Integrating Faban with Docker
for Performance Benchmarking

[Demonstration Paper]

Vincenzo Ferme
Faculty of Informatics
University of Lugano (USI)
vincenzo.ferme@usi.ch

ABSTRACT

Reliability and repeatability are key requirements in per-
formance benchmarking ensuring the trustworthiness of the
obtained performance results. To apply a benchmark to
multiple systems, the reusability of the load driver is essen-
tial. While Faban has been designed to ensure the relia-
bility of the performance data obtained from a benchmark
experiment, it lacks support for ensuring that the system un-
der test is deployed in a known configuration. This is what
Docker, a recently emerging containerization technology, ex-
cels at. In this demo paper we present how we integrated
Faban with Docker as part of the BenchFlow framework to
offer a complete and automated performance benchmark-
ing framework that provides a reliable and reusable envi-
ronment, ensuring the repeatability of the experiments.

Keywords

Faban, Docker, Performance Benchmarking, Repeatability

1. INTRODUCTION

Benchmarking is a well established practice for discovering
application’s performance pitfalls and bottlenecks [4]. A key
requirement in performance testing is ensuring the reliabil-
ity of the experiments [3], since important decisions will be
taken based on the obtained results. Many tools for reliable
performance testing exist. One of them is Faban!, a free and
open source performance workload creation and execution
framework, largely used in industry standard benchmarks,
such as the ones released by the Standard Performance Eval-
uation Corporation (SPEC)2. The growing complexity of
modern distributed applications requires to automate their
deployment with tools, such as the ones provided by the
Docker ecosystem®. Most of the available performance test-

"http://www.faban.org
Zhttps://www.spec.org
3https://www.docker.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’16 March 12-18, 2016, Delft, Netherlands

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4080-9/16/03.

DOL: http://dx.doi.org/10.1145/2851553.2858676

129

Cesare Pautasso
Faculty of Informatics
University of Lugano (USI)
cesare.pautasso@usi.ch

Servers |::| Containers
8
=
3
g f
X
w
%I: ST TT T T T 1
= 1
| I~ harness - 3
7 [
N e e e e -~ E
Faban Drivers 1 0
MONITORS "= ===+= 6'
F]
,, J\Z Data Mappers §8 katka 4
SPCN'K -
3 Performance W @@ n
I h cassandra stance
E Metrics
2 @@ Database
c Performance
< KPIs Q DATA
ANALYSERS TRANSFORMERS

Figure 1: BenchFlow Framework

ing tools, do not provide a well defined and standard mecha-
nism to integrate the deployment of the System Under Test
(SUT) into the performance testing and benchmarking pro-
cess. This is key to reduce the cost of automating the bench-
marking. Additionally, this integration is necessary to en-
hance the repeatability [3] of the performed experiments.
Additionally, given the growing complexity of the targeted
deployment environment, it has become important to pro-
vide lightweight and non-invasive means to define custom
performance data to be collected on the SUT side.

With BenchFlow® [2] we aim at solving the aforemen-
tioned limitations, as well as enhancing the reusability of
the load drivers. In this demo paper we discuss the func-
tionality and the architecture of the framework, and present
a walk-through use case to demonstrate its capabilities.

2. THE BENCHFLOW FRAMEWORK

The BenchFlow framework, presented in Fig.1, is deployed
in Docker containers and builds on top of Faban, to provide
reliable performance benchmarking, and Docker, to ensure
repeatability and reusability. The load drivers, defined by
exploiting the Faban framework, are executed by the Har-
ness, and provide the infrastructure needed to define the
simulated users and their interaction with the SUT. The
BenchFlow framework defines adapters between the load
drivers and the SUTs. That way the same load drivers can
be reused to load different systems by defining the mapping
between the abstract interaction defined in the generic load
drivers, and the actual implementation for each SUT. The

“http://www.benchflow.inf.usi.ch

adapters guarantee the reusability of the same driver for dif-
ferent types of performance test [4].

The benchmark life cycle starts with SUT’s deployment
by exploiting the Docker containerization technology. Thus
it provides for the replicability of the experiments by en-
suring the SUT is always deployed in the exact same ini-
tial state. While containerization technologies introduce
some overhead on system’s performance, a recent reliable
performance analysis of Docker [1] indicated that, if care-
fully configured, Docker reaches near-zero overhead. Dur-
ing the performance test execution, the BenchFlow frame-
work monitors the experiment’s execution state to gather
resource utilization (e.g., CPU, RAM, Network) data, us-
ing the lightweight monitors of the Docker stats API. When
the performance test execution is complete, a set of collec-
tors gather the raw performance data from the distributed
infrastructure on which the performance test has been per-
formed, and send them to a central storage service, e.g.,
Amazon S3, or Minio®. We rely on a storage service, since
the data have to be efficiently accessed from the components
computing the metrics. To abstract from the different data
formats that different SUTs might have, the performance
data are then transformed to a canonical meta-model. Af-
ter the transformation, the performance data are stored in
a Cassandra® database (DB), and the performance metrics
and KPIs are computed. Cassandra is a powerful DB for
storing and accessing performance data from the service that
computes metrics on top of them. The computation is per-
formed by relying on Apache Spark”, a fast, general-purpose
engine for large-scale data processing. Before the computa-
tion of the metrics is triggered, the BenchFlow framework
checks the logs collected from the SUT to identify execution
errors and validate the experiment.

The orchestration of the performance test execution, the
data collection, and the performance data analysis, is del-
egated to Apache Kafka® a publish-subscribe messaging
framework. We have introduced this state-of-the-art frame-
work to decouple the benchmark execution managed by the
Faban Harness, from the performance metrics computation,
and thus pipeline the gathering of performance data with
the corresponding analytics, which can be performed offline.

3. GOALS OF THE DEMONSTRATION

The BenchFlow framework is currently used for bench-
marking Workflow Management Systems, and has been suc-
cessfully applied in different experiments [2]. In the demo
we will present a walk-through use case that shows Bench-
Flow framework’s capabilities, both from the perspective of
performance researchers and performance testers. During
the demo, the framework will be pre-installed on multiple
servers, in a dedicated, reliable and controlled environment,
which should be accessible over VPN from the conference
venue. We will go through the end-to-end performance test
process, by defining, submitting and monitoring the perfor-
mance test, describing the SUT deployment definition, and
accessing the automatically calculated performance metrics.

Defining the performance test: the framework sim-
plifies the definition of load drivers’ behavior with Faban,

®https://www.minio.io
Shttp://cassandra.apache.org
"http://spark.apache.org
Shttp://kafka.apache.org

130

through load driver definition descriptors. We will define a
performance test, involving a distributed system of multi-
ple microservices and their DBs, by means of a benchmark
definition file, where we can define all the performance test
parameters (e.g., a load test). The framework will take care
of translating the performance test definition to the actual
format used internally by Faban. Describing the SUT
deployment definition: the deployment is performed by
relying on the Docker Compose tool. This ensures that each
SUT deployment configuration (e.g., different amounts of
RAM) and its initial state can be precisely described and
executed obtaining the exact same initial conditions for the
experiment. Paired with Docker Swarm? it is possible to au-
tomate SUT’s deployment on a distributed infrastructure.
Submitting and monitoring the performance test:
we will submit the performance test we have previously de-
fined, and monitor its execution status. The test will last 1
minute and will be repeated 3 times. Accessing the auto-
matically calculated performance metrics: when the
benchmark execution is complete and the performance data
are ready to be explored, we will visualize them at the end
of the demo.

During the demo, we aim to demonstrate the flexibility
and the simplicity of using the BenchFlow framework. Once
defined by means of the BenchFlow benchmark definition
file and the Docker Compose deployment definition file, the
experiments can be replicated multiple times in a fully au-
tomated way to obtain reliable and verified results.

4. CONCLUSIONS AND FUTURE WORK

The BenchFlow framework greatly simplifies and acceler-
ates the definition and execution of reliable, repeatable and
reusable performance tests. It does so by integrating two
powerful technologies: Faban and Docker, and building on
top of their functionality to provide a complete framework
for automated performance test execution over a distributed
environment. The next planned steps concern enabling the
simplified definition of additional performance test types
(e.g., spike testing), as well as providing stronger perfor-
mance test validation and means for performance test result
analysis and exploration. Moreover we also plan to collabo-
rate with the ICPE and the SPEC community, to drive the
framework’s development and strengthen its functionality.

S. ACKNOWLEDGMENTS

This work is partially funded by the Swiss National Sci-
ence Foundation with the BenchFlow - A Benchmark for
Workflow Management Systems (Grant Nr. 145062) project.

6. REFERENCES

[1] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An
updated performance comparison of virtual machines
and linux containers. Technical report, IBM, July 2014.
V. Ferme, A. Ivanchikj, and C. Pautasso. A framework
for benchmarking BPMN 2.0 workflow management
systems. Proc. of BPM ’15, pages 251-259, 2015.

K. Huppler. The art of building a good benchmark.
TPCTC 2009, pages 18-30. Springer, 2009.

1. Molyneaux. The Art of Application Performance
Testing: From Strategy to Tools. O’Reilly, 2nd edition,
2014.

“https://www.docker.com/docker-swarm

2]

3]

(4]

