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ABSTRACT
Microservice architectures provide small services that may
be deployed and scaled independently of each other, and may
employ different middleware stacks for their implementa-
tion. Microservice architectures emphasize transaction-less
coordination between services, with explicit acceptance of
eventual consistency. Polyglott persistence in this context
means that the individual microservices may employ mul-
tiple data storage technologies. Microservice architectures
are “cloud native” allowing for automated and rapid elas-
ticity. Fault-tolerance mechanisms achieve that failures of
individual mircroservices do not affect other services thanks
to container isolation. Since services can fail at any time, it
is important to be able to detect the failures quickly and, if
possible, automatically restore services. Essential for success
in such a setting is advanced monitoring.

In this keynote, I discuss how mircoservices support scal-
ability for both, runtime performance and development per-
formance, via polyglott persistence, eventual consistency,
loose coupling, open source frameworks, and continuous mon-
itoring for elastic capacity management.
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Monoliths vs. Microservices
Traditionally, information system integration [16] and en-
terprise application integration [2] aim at achieving high
(database) integrity among heterogeneous information sour-
ces [19, 25, 26]. Federated database systems achieve high in-
tegrity via tight coupling on the schema level [20], preferably
based on standards [17]. For migration and modernization
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[27] of (legacy) monolithic information systems, an essen-
tial design decision is how to keep old and new databases
consistent [21], particularly when migrating to the cloud [5,
14, 15]. However, a great challenge with tightly integrated
databases is the inherently limited horizontal scalability.

Microservice architectures intend to overcome the lim-
ited scalability of monolithic architectures. Microservices
are built around business capabilities and take a full-stack
implementation of software for that business area. In par-
ticular, microservices prefer letting each service manage its
own database, even with different database management sys-
tems (polyglott persistence with eventual consistency). Be-
sides data, code should not be shared among microservices
to avoid dependencies; only reuse of framework code as open
source software is recommended [22]. The trade-off between
many small microservices and a few more coarse grained
services must be considered in microservice architectures,
as in any other component and system design activities [18].
To achieve an appropriate granularity, we propose a vertical
decomposition along business services.

Non-functional attributes, such as scalability and fault tol-
erance for high availability, are addressed by microservice
architectures. A consequence of using microservices as com-
ponents is that applications need to be designed such that
they can tolerate the failure of individual services. Since
services can fail at any time, it is important to be able to
detect the failures quickly and, if possible, automatically
restore services. Microservice applications put a lot of em-
phasis on real-time monitoring of the application, checking
both technical metrics (e.g. how many requests per sec-
ond is the database getting) and business relevant metrics
(such as how many orders per minute are received). Mon-
itoring can provide an early warning system of something
going wrong that triggers development teams to follow up.
Besides Kieker [29], our ExplorViz approach [13] provides
live visualization for large software landscapes introducing
three hierarchical abstractions [10]. Live visualization with
ExplorViz is scalable [6] and elastic in cloud environments
[28]. Monitoring may provide runtime models [23] for sys-
tem comprehension [9], trace visualization [4], architecture
conformance checks [11], and a landscape control center [12]
with performance anomaly detection [3, 24]. New perspec-
tives on employing virtual reality [8] and physical models [7]
are further explored. Regression benchmarking [31] should
be integrated into continuous integration setups [30] of mir-
coservices. Microservices leverage techniques such as con-
tinuous integration and continuous deployment to promote
DevOps [1].
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