
Microservices for Scalability

[Keynote Talk Abstract]

Wilhelm Hasselbring
Software Engineering Group, Kiel University, D-24098 Kiel, Germany

hasselbring@email.uni-kiel.de

ABSTRACT
Microservice architectures provide small services that may
be deployed and scaled independently of each other, and may
employ different middleware stacks for their implementa-
tion. Microservice architectures emphasize transaction-less
coordination between services, with explicit acceptance of
eventual consistency. Polyglott persistence in this context
means that the individual microservices may employ mul-
tiple data storage technologies. Microservice architectures
are “cloud native” allowing for automated and rapid elas-
ticity. Fault-tolerance mechanisms achieve that failures of
individual mircroservices do not affect other services thanks
to container isolation. Since services can fail at any time, it
is important to be able to detect the failures quickly and, if
possible, automatically restore services. Essential for success
in such a setting is advanced monitoring.

In this keynote, I discuss how mircoservices support scal-
ability for both, runtime performance and development per-
formance, via polyglott persistence, eventual consistency,
loose coupling, open source frameworks, and continuous mon-
itoring for elastic capacity management.

CCS Concepts
•Software and its engineering → Software architec-
tures; Software performance;

Keywords
Microservices; Scalability, Monitoring

Monoliths vs. Microservices
Traditionally, information system integration [16] and en-
terprise application integration [2] aim at achieving high
(database) integrity among heterogeneous information sour-
ces [19, 25, 26]. Federated database systems achieve high in-
tegrity via tight coupling on the schema level [20], preferably
based on standards [17]. For migration and modernization

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’16 March 12-18, 2016, Delft, Netherlands

c© 2016

Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4080-9/16/03.

DOI: http://dx.doi.org/10.1145/2851553.2858659

[27] of (legacy) monolithic information systems, an essen-
tial design decision is how to keep old and new databases
consistent [21], particularly when migrating to the cloud [5,
14, 15]. However, a great challenge with tightly integrated
databases is the inherently limited horizontal scalability.

Microservice architectures intend to overcome the lim-
ited scalability of monolithic architectures. Microservices
are built around business capabilities and take a full-stack
implementation of software for that business area. In par-
ticular, microservices prefer letting each service manage its
own database, even with different database management sys-
tems (polyglott persistence with eventual consistency). Be-
sides data, code should not be shared among microservices
to avoid dependencies; only reuse of framework code as open
source software is recommended [22]. The trade-off between
many small microservices and a few more coarse grained
services must be considered in microservice architectures,
as in any other component and system design activities [18].
To achieve an appropriate granularity, we propose a vertical
decomposition along business services.

Non-functional attributes, such as scalability and fault tol-
erance for high availability, are addressed by microservice
architectures. A consequence of using microservices as com-
ponents is that applications need to be designed such that
they can tolerate the failure of individual services. Since
services can fail at any time, it is important to be able to
detect the failures quickly and, if possible, automatically
restore services. Microservice applications put a lot of em-
phasis on real-time monitoring of the application, checking
both technical metrics (e.g. how many requests per sec-
ond is the database getting) and business relevant metrics
(such as how many orders per minute are received). Mon-
itoring can provide an early warning system of something
going wrong that triggers development teams to follow up.
Besides Kieker [29], our ExplorViz approach [13] provides
live visualization for large software landscapes introducing
three hierarchical abstractions [10]. Live visualization with
ExplorViz is scalable [6] and elastic in cloud environments
[28]. Monitoring may provide runtime models [23] for sys-
tem comprehension [9], trace visualization [4], architecture
conformance checks [11], and a landscape control center [12]
with performance anomaly detection [3, 24]. New perspec-
tives on employing virtual reality [8] and physical models [7]
are further explored. Regression benchmarking [31] should
be integrated into continuous integration setups [30] of mir-
coservices. Microservices leverage techniques such as con-
tinuous integration and continuous deployment to promote
DevOps [1].

133



1. REFERENCES
[1] A. Brunnert et al. Performance-oriented DevOps: A

Research Agenda. Technical report, SPEC Research
Group, Aug. 2015.

[2] S. Conrad, W. Hasselbring, A. Koschel, and
R. Tritsch. Enterprise Application Integration.
Spektrum Akademischer Verlag, 2005.

[3] J. Ehlers, A. van Hoorn, J. Waller, and
W. Hasselbring. Self-adaptive software system
monitoring for performance anomaly localization. In
Proceedings of ICAC 2011, pages 197–200. ACM, 2011.

[4] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller.
Comparing trace visualizations for program
comprehension through controlled experiments. In
Proceedings of ICPC 2015, pages 266–276. IEEE, 2015.

[5] F. Fittkau, S. Frey, and W. Hasselbring. CDOSim:
Simulating cloud deployment options for software
migration support. In Proceedings of MESOCA 2012,
pages 37–46. IEEE, Sept. 2012.

[6] F. Fittkau and W. Hasselbring. Elastic
application-level monitoring for large software
landscapes in the cloud. In Proceedings of ESOCC
2015. Springer, Sept. 2015.

[7] F. Fittkau, E. Koppenhagen, and W. Hasselbring.
Research Perspective on Supporting Software
Engineering via Physical 3D Models. In Proceedings of
VISSOFT 2015, pages 125–129, 2015.

[8] F. Fittkau, A. Krause, and W. Hasselbring. Exploring
software cities in virtual reality. In Proceedings of
VISSOFT 2015, pages 130–134, 2015.

[9] F. Fittkau, A. Krause, and W. Hasselbring.
Hierarchical software landscape visualization for
system comprehension: A controlled experiment. In
Proceedings of VISSOFT 2015, pages 36–45, 2015.

[10] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz:
Visual runtime behavior analysis of enterprise
application landscapes. In Proceedings of ECIS 2015.
AIS, 2015.

[11] F. Fittkau, P. Stelzer, and W. Hasselbring. Live
visualization of large software landscapes for ensuring
architecture conformance. In Proceedings of ECSAW
2014. ACM, Aug. 2014.

[12] F. Fittkau, A. van Hoorn, and W. Hasselbring.
Towards a dependability control center for large
software landscapes. In Proceedings of EDCC 2014,
pages 58–61. IEEE, May 2014.

[13] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large
software landscapes: The ExplorViz approach. In
Proceedings of VISSOFT 2013, Sept. 2013.

[14] S. Frey and W. Hasselbring. The CloudMIG approach:
Model-based migration of software systems to
cloud-optimized applications. International Journal on
Advances in Software, 4(3 and 4):342–353, 2011.

[15] S. Frey, W. Hasselbring, and B. Schnoor. Automatic
conformance checking for migrating software systems
to cloud infrastructures and platforms. Journal of
Software: Evolution and Process, 25(10):1089–1115,
Oct. 2013.

[16] W. Hasselbring. Information system integration.
Communications of the ACM, 43(6):32–36, 2000.

[17] W. Hasselbring. The role of standards for

interoperating information systems. In Information
Technology Standards and Standardization: A Global
Perspective, pages 116–130. Idea Group Pub., 2000.

[18] W. Hasselbring. Component-based software
engineering. In Handbook of Software Engineering and
Knowledge Engineering, pages 289–305. World
Scientific Publishing, 2002.

[19] W. Hasselbring. Web Data Integration for
E-Commerce Applications. IEEE Multimedia,
9(1):16–25, 2002.

[20] W. Hasselbring. Formalization of federated schema
architectural style variability. Journal of Software
Engineering and Applications, 8(2):72–92, Feb. 2015.

[21] W. Hasselbring, R. Reussner, H. Jaekel,
J. Schlegelmilch, T. Teschke, and S. Krieghoff. The
Dublo architecture pattern for smooth migration of
business information systems. In Procceedings of ICSE
2004, pages 117–126. IEEE, 2004.

[22] W. Hasselbring and A. van Hoorn. Open-source
software as catalyzer for technology transfer: Kieker’s
development and lessons learned. TR-1508,
Department of Computer Science, Kiel University,
Aug. 2015. http://eprints.uni-kiel.de/29463/.

[23] R. Heinrich, E. Schmieders, R. Jung, K. Rostami,
A. Metzger, W. Hasselbring, R. Reussner, and
K. Pohl. Integrating run-time observations and design
component models for cloud system analysis. In
Proceedings of the 9th Workshop on Models@run.time,
volume 1270, pages 41–46. CEUR, Sept. 2014.

[24] N. S. Marwede, M. Rohr, A. van Hoorn, and
W. Hasselbring. Automatic failure diagnosis in
distributed large-scale software systems based on
timing behavior anomaly correlation. In Proceedings of
CSMR 2009, pages 47–57. IEEE, 2009.

[25] H. Niemann, W. Hasselbring, T. Wendt, A. Winter,
and M. Meierhofer. Kopplungsstrategien für
Anwendungssysteme im Krankenhaus.
Wirtschaftsinformatik, 44(5):425–434, 2002.

[26] M. Roantree, J. Murphy, and W. Hasselbring. The
OASIS multidatabase prototype. ACM SIGMOD
Record, 28(1):97–103, Mar. 1999.

[27] A. van Hoorn et al. Dynamod project: Dynamic
analysis for model-driven software modernization. In
Proceedings of MDSM 2011, pages 12–13, 2011.

[28] A. van Hoorn, M. Rohr, I. A. Gul, and
W. Hasselbring. An adaptation framework enabling
resource-efficient operation of software systems. In
Proceedings of WUP 2009. ACM, 2009.

[29] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring
and dynamic software analysis. In Proceedings of
ICPE 2012, pages 247–248, Apr. 2012.

[30] J. Waller, N. C. Ehmke, and W. Hasselbring.
Including performance benchmarks into continuous
integration to enable DevOps. SIGSOFT Softw. Eng.
Notes, 40(2):1–4, Mar. 2015.

[31] J. Waller and W. Hasselbring. A comparison of the
influence of different multi-core processors on the
runtime overhead for application-level monitoring. In
Proceedings of MSEPT 2012, pages 42–53. Springer,
June 2012.

134




