontal line inside the
boxes displays the median. The mean is shown using a filled
circle. The figure shows that all CPUs vary a little with
only small groups of similar samples. Means are scattered
over the entire range of power differences, with some out-
liers at the top. The figure also shows that samples vary
significantly in their internal variance. Some samples show
significant variances, wheras others have all of their mea-
sured values clustered closely around their mean.
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Figure 2: CPU power consumption of Xeon E5-
2680 v3 processor samples running SHA256 at 100%
load.

These differences in variances also show in the samples’
second order coefficients of variance in Tables 9 and 10.
These variances of variances are significantly greater than
the intra-sample variances of Tables 3 and 4. This shows
that power measurement stability is additionally affected by

CPU sample properties, beyond the random errors and vari-
ances that can occur on a single sample.

Idle features the greatest variance again, regardless of
turbo setting. Taking its differences in mean power con-
sumption into account, it is safe to deduce that Idle is the
by far the most volatile of all workloads. It is apparently also
the state where differences between samples are the most vis-
ible, as Idle means are relatively stable for single samples,
despite its volatility. Similarly, LINPACK, a workload with
very small relative differences in mean power consumption,
shows significant second order variances.

Load Idle Com. LU SHA SOR LIN.

T
u
rb

o
o
n 0% 183.3

25% 9.49 27.65 11.70 17.80
50% 10.44 9.47 8.98 15.91
75% 9.95 14.64 7.99 11.87
100% 53.83 35.94 43.43 49.69 156.5

T
u
rb

o
o
ff 0% 179.1

25% 17.80 48.77 9.65 45.35
50% 6.59 10.82 7.47 8.77
75% 11.22 7.57 5.97 10.72
100% 28.29 58.15 61.09 79.98 122.2

Table 9: Second order CVs in % for CPU power
consumption over all Xeon E5-2680 v3 samples.

Load Idle Com. LU SHA SOR LIN.

T
u
rb

o
o
n 0% 172.8

25% 8.74 24.23 13.46 17.24
50% 212.1 6.32 11.10 26.36
75% 6.99 16.55 119.71 11.43
100% 244.7 45.40 293.57 28.17 15.56

T
u
rb

o
o
ff 0% 169.4

25% 105.8 39.01 10.14 34.64
50% 238.3 9.65 7.00 10.57
75% 8.64 7.60 6.84 8.13
100% 318.8 38.53 21.83 372.1 13.41

Table 10: Second order CVs in % for system power
consumption over all Xeon E5-2680 v3 samples.

Apart from Idle, workloads seem to show their greatest
second order variance at their highest load levels and smaller
second order variances at the 50% and 75% load levels. The
major exception to this rule is Compression which has a
second order variation of coefficients of 212.05% at the 50%
load level.

In Section 4 we found that power consumption differences
for repeated measurements on a single sample are strongly
correlated with CPU temperature. This correlation is not
nearly as strong when comparing different samples. CPU
power and temperature correlate for some workloads, but
not all. SHA256 and SOR feature an 80% / 82% correla-
tion between CPU power consumption per sample and CPU
temperature. However, at the 25% and 50% load levels no
workload exceeds a correlation of 53%. Most importantly,
the workload with the highest relative CPU power difference
between samples (Idle) features only a correlation of 19.8%.
This leads us to conclude that differences in power consump-
tion of multiple samples are also significantly influenced by
effects other than CPU temperature.

Finally, we evaluate the variances in performance and how
those relate to the power variances for the respective sam-
ples. We compare the throughput (in s−1) for the SERT
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Load Compress LU SHA256 SOR

T
.

o
n

25% 207.64 s−1 (3.42%) 683.24 s−1 (4.38%) 16.66 s−1 (1.70%) 33.42 s−1 (0.35%)
50% 411.63 s−1 (3.40%) 1338.75 s−1 (4.29%) 25.75 s−1 (1.31%) 59.92 s−1 (0.31%)
75% 620.06 s−1 (3.41%) 2008.15 s−1 (4.29%) 37.19 s−1 (1.26%) 74.70 s−1 (0.26%)
100% 982.51 s−1 (4.07%) 2575.86 s−1 (4.18%) 37.05 s−1 (0.94%) 59.39 s−1 (0.15%)

T
.

o
ff

25% 94.20 s−1 (1.73%) 200.66 s−1 (1.32%) 13.22 s−1 (1.57%) 30.82 s−1 (0.37%)
50% 164.30 s−1 (1.50%) 362.76 s−1 (1.19%) 24.06 s−1 (1.42%) 49.47 s−1 (0.30%)
75% 223.87 s−1 (1.36%) 581.34 s−1 (1.27%) 25.96 s−1 (1.02%) 44.51 s−1 (0.18%)
100% 286.50 s−1 (1.31%) 1852.97 s−1 (3.11%) 31.21 s−1 (0.92%) 55.80 s−1 (0.17%)

Table 11: Min / max throughput differences for Fujitsu system over all Xeon E5-2680 v3 samples.

worklets at their respective load levels. We do not analyze
Idle and LINPACK, as Idle does not have a throughput and
LINPACK does not log any. The min / max differences be-
tween the worklet throughputs is shown in Table 11. Note
that the absolute values can not be compared across the
different worklets, as work unit sizes differ. The relative
throughput differences are significantly smaller than the rel-
ative power differences. The greatest difference is the 4.38%
min / max difference for LU at 25% load, which is only
slightly greater than the relative differences for LU at all
other load levels. The turbo setting also affects throughput
in a different way than it does power consumption. System
power differences (see Table 7) were affected only minimally
by the turbo. It did affect only two worklets at high loads.
Turbo’s effect on throughput variations, however, is both
significant and consistent. All worklets, with the exception
of SOR at high loads, show significantly less performance
variation with turbo disabled.

Not only do performance and power behave differently
across the samples and power settings, they also do not cor-
relate. Only LU at 25% load shows a correlation greater
than 50% (51.4% with turbo). All other workloads show
smaller correlation coefficients in the interval between -50%
and 50% correlation.

In conclusion, we find that different samples of a nominally
identical processor can exhibit a significantly different power
consumption. These differences are most visible during the
Idle state and at high load before hitting the processor’s
power limit. Once this limit is reached, samples behave very
similarly and differences in power consumption disappear.
CPUs also show great differences in the variances of power
consumption a single sample can produce during the course
of a measurement run. Again, Idle is the most extreme
case displaying these differences. Finally, we find that the
power differences correlate little with differences in sample
temperatures during measurements and not at all with the
sample’s performance.

6. VARIATION DIFFERENCES BETWEEN
PROCESSOR TYPES

We compare the power variances of the Xeon E5-2680 v3
processors from Section 5 with results of 20 samples of the
Xeon E5-2660 v3 processor running on a Dell server. The
processors are nearly identical, save for a 100 MHz difference
in frequency and two less cores for the E5-2660 v3. Using
these processors we investigate if a reduced number of cores
has an impact on the CPU power variations. Next, we com-
pare those results to results from 20 samples of the Intel
Xeon E5-2609 processor. These results will help indicate
if differences between processor generations exist. Finally,

we analyze processor qualification samples, which are often
used for system design and analysis at early stages of a pro-
cessor’s product line life cycle.

6.1 Core Count
The Intel Xeon E5-2660 v3 processor running on our Dell

PowerEdge R730 system is a 10-core CPU with a base fre-
quency of 2.6 GHz. It has fewer cores than the 12-core E5-
2680 v3 from our previous measurements and a 100 MHz
higher base frequency. The turbo frequency of the two pro-
cessors is identical at 3.3 GHz. As a result, both processors
move in a similar frequency range as long as turbo is en-
abled. We use the Dell system to determine if a lower core
count affects the variation of processor power consumption
across multiple samples.

We show the min / max CPU power differences over the
20 samples in Table 12. As this processor is smaller than the
E5-2680 v3 it consumes less total power. Consequently ab-
solute min /max differences are also smaller. However, the
same is true for the relative differences. With a few excep-
tions, all worklets have a lower relative min / max difference
on the E5-2660 v3. Idle with turbo is one of the exceptions,
displaying an almost identical relative min / max difference
of 29.63%. Yet overall, the mean min / max power consump-
tion difference of the E5-2680 v3 samples (11.8%) is 25.7%
greater than the difference amongst the E5-2660 v3 samples
(9.4%). With turbo disabled, the overall relative difference
using an E5-2680 v3 (11.1%) is 25.1% greater than using an
E5-2660 v3 (8.9%). With turbo disabled, some worklets go
against the trend, as Compress, SHA256, and SOR at 100%
load have a greater relative min / max difference with the
E5-2660 v3 than with the E5-2680 v3.

Load Idle Com. LU SHA SOR LIN.

T
u
rb

o
o
n 0% 6.59

25% 2.71 3.37 2.13 3.07
50% 1.92 1.78 2.18 2.24
75% 1.84 1.30 2.92 2.31
100% 1.60 0.05 2.54 2.76 0.00

T
u
rb

o
o
ff 0% 5.50

25% 2.82 3.18 2.12 3.08
50% 2.24 1.90 2.21 2.36
75% 2.12 2.30 2.41 2.07
100% 2.21 0.10 2.32 2.42 0.01

Table 13: CVs in % for mean CPU power consump-
tion over all Xeon E5-2660 v3 samples.

The coefficients of variation for the 10-core Xeon E5-2660 v3
samples’ power consumption in Table 13 show that the cases
in which relative min / max differences exceed those of the
12 core E5-2680 v3 are outliers. The CVs over all samples
are always smaller for the processor with fewer cores. With
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Load Idle Compress LU SHA256 SOR LINPACK
T

u
rb

o
o
n 0% 2.73 W (29.63%)

25% 2.88 W (9.83%) 3.40 W (11.96%) 2.48 W (7.59%) 2.84 W (10.97%)
50% 3.45 W (6.89%) 3.82 W (7.05%) 3.77 W (8.18%) 3.69 W (8.19%)
75% 4.95 W (7.37%) 4.37 W (5.76%) 10.09 W (14.31%) 5.57 W (9.85%)
100% 5.67 W (5.68%) 0.18 W (0.17%) 10.15 W (11.97%) 10.92 W (13.57%) 0.02 W (0.02%)

T
u
rb

o
o
ff 0% 1.49 W (16.19%)

25% 2.75 W (9.95%) 3.31 W (11.69%) 2.34 W (7.52%) 2.77 W (11.24%)
50% 3.80 W (8.06%) 3.81 W (7.15%) 3.68 W (8.51%) 3.44 W (8.13%)
75% 5.70 W (9.05%) 7.25 W (9.92%) 6.82 W (11.01%) 4.52 W (8.50%)
100% 8.79 W (10.00%) 0.47 W (0.45%) 8.19 W (11.07%) 7.62 W (10.91%) 0.02 W (0.01%)

Table 12: Min / max system power differences for Dell system over all Xeon E5-2660 v3 samples.

turbo, the CV of means shows a relative difference of 29.0%
between the processor types. Without turbo, this relative
difference is reduced to 13.3%. The latter relative difference
is smaller than the difference with turbo enabled, support-
ing the assertion that disabling turbo reduces the differences
between the processor types’ variations.

Load Idle Com. LU SHA SOR LIN.

T
u
rb

o
o
n 0% 236.1

25% 9.10 17.43 7.59 9.89
50% 8.34 19.67 8.68 9.88
75% 11.40 25.30 8.31 7.67
100% 98.10 8.99 89.02 61.38 15.81

T
u
rb

o
o
ff 0% 20.03

25% 9.06 17.96 6.78 15.88
50% 9.32 12.91 4.77 9.10
75% 6.31 21.96 50.22 8.99
100% 47.78 40.52 80.58 82.33 20.07

Table 14: Second order CVs in % for system power
consumption over all Xeon E5-2660 v3 samples.

The differences in variations over the respective samples
do not differ as much between the two processor types, as
long as turbo is enabled. With a mean second order CV of
all E5-2680 v3 samples of 37.7% only differs slightly from the
mean second order CV of the E5-2660 v3 samples (36.3%).
Disabling turbo increases the differences in variations signif-
icantly, as mean CVs decrease for the E5-2660 v3 samples,
but not for the larger E5-2680 v3. Most of this can be at-
tributed to the great second order variations of LINPACK
and Idle measurements on the 10 core processor.

We conclude that decreasing the number of processor cores
reduces the relative variation in CPU power. The turbo set-
tings affects this decrease, as it is more significant with turbo
enabled than with a disabled turbo. Our analysis of the
second order variations of CPU power consumption returns
conflicting results and remains inconclusive.

6.2 Processor Architecture
The 20 Intel Xeon E5-2609 CPU samples running on Or-

acle’s Sun Server X3-2 are older quad-core CPUs of Intel’s
Sandy Bridge generation. It is the CPU with the least cores
in our analysis and the only CPU of a non-Haswell architec-
ture. Measurements using these CPUs are not only intended
to confirm the observations on variation differences due to
core counts, but may also indicate differences due to changes
to the CPU architecture and semi conductor size. Due to its
age, this SUT does not feature a turbo setting. As a result,
we compare the results with the “turbo off” runs of the other
processor types.

Table 15 shows the min / max mean CPU power consump-
tion differences for the 20 E5-2609 samples. LINPACK be-
haves differently on this processor, as it varies stronger than
for the Haswell CPUs in the previous Sections. The min
/ max difference over the Xeon E5-2609 samples is 8.91 W
(19.45%), a significant increase compared to the 0.04 W of
the other CPUs. The variations also scale differently with
increasing load. Measurements using the Haswell proces-
sors showed no clear link between load level and difference
in sample power consumption. However, the Sandy Bridge
samples do. CPU power consumption differences between
samples increase with rising load for all workloads. These
results indicate a significant impact of processor architecture
on inter sample power variation. This assumption is further
compounded by the observation that even without the LIN-
PACK result the 9.5% mean min / max difference over the
quad-core E5-2609 samples is very similar to the 9.4% min
/ max difference of the 10 core E5-2660 v3, although the
latter is a significantly larger processor.

Load Idle Com. LU SHA SOR LIN.

B
a
la

n
ce

d 0% 1.39
25% 1.32 1.35 1.61 1.34
50% 1.98 2.30 1.94 2.04
75% 2.33 2.61 2.35 2.45
100% 2.58 2.63 2.52 2.60 4.92

Table 16: CVs in % for mean CPU power consump-
tion over all Xeon E5-2609 samples.

Table 16 shows that the observations based on the min /
max differences are systematic and not due to outliers. The
coefficients of variation over all 20 CPU power means lead
to the same conclusions. In contrast to the Haswell-based
measurements, LINPACK’s power consumption varies the
most. It does not show signs of hitting a power limit and
throttling to a similar power consumption over all samples.
Similarly, the CVs also support the observation that power
variations increase with load levels. This includes a rela-
tively low variation for the Idle workload, which is in stark
contrast to Idle’s volatility on the newer processors.

Load Idle Com. LU SHA SOR LIN.

B
a
la

n
ce

d 0% 243.3
25% 11.66 26.71 5.76 16.49
50% 8.10 11.84 7.17 12.28
75% 5.71 21.54 6.50 8.44
100% 24.91 26.95 25.22 25.53 99.98

Table 17: Second order CVs in % for CPU power
consumption over all Xeon E5-2609 samples.
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Load Idle Compress LU SHA256 SOR LINPACK

B
a
l a

n
ce

d 0% 0.97 W (6.75%)
25% 1.27 W (6.36%) 1.13 W (5.67%) 1.54 W (7.45%) 1.12 W (5.89%)
50% 2.38 W (8.70%) 2.97 W (9.79%) 2.25 W (8.72%) 2.43 W (9.39%)
75% 3.49 W (10.51%) 4.57 W (12.45%) 3.23 W (10.78%) 3.44 W (11.22%)
100% 4.48 W (12.00%) 5.09 W (12.19%) 3.79 W (11.18%) 3.99 W (11.71%) 8.91 W (19.45%)

Table 15: Min / max system power differences for Oracle (Sun) system over all Xeon E5-2609 samples.

Second order CVs in Table 17 are also overall smaller than
for the other processors, but few exceptions remain. Despite
being volatile with its means, Idle still features significant
differences in the size of its variations. LINPACK, on the
other hand, shows more volatility than on the E5-2660 v3,
but less than on the E5-2680 v3. No other workload exceeds
27%, whereas they pass it multiple times on the newer CPUs.

Concluding, we find that CPU architecture has a signifi-
cant impact on the variances in power CPU power consump-
tion over multiple CPU samples. As power scales differ-
ently over load levels, so do the differences for the samples.
Specifically, differences for the Sandy Bridge CPUs increase
with load levels and show no sign of throttling at high load.
They also do not vary as much during idle times. Also, note
that the measurement results over all Xeon E5-2609 sam-
ples differ significantly from repeated measurements on a
single sample in Section 4, supporting the observations and
conclusions of that section.

6.3 Qualification Samples
Finally, we test qualification samples for our Haswell-based

processors. Qualification samples are often used in product
testing and development before final production samples are
available. We test if power measurement results obtained
from qualification samples can be transferred to the final
production samples. This would be the case if qualification
sample power consumption resulted from the same distribu-
tion as production sample power.

We run all workloads on four qualification samples, cor-
responding to the Xeon E5-2680 v3 production processors
and LINPACK on four qualification samples corresponding
to the Xeon E5-2660 v3 processors. In addition, we test a
total of 12 samples of the Xeon E5-2699 v3 processor (six
production and six qualification samples). Our comparison
focuses on the workloads with the least and most variations,
namely LINPACK, Idle, and SOR at 100% load. We choose
SOR at 50% load as an additional workload to focus on,
representing workloads with average variations.

Figures 3 and 4 show the Idle CPU power consumption of
the E5-2680 v3 production and qualification samples with
turbo enabled. For the Idle workload, qualification sample
results are in the same range as production sample results.
There seems to be no significant difference between the sam-
ple batches. Consequently, the CPU power means for the
samples from the two batches also fail the Student’s T Test,
as the 95% difference confidence interval includes 0. Dis-
abling turbo does not change anything. The qualification
samples still fall into the lower range of the overall distribu-
tion, but do not differ in a statistically significant way.

The qualification samples’ CPU power does not differ sig-
nificantly for the other worklets either. With turbo enabled,
CPU power means for the qualification processors are al-
ways included in the min / max interval of the production
means, regardless of load level or workload. This is even
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Figure 3: CPU power consumption of Xeon E5-
2680 v3 production samples running Idle.
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Figure 4: CPU power of qualification samples cor-
responding to Xeon E5-2680 v3, running Idle.

true for LINPACK, although this workload features only a
CPU power range of 0.05 W (0.05%) over all production
samples. Despite this tiny window, no qualification sample
strays beyond it.

Disabling turbo changes this behavior for some workloads.
Idle and LINPACK do not change, as min / max intervals of
the production samples still include the qualification sam-
ples. SOR, on the other hand, features qualification outliers
on all load levels. To illustrate, at 50% load one of the
qualification samples has a mean power consumption that
is 2.3 W less than the best production sample. However,
these outliers are still not statistically significant and fail
the 95% confidence level T test. This statistical indifference
is repeated for the Xeon E5-2660 v3 and the corresponding
qualification processors.

Sample variations are difficult to compare, due to the qual-
ification batch’s small sample size. Yet even with this small
sample size, coefficients of variation across sample means
are very similar for qualification and production samples.
Idle features the greatest variation (7.3% for production and
7.0% for qualification samples, turbo on), followed by SOR
at full load (4.5% and 4.3%). LINPACK features the small-
est CVs without turbo (0.1% and 0.0%), and is surpassed
slightly by LU at full load with turbo (0% for both produc-
tion and qualification samples).

Measurements on the Xeon E5-2699 v3 samples confirm
these observations. Qualification and production samples
are not distinguishable based on their power consumption.
Again, some qualification samples use slightly less power
than the production samples, yet not enough for any sta-
tistical significance. Other qualification samples consume
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Figure 5: Throughput distribution of qualification
and production Xeon E5-2680 v3 samples, running
SOR at 50% load.

more power and behave similarly to some of the less en-
ergy efficient production samples. Figure 6 shows the power
consumption of all samples for SOR at 50% load, visualiz-
ing that qualification samples behave like “good” production
samples, but not in a statistically significant manner.
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Figure 6: CPU power of Xeon E5-2699 v3 running
SOR at 50% load.

Performance is also very similar for both qualification and
production processors. Throughput means for the qualifica-
tion samples are always in the min / max interval of the cor-
responding production sample throughputs. Figure 5 illus-
trates this using the throughput distributions for the Xeon
E5-2680 v3 processor running SOR at 50% load.

Concluding, qualification samples’ performance and power
consumption does not differ significantly from the perfor-
mance and power of their corresponding production pro-
cessors. Our few qualification samples appear to have the
properties of “good” production samples, consuming rela-
tively little energy at similar performance. Yet, they do not
feature any significant difference to other good production
samples and are not different enough to conclude any sys-
tematic difference.

7. CONCLUSIONS
In this paper, we demonstrate that identical systems, con-

taining nominally identical processors can exhibit significant
power consumption differences that do not correlate signifi-
cantly with CPU temperature and system performance. The
differences are most significant during two system states:
idle and high load. Idle is the most volatile state for power
measurements. Different processor samples exacerbate this
problem, leading to differences in mean idle power consump-
tion of up to 29.6%. The state with the second highest power
differences is high load. Older systems exhibit their great-
est variations here. Newer systems feature advanced throt-
tling mechanisms that minimize differences at the proces-
sor’s temperature and power limit. They reach their greatest

absolute differences just before this limit is reached. Power
consumption variations during other states is still signifi-
cant. At 50% load, for instance, relative differences in CPU
power can be as high as 12.5%.

The results and conclusions of this paper are not only of
interest to benchmarking and standardization bodies. Bench-
marking features the challenge of uncertainty when dealing
with measurement results as only a comparison with other
samples on an identical system can show if a measured re-
sult was measured using a “good” or “bad” processor. Be-
yond benchmarking, power prediction for power manage-
ment and modeling is affected. The variations presented in
this paper show a boundary of how accurate any power pre-
diction mechanism for a nominally known system can be.
E.g., a power prediction might be off by 10% or more en-
tirely because an unfavorable processor sample was used for
the predicted system.

This paper prompts future research as methods must be
found to identify whether a given processor sample is a bet-
ter or worse compared to other existing nominally identical
samples. This is challenging as only a very small number
(usually one) of processor samples is available to most users.
The ability to identify the type of sample would enable more
accurate comparisons of systems and classifications of mea-
surement results.
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