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ABSTRACT
It is noticeably hard to predict the effect of optimization
strategies in Java without implementing them. “Maximal
sharing” (a.k.a. “hash-consing”) is one of these strategies that
may have great benefit in terms of time and space, or may
have detrimental overhead. It all depends on the redundancy
of data and the use of equality.

We used a combination of new techniques to predict the
impact of maximal sharing on existing code: Object Re-
dundancy Profiling (ORP) to model the effect on memory
when sharing all immutable objects, and Equals-Call Profil-
ing (ECP) to reason about how removing redundancy impacts
runtime performance. With comparatively low effort, using
the MAximal SHaring Oracle (MASHO), a prototype pro-
filer based on ORP and ECP, we can uncover optimization
opportunities that otherwise would remain hidden.

This is an experience report on applying MASHO to real
and complex case: we conclude that ORP and ECP combined
can accurately predict gains and losses of maximal sharing,
and also that (by isolating variables) a cheap predictive model
can sometimes provide more accurate information than an
expensive experiment can.

Keywords
Performance modeling; maximal sharing; hash-consing; pro-
filing; memory; optimization; Java Virtual Machine.

1. INTRODUCTION
This paper is about performance modeling of Java libraries.

“Premature optimization is the root of all evil”, says Donald
Knuth [11]. The reason is that optimization strategies are
prone to make code more complex and perhaps for no good
reason because they may backfire unexpectedly.

Our question is: how can we know, a priori, that a particu-
lar optimization strategy will pay off? For most optimizations
there is only one way to find out: implement an optimization
and compare runtime characteristics against an unoptimized
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version. In reality it will often take multiple rounds of pro-
filing and tuning before the desired effect and the promised
benefit of an optimization is attained. In this paper we
present the MAximal SHaring Oracle (MASHO): a prototype
profiling tool that predicts the effect of the maximal sharing
optimization a priori, avoiding costly and risky engineering.
We report on the experience of testing MASHO and trying it
out on a real and complex case.

The “maximal sharing” optimization tactic, dubbed “hash-
consing” [8], entails that selected objects that are equal are
not present in memory more than once at a given point in
time. To make this happen a global cache is used to adminis-
trate the current universe of live objects, against which every
new object is tested. There are two main expected benefits
of maximal sharing: avoiding all redundancy by eliminating
clones in memory, and the ability to use constant time ref-
erence comparisons instead of deep equals checks that are
in O(size of object graph). This is because maximal shar-
ing enforces the following invariant among selected objects:
∀ objects x, y : x.equals(y)⇔ x == y, which allows any call
to equals on shared objects to be replaced with a reference
comparison. The expected overhead is the maintenance of
a global cache, and for each object allocation, extra calls to
the hashcode and equals methods.

Figure 1 illustrates the effect of maximal sharing on an
object that is “embarrassingly redundant”: a reduction from
exponential to linear size (in the depth of the tree). In
contrast, a tree with the same structure but all unique integer
values in its leaf nodes would have no sharing potential.

Maximal sharing is associated with immutable data struc-
tures [17], since it requires objects to not change after allo-
cation. It is applied in the context of language runtimes of
functional languages [27, 10], proof assistants [5], and alge-
braic specification formalisms [23, 4, 6, 15, 2], compilers [26],
or libraries that supply similar functionality. Especially when
many incremental updates are expected during computation

Figure 1: Good conditions for sharing: redundant objects.
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(i.e., creating redundancy over time) we may expect big
benefits. For example, implementations of term rewriting
(reducing trees), type constraint solving (minimizing sets of
solutions) and solving data flow equations (incrementally
adding/removing graph edges) share these characteristics.

On the one hand, in the case of high performance im-
plementations of term rewriting engine libraries, maximal
sharing has proven to be a very successful strategy: “It turns
out the increased term construction time is more than com-
pensated for by fast equality checking and less use of space
(and hence time)” [23]. In real cases memory savings between
52.20%–98.50% of term representations were observed [24].
On the other hand, maximal sharing can have a negative
net effect on memory consumption in absence of enough
redundancy, due to the overhead of the global cache.

The audience for the maximal sharing technique is library
developers rather than application developers. Considering
the effort associated with optimizing for maximal sharing,
an often reused library is expected to have larger return on
investment than a single application.

With the advance of immutable objects and functional lan-
guage constructs in object-oriented languages —like Java 8 or
Scala, and functional languages running on the Java Virtual
Machine (JVM) like Clojure— it is now relevant to investi-
gate if and how we can use maximal sharing to our benefit
in JVM library implementations. Immutability may be a too
strong requirement for any Java library in general, but if
immutability comes naturally for different reasons, then the
maximal sharing strategy is an important one to consider.

Potential adopters of maximal sharing suffer from a com-
mon problem: converting a library to use maximal sharing
is hard and costly [22, 24, 25]: it is a cross-cutting design
decision with difficult to tune implementation details. To
illustrate one of many pitfalls, let us take a Java library
for graph processing as example. It makes use of standard
library classes for integers and sets. The hashcodes of empty
sets are 0 in Java and for singleton sets the hashcodes are
equal to the hashcode of the elements, because hashCode() of
a java.util.Set is defined to be the sum of the hash codes
of the elements in the set. Inserting such similar values in
a global cache for sharing would trigger unexpected hash
collisions. The success of maximal sharing depends on one
hand on a broad spectrum of properties of a library, like its
Application Program Interface (API) design, quality of hash
codes, co-optimization of shared data structures, and on the
other hand on runtime characteristics like data redundancy
and the ratio between object allocations and equality checks
of shared objects. Naive implementations of maximal sharing

—that do not take these issues into account— are likely to
slow down programs and increase their memory footprint.

1.1 Contributions and Outline
This paper does not contain an evaluation of the maximal

sharing optimization technique; it does contain an evaluation
of the accuracy and usefulness of a modeling and simulating
technique for maximal sharing. The contribution of this
paper is firstly the design of MASHO (Section 2), which
includes:

• Object Redundancy Profiling (ORP): measuring the
lifetime of redundant objects during a program execu-
tion, optimized to benefit from immutable data and
to include the notion of data abstraction to accurately
model the possible effects of maximal sharing;

• Equals-Call Profiling (ECP): capturing the recursive
call-graph shapes of calls to equals, including a partial
alias analysis;

• Maximal Sharing Model (MSM): a lightweight predic-
tive model that uses ORP and ECP profiles to predict
the behavior of a program after the application of max-
imal sharing.

Secondly we contribute an experience report on the use
MASHO for modelling the runtime environment of a pro-
gramming language. From this we learned that:

• it predicts the impact of maximal sharing on memory
usage and the use of equality very accurately and so
it removes the need for direct experimentation with
maximal sharing, producing equivalent information for
making go/no-go decisions with a mean slowdown of
7x for ORP and ECP;

• it isolates the effects of introducing maximal sharing
from the effects of JVM configuration (e.g., memory
bounds, garbage collector heuristics) and accidental
hash collisions that would occur due to a global cache.

• for the validating experiment, a set of realistic demon-
strations, implementing maximal sharing will produce
good memory savings but will not lead to performance
speed-up without first applying major changes to the
semantics of the library. We can decide a “no-go”.

In general, this experience shows how cheap predictive perfor-
mance modelling can produce more actionable information
than an expensive real-world experiment can since it can
soundly factor our confounding factors like the Java garbage
collector and reason about otherwise infeasible design al-
ternatives. Related work is further discussed in Section 4,
before we summarize in Section 5.

2. DESIGN OF THE MODELING TOOL
In the following we describe the design decisions and most

important implementation details of MASHO in this order:
how it is used by a library developer, its architecture and
implementation choices, what its preconditions are, and then
how ORP, ECP and MSM work together to predict the effect
of introducing maximal sharing. We identify possible sources
of inaccuracy throughout the text and evaluate these in
Section 3.

2.1 Library Developer Perspective
The user first configures MASHO with a list of interest-

ing classes or interfaces which might hypothetically benefit
from maximal sharing. MASHO then instruments the library
(which does not implement maximal sharing). Next, the user
runs programs that use the library, while the instrumentation
logs information to be analyzed. After this, MASHO analyzes
the logs producing charts and tables explaining the likely
effect of maximal sharing on the library in the context of
the executed programs. The user interprets the charts to de-
cide go/no-go on investing in maximal sharing, or continues
tweaking the experiment’s setup or the test runs.

2.2 Instrumenting a Program for Profiling
Figure 2 depicts the architecture of MASHO. A client

library is instrumented using both AspectJ and the Java
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Figure 2: Class diagram and Aspect-Oriented Programming
profile depicting MASHO’s architecture.

Virtual Machine Tool Interface (JVMTI) for gathering the
following events: object allocations, object garbage collec-
tions, and calls to equals. An AspectJ pointcut selects all
constructor call-sites of to-be-shared classes. In an advice,
which gets called whenever one of these constructors executes,
MASHO performs at run-time ORP with fingerprinting (Sec-
tion 2.4) and an alias-aware object graph size measurement
(Section 2.5). Similarly, we use pointcuts for ECP to record
the call-graph shape of equals-calls (Section 2.6). Bytecode
Instrumentation (BCI) is used to track object allocations
that are otherwise intangible for AspectJ, for example object
construction via reflection. For lifetime tracking, we tag
each newly allocated object with the aid of the JVMTI to
get notified about an object’s garbage collection.

2.3 The Precondition: Weak Immutability
Maximal sharing introduces a global cache for all desig-

nated objects and uses an object factory for creating new
instances. Instead of new Tuple(a, b), one would call a fac-
tory method like so: factory.tuple(a, b). Whenever the
factory encounters that an equal object already exists in the
global cache, it returns the cached instance and forgets the
temporary object. Otherwise it caches the new instance and
returns it. Such a global cache introduces data dependencies
between parts of the program which would normally be unre-
lated to each other. Consequently, maximal sharing does not
work for mutable objects because it may break referential
integrity: if a shared object would change, this would become
observable in otherwise logically independent parts of the
program.

One way to avoid breaking programs in the presence of
maximal sharing is requiring full immutability of shared ob-
jects, but such a strong condition is not necessary. Therefore
we define weak immutability, a sufficient condition under
which maximal sharing can work, as follows: for any object
o and its updated future value o′ it holds that o.equals(o′),
while observing that not necessarily all fields have to con-
tribute to its equals method. Based on weak immutability,
object identity can be defined by the transitive closure of
immutable attributes of an object, also known as structural
equality [1]. Similarly it follows that all object graphs gener-
ated from these classes, if we follow only references to fields
that are used by the equals methods, are Directed Acyclic
Graphs (DAGs).

Competitive tools [14] solely reason on the granularity of
“physical” object-graph equality, while logical object equality
may need some form of abstraction. For example, in case of
unordered collection data structures such as hashtables, and
lazily instantiated (caching) fields. We will detail in the next
section, how to support those cases for better coverage.

2.4 Object Redundancy Profiling
The ORP part of MASHO takes advantage of the weak

immutability of the selected classes and the fact that we
are guaranteed to analyze data that could be represented as
a DAG. Namely, we compute a fingerprint for each object,
representing the structural identity of its value, using a
bottom-up analysis of the object DAG. Fingerprinting allows
us to avoid fully serializing heap objects or logging all changes
of the heap to disk [20, 14]. Instead we serialize only the
fingerprints that are expected to be a lot smaller in size.

The fingerprint function f , a cryptographic 256-bit SHA-2
hash function in our case, has similar goals as the normal
standard 32-bit integer hashcode method but necessarily
it has a much higher resolution to better represent object
identity. For an optimal f (i.e., perfect hashing) it can be
said that for any two objects o1, o2 it holds that o1.f() =
o2.f() ⇔ o1.equals(o2). The inevitable non-optimality of
a cryptographic f may introduce inaccuracy in MASHO’s
profiles, while at the same time making the analysis feasible
because we avoid a full serialization of every object.

Weakly-immutable object DAGs can only be created bottom-
up, so MASHO computes a fingerprint at each allocation of
a to-be-shared object. We use a fingerprint cache to effi-
ciently refer to the fingerprints of already known objects.
Therefore, fingerprinting a new composite object is always
O(shallow object size). We distinguish the following cases:

Leaf Objects: are objects that have no children in the im-
mutable DAG. We serialize leaf objects and fingerprint
them by applying f on the resulting byte-arrays.

Ordered Composite Objects: are objects that contain
an ordered sequence of references to other shared ob-
jects. We first lookup and concatenate the fingerprints
of all referenced shared objects. Then, we compute f
over the concatenated hashes.

Unordered Composite Objects: are objects that contain
an unordered sequence of references to other shared
objects. We first lookup and concatenate the finger-
prints of all referenced shared objects. Then, we reduce
the set of fingerprints to a single fingerprint with the
bitwise XOR operator. This commutative fingerprint
computation is stable under arbitrary orderings.

In the case of unordered composite objects, arbitrary order-
ings of arrays, containing the same values, are to be expected
for example in array-based implementations of hash-maps
and hash-sets. We abstract from these arbitrary orderings
in order to predict more opportunities for maximal sharing,
as well as abstracting away from differences that are due to
hash collision resolution tactics.

2.5 Object Graph Size Calculation
Modeling memory savings requires reasoning over which

references already point to the same objects and which do
not. Such aliasing is likely present in any Java application.
MASHO computes the memory footprint of a to-be-shared
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object efficiently at object allocation time, which is sufficient
only due to weak immutability. It uses Java reflection to
collect fields and compute the size of all referenced objects
and contained primitive values. This traversal skips nested
to-be-shared objects to solely measure the overhead incurred
by redundant objects. Aliases of not to-be-shared objects
are detected by maintaining a lookup table that maps object
identities to their memory footprints. If an object reference
is already present in the table, then we have detected an
alias and should not count the same object again, but simply
add the size of the 32 or 64-bit reference. Note that this
alias analysis is incomplete by design due to efficiency con-
siderations. We distinguish two cases: visible and invisible
aliases. While the former is traced accurately, the latter may
introduce inaccuracy because we only partly track the heap.

Visible aliases.
I.e., references that are reachable from a to-be-shared

object. For example, consider two different Java fragments
which construct a tuple and its content, an atom. Both
classes are to be maximally shared:

• Tuple elements are aliases:
Atom a = new Atom("S"); new Tuple(a, a);

• Tuple elements are unique:
new Tuple(new Atom("S"); new Atom("S"));

ORP should predict savings for the latter because it uses
duplicates, whereas the former already shares the atom.

Invisible aliases.
I.e., references to library objects that are outside the in-

terfaces that the library developer chose to track. Consider
the following Java fragment: Atom atom(String s) { return
new Atom(s); }. Atom is to be shared, whereas String is not.
We attribute the size of s to the size of the first tracked
object that references s. Note that s might be referenced
by any other object: either from an object to be shared, or
from an object that is not meant to be shared. The accuracy
of MASHO is influenced by this effect (addressed by one of
our evaluation questions in Section 3).

2.6 Equals-Call Profiling
The goal of ECP is to record the shape of (recursive) calls

to equals on to-be-shared objects. Tracking the calls to
equals requires detailed consideration to be applicable to
maximal sharing. After objects are maximally shared, all
calls to equals can be replaced by reference comparisons, but
also already existing aliases have to be taken into account
to not over-approximate the potential benefits of maximal
sharing.

In Java it is common that equals implementations first
check for reference equality on both arguments to short-
circuit the recursion in case of aliased arguments. Using
AspectJ we cannot easily capture the use of == or !=,
but we can measure the difference between root calls to
equals and recursively nested calls to equals. By root
calls we mean invocations of equals that are not nested
in another equals-call. In case equals implementations do
not return on aliases directly, MASHO pinpoints these op-
timization opportunities by warning the user about them.
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Figure 3: Overlapping lifetimes for objects with identical fin-
gerprints. Two families of redundant alive objects are visible
(solid lines) and also their possible replacement maximally
shared alternatives (dashed lines).

2.7 Creating a Maximal Sharing Model
By combining the results from redundancy and equals-call

profiling, we are able to hypothetically model the impact of
maximal sharing, including changes to the heap structure,
overhead introduced by a global cache, and substitutions of
(recursive) equals-calls by reference comparisons.

Modeling memory usage.
MASHO analyzes the profiled data as follows. It reasons

about redundancy that is present at each point in time. Time
is measured by allocation and deallocation event timestamps.
Figure 3 illustrates several objects that map to the same
fingerprint 04DA. . . 9A22. The objects with identifiers 1,
2, and 3 consecutively overlap, as well as objects 4 and
5. We call a sequence of overlapping lifetimes an “object
family”. In an optimal situation each family would reduce to
a single object, with an extended lifetime (see dashed lines
in Figure 3).

First, we replay the trace to compute the current memory
usage of the profiled program for each point in time. We
start from a set of object lifetime triples, allocationTime ×
deallocationTime × uniqueSize. We compute two lists: one
with objects sorted by allocation time, and another with
objects sorted by deallocation time. Then we traverse the
two sorted lists and compute their running sums. At each
timestamp the difference between the running sums denotes
the current memory usage.

Second, we compute an estimated memory profile of the
same program run as-if objects would be maximally shared.
Again, we sort the aforementioned object lifetime triples on
timestamps but now we also group them by their fingerprints.
This artificially removes duplicate objects and extends the
lifetimes of the remaining objects. The final memory usage
at each point in time is computed exactly as before, but
on this filtered and re-ordered set of lifetime triples. This
computation predicts what memory is theoretically minimally
necessary to store the observed objects. In practice of course
more memory will be used because objects are now even
more unlikely to be garbage collected immediately after they
become unreferenced. This effect will be observable in the
evaluation later.
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Modeling the global cache memory overhead.
MASHO assumes a fixed bytes-per-record overhead per

object reference stored in the global cache that is to be intro-
duced. Predicting the overhead is a matter of multiplying a
constant —currently 42— by the number of unique objects
at any point in time. To choose its default value, we ana-
lyzed the memory overhead of an object repository that is
implementable with the standard Java collections API (i.e.,
WeakHashMap with WeakReferences as values) and an existing
and thoroughly optimized implementation from the ATerm
Java library [22]. ATerm’s global cache imposes a 42 bytes-
per-record memory overhead, while a standard WeakHashMap
implementation requires 79 bytes-per-record.

Modeling the global cache runtime overhead.
The expected number of newly introduced calls to the

equals method is exactly equal to the number of redundant
object allocations. The new implementation of equals will
not have to be recursive anymore under the assumption of
maximal sharing. Note that these predictions are under the
assumption of optimal hash code implementations and a
collision free global cache implementation.

We may also predict the maximal number of new executions
of == by counting at each call to equals the number of
immutable fields, i.e., the arity, of the object. Note that
this arity depends on the definition of the original equals
method. This is the number of fields that contribute to its
implementation.

Suppose an implementation of a to-be-shared class uses
arrays for storing nested objects. In this case the arity of
the object is open and equals is in principle in O(arity)
even after introducing maximal sharing. The higher this
arity, the lower the benefit of maximal sharing will be. This
is why MASHO reports also the expected number of newly
introduced reference comparisons to the library engineer.

3. EVALUATION
Does MASHO allow library engineers to model and simulate

what they might get out of maximal sharing without actually
implementing and tuning it? Our evaluation questions are:

Q-Accurate: does MASHO predict memory gains and the
effect on equals-calls after maximal sharing accurately?

Q-Actionable: does MASHO give a library engineer enough
information to decide upon further time investments
in the maximal sharing strategy?

First, we set up a controlled experiment (Section 3.4) where
we can theoretically explain the shape of the input and the
shape of the resulting statistics. This is to test whether the
experimental setup works reliably and accurately.

To answer Q-Accurate we will then compare MASHO’s
models to profiles obtained from realistic cases that imple-
ment maximal sharing (Section 3.5). The hypothesis is that
the memory and equals-calls models are very accurate, i.e.,
within a 1% margin of error. The hypothesis assumes that
the introduction of the global cache —that holds weak ref-
erences to shared objects— does not (or only marginally)
change the overlapping lifetimes of the object families; we
will report whether or assumption holds. The output of these
realistic experiments is discussed in detail as a prerequisite
to assess Q-Actionable qualitatively.

3.1 Experience: the Program Data Base Case
We report on our experience testing and evaluating MASHO

on two open-source projects: the Program Data Base (PDB),1

a library for representing immutable facts about programs,
and Rascal [10], a Domain-Specific Language (DSL) for meta-
programming. Both projects are actively developed and
maintained since 2008. Rascal has 110K Source Lines of
Code (SLOC) and PDB 23K SLOC. PDB is the run-time sys-
tem of Rascal. All values produced and consumed by Rascal
programs are instances of PDB library classes. This ranges
from primitive data types, to collections, and more complex
compositional data structures like arbitrary Algebraic Data
Types (ADTs). PDB’s basic primitive is the IValue inter-
face, which every weakly-immutable data type adheres to.
Thus, analyzing the usage of IValue in Rascal programs is
comparable to analyzing how Object is used in Java. For
the experiments below, we configured MASHO to share all
objects of library classes that implement IValue.

The PDB classes support two forms of equality. This is
common for weakly-immutable libraries with structural equal-
ity (cf. Clojure). One is implemented by equals satisfying
weak immutability by implementing strict structural equality.
The other is called isEqual and ignores so called “annota-
tions”. Annotations are extensions to a data value which
should not break the semantics of existing code that does not
know about them. The isEqual method does satisfy weak
immutability, but if maximal sharing would be applied based
on the isEqual semantics instead of on the equals semantics
it could break client code: annotations would quasi-randomly
disappear due to accidental order of storing (un)annotated
values in the global cache. With maximal sharing in mind,
annotations should not be ignored for equality.

To be able to analyse isEqual as well, we configured ECP

to track isEqual calls like it tracks equals-calls. Note that
equals and isEqual do not call each other. Furthermore,
we inserted an additional rule that checks at run-time if
both arguments to isEqual map to the same fingerprint,
by performing fingerprint cache lookups. If yes, we imply
that they are strictly equal to each other and do not contain
annotations in their object graphs. As a consequence we
model such an isEqual call as a reference equality, because
both arguments will eventually become aliases under maximal
sharing. Otherwise, if fingerprints do not match, we continue
to recursively descent into the isEqual call.

To conclude, PDB represents a well-suited but challenging
case for maximal sharing: it is not set up for tautological
conclusions of our evaluation of MASHO.uality.

3.2 A Minimal Maximal Sharing Realization
For answering the Q-Accurate question we should verify

the predictive model of MASHO against actual data from a
real maximal sharing implementation. To gather memory
data and to profile equals-calls, a fully optimized implemen-
tation is not necessary, and also absolute numbers about
runtime performance are not comparable anyway due to in-
terference of the profiler and JVM configuration. Therefore,
we should abstract from absolute runtime numbers and in-
stead evaluate the absolute reductions/increases in terms of
equals-calls.

Figure 4 shows a class diagram of how we used AspectJ to
obtain a maximally shared version of PDB. Our global cache

1https://github.com/cwi-swat/pdb.values
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Figure 4: Using AspectJ to experiment with maximal sharing.

is implemented using a WeakHashMap with WeakReference val-
ues. We use a pointcut with around-advises to intercept
and instrument object allocation call-sites (both in library
and in application code), substituting new objects with ref-
erences from the global cache, if present. We also replace all
calls to equals outside of the central repository by reference
equalities, as well as all recursive calls to equals called by
the central repository. The recursive calls can be replaced
because nested values have already been maximally shared.

3.3 Shared versus Non-Shared Measurement
We reuse MASHO’s measurement facilities to measure both

a shared and a non-shared version of each experimental run.
In the shared version we reuse a strict subset of MASHO’s
measurement facilities, namely for ECP, object size calcula-
tion, and timestamping of allocation and deallocation events.
The latter are services of the JVMTI. Reuse of MASHO’s
measurement facilities entails a threat-to-validity that is
mitigated by the controlled experiment, where we can the-
oretically explain the shape of the data and the expected
outcome. We do completely turn off ORP profiling for these
experiments to avoid interference. In the presence of the
maximal sharing aspect we can observe real global cache
behavior and identify redundant objects based on cache hit
counts.

Our first naive memory measurement method (method 1 )
is to aggregate and compare the mean memory usage from a
shared library experiment against the model that is calculated
from the non-shared profiles. If the difference is small, then
MASHO predicts accurately. Otherwise, either the evaluation
method is flawed, fingerprinting has too many collisions, or
MASHO misses an important aspect in modeling maximal
sharing. The hypothesis is that based on this analysis we
will see only minor differences because MASHO is expected
to produce an accurate model.

The previous method is naive, because we know that the
Garbage Collector (GC) will influence the mean memory
usage as often and perhaps as much as the optimization
strategy does. It is a confounding factor. We should expect
sawtooth patterns in MASHO’s memory profiles caused by
short-living temporary objects that could all be discarded
immediately after allocation —in case of a hit in the global
cache— but instead will remain in memory until the GC starts
to operate. So, from the comparison of mean memory usage

we should hypothesize significant inaccuracy in predicting
memory usage.

To mitigate the confounding factor introduced by the
delays in garbage collection we may set the heap size set-
ting of the JVM to a benchmark specific global minimum.2

This would trigger the GC more often and force it to collect
temporary objects. The mean memory usage then starts
approaching the global minimum in memory usage. While
identifying globally minimal heap sizes per benchmark could
be automated with bisection search, we argue it is not precise
enough for our memory measurements. Therefore we also
set up a second method of comparison (method 2 ). This
method is similar to the previous, but additionally we tag all
short-living temporary objects —by measuring whether they
cause cache hits— and subtract their sizes from the actual
memory usage. The effect is that we filter noise introduced
by the GC. Instead of only considering one global minimum,
we now reason over a series of local minima in time. If the
difference in memory usage between this minimal size and
the predicted size is still large, then MASHO is inaccurate,
as caused by fingerprint collisions or an unsound modeling.
Otherwise it is accurate. For the sake of transparency we
will discuss both the results of the naive method and the
mitigated method of comparison.

Setup of JVM Parameters.
We use AspectJ 1.7.3 a 64-bit JVM from Oracle, Java

version 1.7.0 51, running on an Intel Core i7 3720QM CPU
under Mac OS X.3 We configured the JVM with the following
settings additional to the -server flag: with -Xms4G -Xmx4G
we set the heap to a fixed size of 4GB and prohibit resizing;
-XX:+DisableExplicitGC deactivates manual invocation of the
GC; -XX:+UseParallelOldGC uses a parallel collector for new
and old generations.

3.4 Controlled Experiment
Here we test-drive our evaluation method. We use two

scenarios that are based on the introductory example from
Figure 1: with the PDB library we first build binary trees
of depth d where all leaf nodes are equal with respect to
each other, and second binary trees of depth d where all
leafs nodes are different from each other. We hypothesize the
results of the experiment and observe whether or not these
numbers are produced. This check of both an optimal case
and a worst case scenario for maximal sharing would reveal
obvious problems with our measurements.

3.4.1 Expectations
While profiling we expect from our setup that no object

is garbage collected until the program ends and that both
trees consume the same heap size. Zero redundancy should
be measured in the redundancy-free case, and for depth d in
the redundant case 2d+1 − d duplicates. When running PDB

with the maximal sharing aspect, memory savings should be
visible for the redundant case, and growing with increasing
depth. The controlled experiment only allocates objects,

2Minimum heap size is a function of time: each program
state has its own minimum. With global minimum we refer
to the maximum of all minima, i.e., the lower memory bound
that is sufficient to run the program.
3At the time of performing our experiments, the latest stable
AspectJ Development Tools (AJDT) version included AspectJ
1.7.3, which only supported Java Development Kit (JDK) 7.
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but does not invoke equals. However the maximal sharing
introduces equals-calls by performing global cache lookups.
We expect one equals-call per cache hit, and furthermore
for each binary tree node two reference comparisons, one for
the left and one for the right subtree.

3.4.2 Results
Figure 5 shows the results of profiling the creation of trees

with depths from 1 to 20. The plots use logarithmic scales.

Redundant Trees.
Figure 5a focuses on redundant trees. The x-axis highlights

the profiled allocation count at each depth d. Surprisingly,
the measurement at d = 0 exhibits four allocations instead
of the one expected: Manual inspection revealed that PDB’s
integer implementation contains an integer(1) constant, and
further, the two boolean constants TRUE and FALSE were pre-
initialized by the library.

The profile line shows memory usage obtained by the
profiles, while the maximum sharing model line illustrates
the predicted minimal heap usage under maximal sharing.
At low object counts (d <= 2) the maximum sharing model
signals a higher memory usage with maximal sharing than
without, However, at d = 5 the measurements break even,
denoting a saving potential of 66%. The saving potential
stabilizes around 100% from d = 10.

The sharing run (with default heap size) line shows the
heap profile with the maximal sharing aspect applied. For
d < 20 there is no measurable difference from the profile
line. Only at d = 20 with about 2M object allocations,
we see a difference because temporary objects are partially
collected. Performing another sharing run (with tight heap
size), yields results that are clearly different from the original
memory profile, yet a significant error remains. The results
confirm that the GC largely influences the naive method 1 ;
we obtained a mean accuracy of 27%, with a range of 3–93%.

Measurements with method 2 are not visible in the graph,
because the data aligns exactly with our maximum sharing
model. It performed with 100% accuracy at experiments with
an allocation count bigger than 66; at smaller counts the
three unexpected allocations reduce accuracy marginally.

The measured global cache hits (that are not listed here
for brevity) are exactly off by one due to the integer(1)
constant. Measured equals-calls that are caused by the
global cache match exactly with the number of cache hits, as
expected. Estimated reference equalities are also accurate:
each cache hit of a tree node object yields two reference
comparisons, one for each sub-node.

Redundancy-free Trees.
Figure 5b shows the results for trees with no shareable

data. The maximum sharing model and sharing run (with
default heap size) correlate. The plot illustrates the overhead
of the global cache that grows linearly with each unique
object. The only unexpected observation is one additional
cache hit, caused by the previously mentioned integer(1)
constant.

No hash collisions were recorded due to global cache
lookups, with the exception of a single experiment (d = 20)
that yielded 420 false equality comparisons in a cache with
2M cached objects. We list the number of equality checks
that yielded false rather than full collisions to abstract from
global cache implementation details.

3.4.3 Analysis
First, we observed particularities of PDB in terms of pre-

allocated constants. Second, even under optimal conditions
hash collisions became visible at 2M cached objects. We sus-
pect this becoming a dominant factor in further experiments.
This indicates also that the hash code quality should be an
engineering priority in case of a “go” decision for maximal
sharing for this kind of data.

The naive method 1 of comparing mean memory is not
able to show the effect of maximal sharing due to GC noise.
In contrast, our alternative method 2 shows accurate results
that matched our model.

We may confirm Q-Accurate for this case: MASHO pre-
cisely analyzes potential savings and losses, our second method
of memory comparison works, and also equals-calls are pre-
dicted accurately.

3.5 Realistic Demonstrations
In this section we report on our experience with predict-

ing the effect of maximal sharing in the context of PDB

being embedded into Rascal. We will evaluate the following
benchmarks:

A: Start the Read–Eval–Print Loop (REPL) of the Rascal
language interpreter, and load its prelude module.

B: Start the REPL of the Rascal language interpreter, and
generate a parser for an expression grammar.

C: Start the REPL of the Rascal language interpreter, and
type check a large module (5–10k lines of code).

D–H: Load serialized call-graphs and calculate the transitive
closure for JHotdraw, JWAM16FullAndreas, Eclipse-
202a, jdk14v2 and JDK140AWT. These benchmarks
are supposed to stress the influence of data shape, and
the effect of redundancy in algorithmic computation.

M{E,S,T}: Peano arithmetic modulo 17 in three variations,
i.e. expression, symbolic, and tree. These are standard
benchmarks for term rewriting engines and are previ-
ously used to measure the effect of maximal sharing [23].

3.5.1 Results
First of all, we report that the experimental runs with

the maximal sharing aspect of benchmarks B and C timed
out after 30 minutes. The cause of the problem, after some
manual investigation, was an enormous amount of hashing
collisions in the global cache of the shared version. Using
MASHO’s hashcode logging feature and a Java debugger
we found out that the “annotations” feature of PDB was
causing trouble. For every annotated value there is a non-
annotated value with the same hashcode, leading to as many
collisions as there are annotated values. In benchmarks B
and C there are many parse trees that are annotated with
their source code position. To continue our experiments,
we then provided an alternative hashcode implementations
for annotated values, which only the global cache invokes
for lookups. Note that altering the problematic hashcode

method itself is not an option, because it would break the
semantic of any program that uses the annotation feature.
Applying the fix was necessary for continuing the evaluation,
to be able to compare MASHO’s models against data from a
real maximal sharing implementation. However, the fix was
not necessary for a priori performance modeling. We also
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Figure 5: Calibration data: Memory usage for various test runs (without compensation for GC noise). Figure 5a illustrates
that compensating for GC noise is necessary to obtain accurate memory footprint models.

noticed another hashcode related problem —the hashcode

of a singleton set collides with the hashcode of its contained
object— and fixed it analogous to the previous problem.
Figure 6 finally visualizes the results for all benchmarks. We
first interpret this data to subsequently answer our evaluation
questions. In obtaining the results, ORP and ECP yielded a
mean slowdown of 7x (range 2.5–32x).

Object Redundancy and Memory Gains.
Figure 6a illustrates object redundancy in relative numbers,

that is how many newly allocated objects yield a hit in
the global cache. Over all benchmarks, we can report a
mean redundancy of 64%, with a minimum of 33%, and a
high of 100% in case of the Peano arithmetic benchmarks.
However, the amount of object redundancy does not imply
equal gains in mean memory reduction. Allover, observed
mean memory reductions are below the object redundancy
numbers, emphasizing that the size of redundant objects
matters and not only their count. In case of the algorithmic
transitive closure benchmarks (D–H) we even see a negative
net impact on mean memory consumption, albeit 33–58%
object redundancy. The loss is attributed to the overhead
of the global cache and that redundancy is mostly present
in terms of small objects. Figure 6b presents another view
on the Mean Memory Reduction data points from Figure 6a
by displaying the mean memory usage of the benchmarks
before and after applying maximal sharing.

Cache Hits and Negative Comparisons due to Chain-
ing and Hash Collisions.

In Figure 6c we illustrate the number of false equals-calls
that occur on average when performing a global cache lookup
that eventually yields a hit. We do not further distinguish
and discuss the causes of false equals-calls, which could
be either attributed to implementation details of the global
cache (e.g., chaining due to modulo size operations), or to
hashcode implementations causing collisions. A high ratio
should alert a library engineer to systematically explore these
possible causes.

Figure 6d shows the absolute numbers for object alloca-
tions, cache hits, and collisions for all benchmarks. Bench-
marks ME20, MS20, and MT20 created a high cache load

—causing many negative equality checks— that in the case

of ME20 and MT20 led to substantial memory savings (cf.
Figure 6b).

In our data set, on average a global cache hit triggers 1.4
nested reference comparisons. This illustrates how maximal
sharing transforms the shape of equals-call-graphs: frequent
comparisons in the global cache are shallow, and recursive
equals-calls in the program collapse to one comparison.

Equality Profile of the Original Library.
Figure 6e highlights the mixture of equalities encountered.

Surprisingly, calls to equals with aliased arguments occurred
more frequently than calls to equals and isEqual with dis-
tinct arguments. The transitive closure benchmarks D, E and
H solely perform reference comparisons. Consequently, the
alias-aware analysis of ECP is necessary in our case, other-
wise we would have clearly over-approximated savings under
maximal sharing. With respect to the recursive call-graph
shape of equals and isEqual, we observed on average 2.7
nested equality calls (other than reference equalities).

Equality Profile with Maximal Sharing.
Figure 6f shows the equality profile of the experiments

with maximal sharing enabled and highlights the changes
to Figure 6e. Absolute numbers of calls decrease, because
each recursive equals-call is replaced by a single reference
comparison. Recursive call-graphs for isEqual remain, if
two objects are objects are equivalent (according to isEqual)
but not strictly equal.

Benchmarks M{E,S,T} — Peano Arithmetic.
These benchmarks are designed to bring out best behavior

for maximal sharing by generating an enormous amount of
redundant terms. The results are shown for different sizes of
the problem of symbolically computing 2n mod 17 in Peano
arithmetic. The results show that redundancy was accurately
predicted for all three benchmark versions. MS exhibited a
saving potential up to 86% with increasing input size, the
others up to 100%, which is in line with related work [23].
However, we do not see significant gains in use of equality.
The reason is that our implementation of the benchmark uses
deep pattern matching instead of direct calls to equals and
therefore loses the benefit of O(1) reference comparisons.
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Figure 6: Realistic data: Various memory and equality aspects of the applications under test. Figures 6b and 6d use a square
root scale on the y-axes, and figures 6e and 6f a double square root scale, to better accommodate the wide range of values.

3.6 Analysis

Q-Accurate.
None of the experiments showed significant differences

between the predicted and the actual memory usage; the
mean accuracy of method 2 was about 99%. For all but one
benchmark, calls to equals methods were predicted with an
accuracy of at least 99%. The only outlier was benchmark B,
the parser generator benchmark, that exhibited 19% more
calls to equals, caused by an corresponding increase in global
cache hits. The additional cache hits were caused by equiva-
lent objects that were re-generated at a higher rate than the
collection of the weak references from the global cache. In

the latter case, we actually under-approximated the potential
savings, because the longer living weak references caused an
overlap between previously disjoint object families.

We conclude that MASHO accurately models lower bounds
for hypothetical heap evolution and calls to equals under
maximal sharing for all our benchmarks. This means that
256-bit SHA-2 hashes were good enough at least for this (het-
erogeneous) data, and that the MASHO model is complete.

Q-Actionable.
The redundancy data clearly suggests that PDB could ben-

efit from maximal sharing for most benchmarks. However,
during profiling we figured out that PDB’s annotation fea-
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ture causes a substantial number of hash-collisions. Further-
more, the effectiveness of maximal sharing diminished under
isEqual that ignores annotations: many calls to isEqual

cannot be replaced by reference comparisons. It follows that
the library would require severe reengineering before maximal
sharing can be applied optimally.

As compared to general memory profilers, which do not
consider the specifics and preconditions of maximal sharing,
we showed that the GC can hide memory savings of maximal
sharing. A memory profiler will not even see substantial
savings unless by trial and error global minimum heap bounds
are found. Since MASHO ignores the effect of the GC, this
confounding effect has become a non-issue.

The information provided by MASHO as compared to our
simple maximal sharing aspect is comparable. More impor-
tantly, the maximal sharing aspect suffers from arbitrary
hash collisions in terms of accuracy (more equals-calls will
be made as hash buckets become deeper) and speed (the
benchmarks will run longer and longer). MASHO provides
filtered information, isolating the effect of maximal sharing
from the confounding effect of hash collisions.

In additional experiments simulating the semantics of re-
lated memory profilers, which check for isomorphic heap
graphs [18, 14], we measured that MASHO uncovers up to
14%, and at median 4%, more unique caching opportunities
in the aforementioned benchmarks than the related work can
provide —due to the additional abstraction facilities.

4. RELATED WORK
We position our contribution with respect to memory

profiling tools and studies, programming language features,
and maximal sharing libraries.

Memory profiling tools and studies.
Sewe et al. [21] investigated the differences in memory

behavior between Java and Scala programs. The key findings
were that objects in Scala are more likely to be immutable,
small, and to have a short lifetime, compared to pure object-
oriented Java programs. Ergo, the Scala community may
benefit from MASHO.

Dieckmann and Hölzle [7] originally published a study
about the allocation behavior of six SPECjvm98 Java pro-
grams, and compared the results to Smalltalk and ML. The
authors obtained allocation data by instrumenting the source
code of a virtual machine and built a heap simulator.

Sartor et al. [20] discuss the limits of heap data compression
by examining types and sources of memory inefficiencies.
Techniques were investigated that work on a wide spectrum
of granularity, ranging from object equality to stripping off
empty bytes, or compressing fields and arrays. Their analysis
approximates saving potentials by analyzing a series of timed
heap dumps. The authors observed that deep object equality
together with array sharing reduces the size of applications
by 14% on average. These results also motivate our research
but timed heap dumps do not provide enough detail to assess
the impact of maximal sharing accurately.

Resurrector [29] is an object lifetime profiler that supports
a tuneable cost settings per allocation site. For frequent
calls to allocation sites, Resurrector works more precisely
than garbage collector heuristics and can avoid expensive
reachability analyses to identify dead objects, as used by like
Merlin [9] or Elephant Tracks [19]. These more advanced
lifetime profiling techniques are usually implemented inside

a Virtual Machine (VM). In contrast, MASHO uses garage
collector timestamps as heuristic for object lifetime obtained
standard interfaces and techniques (JVMTI and BCI) and
thus works across different JVMs. MASHO predicts with
almost perfect accuracy (see Section 3), so these more precise
and much more expensive techniques are not necessary here.

Bhattacharya et al. [3] reduce unnecessary allocations of
temporary strings or container objects inside loops, by ana-
lyzing which objects can be reused after each loop iteration.
MASHO reasons over redundancy of a whole program run
and therefore also covers these cases, necessarily.

Nguyen and Xu [16] detect cacheable objects at allocation
sites with variants of data dependence graphs, and mem-
oizable functions at their call sites. Their tool, Cachetor,
is implemented inside a VM and targets arbitrary mutable
programs and thus leading to a 200x overhead. Redundancy
profiling, as implemented by MASHO, in contrast exploits
the preconditions of immutable object graphs and can thus
operate at lower runtime overheads.

To optimize compilers, Lattner and Adve [12] researched
a macroscopic approach for reasoning over pointer-intense
programs, by focusing on how programs use entire logical data
structures, rather than individual objects, to then segregate
these objects automatically into separate memory pools.

With Object Equality Profiling (OEP), Marinov et al. [14]
pinpoint groups of equivalent objects that could be replaced
by a single representative instance. OEP considers every
single object created during a program run. The authors
use BCI to track heap activity dynamically. A post-mortem
analysis calculates mergeability of objects, by checking iso-
morphism of labelled graphs. OEP uses an off-line graph
partitioning algorithm to process data sets that might ex-
ceed main memory size in O(n log n) time. One of the key
contributions of OEP—that makes it scalable for mutable
objects but difficult to apply for modeling maximal sharing—
is pre-partitioning heap graphs based on the primitive values
of objects as a discriminator. In our context this causes
OEP not being able to abstract from implementation details
such as arbitrary ordering of elements in arrays, specialized
sub-classes, and lazily initialized or cached hashcodes. For
libraries based on immutable objects, this can make objects
look different while they should be the same. Our exper-
iments showed that MASHO uncovers up to 14%, and at
median 4%, more unique sharing opportunities than OEP on
the same data would. The focus on immutable objects gives
MASHO both the opportunity to abstract and the ability to
optimize the necessary high granularity memory profiles.

Rama and Komondoor [18] worked on an extension of OEP

and introduced a tool, the Object Caching Advisor (OCA),
to support introducing hash-consing at the source-code level
as a refactoring. The authors reuse a fingerprinting function,
introduced by Xu [28], that runs in O(size of object graph)
and yields a runtime overhead ranging from 98–2520x. In
contrast, MASHO’s fingerprinting, which is based on Merkle
trees, operates in O(shallow object size).

Language support for obviating equals and hashCode.
Vaziri et al. [26] proposed a declarative, stricter form of

object identity called relation types. By requiring that the
identity of an object never changes during runtime, the au-
thors obviated potential error-prone equals and hashcode

methods. A subset of immutable key fields, referred to as
tuple, designates object identity. These tuples match our
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weak-immutability requirement (see Section 2.3). The au-
thors formalized their programming model and proved that
hash-consing preserves semantics and is a safe optimization in
their model. Our contribution is nicely orthogonal: Whereas
MASHO investigates maximal sharing for libraries and re-
quires that equals and hashcode are user provided, relation
types are meant to be an equality substitute at language level.
Vaziri et al. contribute the language supported semantics of
weak immutability, which is our a priori assumption.

Scala counters fragile equals and hashcode implementa-
tions with the concept of case classes. Scala shows that
immutable data types that adhere to structural equality can
obviate hand-written equals and hashcode implementations.
The compiler —like with relation types— synthesizes their
implementation, but since maximal sharing is not always
beneficial it does not generate shared implementations. A
recast of MASHO to Scala may help finding optimal solutions
for libraries that heavily rely on case classes.

The ATerm library.
is a prime source of inspiration [22, 24, 25]. Both in C

and in Java this is a successful library that employs maximal
sharing for representing atomic data-types, lists and trees.
Key design considerations of the ATerm library are to spe-
cialize garbage collection (in C), and (de)serialization as well
based on the condition of maximal sharing and structural
equality. In this paper we use benchmarks from the ATerm
experience to evaluate MASHO. The reported use cases of
ATerm library (specifically in the term rewriting and model
checking context) indicate the possibility of great savings in
memory consumption and great increases in performance,
but in the general case it is unlikely that maximal sharing is
always a good idea.

ShadowVM [13].
ShadowVM is a recent generic Java run-time analysis

framework. It separates instrumentation from the client
VM and adds asynchronous remote evaluation to increase iso-
lation and coverage. Analyses can be written on a high level
of abstraction using an open pointcut model and support
bytecode instruction granularity as well. MASHO would be a
good usage scenario for ShadowVM, since tracking == byte-
code instructions needs bytecode instrumentation beyond
the capabilities of AspectJ.

5. CONCLUSION
We introduced a new predictive performance modeling tool

named MASHO— for assessing the effects of introducing the
maximal sharing optimization strategy into a Java library
without changing the library or client code of the library.

MASHO profiles object redundancy and calls to equals

efficiently using object fingerprints. Under the assumption of
weak immutability, fingerprinting leads to an accurate model
efficiently. MASHO can abstract from accidental implemen-
tation details in the current version of a library, such as
arbitrary array orderings which also enhances its accuracy.

The experience report focused on the accuracy of the pre-
dictions, since fingerprinting and feedback loops with garbage
collection heuristics may introduce noise. This showed on a
controlled case and on realistic cases that MASHO’s predic-
tions are accurate.

Predictive performance analysis with MASHO isolates the
effect of maximal sharing from other noise in the measure-
ments, in contrast to a full blown experiment where con-
founding effects (like garbage collection) may be prohibitive
for decision making.
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