
Sustaining Runtime Performance while Incrementally
Modernizing Transactional Monolithic Software towards

Microservices

Holger Knoche
∗

Software Engineering Group
Kiel University

24118 Kiel, Germany
hkn@informatik.uni-kiel.de

ABSTRACT
Microservices are a promising target architecture for the mo-
dernization of monolithic software. However, breaking up
a monolith into services can have a severe impact on per-
formance, especially transactions. Therefore, careful plan-
ning of such modernizations with respect to performance
is required. This is particularly true for incremental mo-
dernizations, which release partially modernized states of
the application into production. In this paper, we present
a simulation-based approach for sustaining runtime perfor-
mance during incremental modernizations towards Microser-
vices.

1. INTRODUCTION
Microservices [8] have recently emerged as a promising

architectural style for enterprise software. Unlike traditional
service-oriented approaches, which aim at business-centric
and coarsely-grained services, Microservices explicitly focus
the internal structure of an application. This focus makes
them a promising option for the modernization of monolithic
software systems by splitting them into a set of interacting
services [11].

Most monolithic software systems are too large to mod-
ernize them in a single step. As a consequence, such mo-
dernizations are carried out gradually in several steps, or
increments, along a modernization path [17].1 Since each
increment is released into production, it is imperative that
every single one meets the requirements of productive use, of
which performance constraints are of particular importance.
To ensure continuous production-readiness throughout the

∗Holger Knoche is also affiliated with b+m Informatik AG,
Rotenhofer Weg 20, 24109 Melsdorf, Germany.
1Seacord et al. use the term modernization strategy ; how-
ever, we prefer the term modernization path to denote plans
for concrete measures as strategies commonly refer to more
abstract patterns.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’16 March 12-18, 2016, Delft, Netherlands
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4080-9/16/03.

DOI: http://dx.doi.org/10.1145/2851553.2892039

modernization, these constraints have to be considered al-
ready during the design of the modernization path.

Migrating an existing software system to services may af-
fect runtime performance in several ways. During the mi-
gration, immediate accesses, such as native function calls
or database joins, have to be substituted by service invoca-
tions. Such substitutions are known to potentially reduce
performance, e.g. due to serialization and network commu-
nication [9]. Another major issue are transactions. The
introduction of service invocations to existing transaction
contexts increases transaction and thus lock duration, po-
tentially leading to a reduction in transaction throughput.

There are several measures that can be taken to mitigate
the performance effects of service invocations. Less rigorous
transaction concepts such as explicit compensation and Try-
Cancel-Confirm (TCC) [13] may help avoiding performance
degradation due to transactions, and patterns like the ones
presented in [4] can be applied to increase invocation per-
formance.

Applying these measures may require significant changes
on the client side, i.e. changes to the monolith. As such
changes are non-trivial, they also have to be planned in
advance as part of the modernization path. According to
our experience, however, performance problems are tackled
as they appear. Since this usually happens in late testing
stages or even in production, fixes are implemented under
high pressure, often jeopardizing the modernization sched-
ule. Sometimes, modernization steps even have to be undone
or postponed, because no quick fix can be devised.

In this paper, we present an approach to improve the plan-
ning of incremental modernizations by predicting the perfor-
mance impact of modernization paths on use cases. The re-
mainder of this paper is structured as follows. In Section 2,
related work to our approach is discussed. The approach
itself is described in detail in Section 3, and the plan for our
intended research is presented in Section 4.

2. RELATED WORK
In the following section, existing work related to our pro-

posed research is presented and shortcomings with respect
to our approach are discussed.

The migration of existing software to services has been ex-
tensively researched, and a large body of literature is avail-
able on the subject. Although much of this work is con-
cerned with traditional services, large parts can also be ap-
plied to Microservices, since both rely on similar technolo-

121

gies. Surveys of the existing research can be found, for in-
stance, in [1] and [6]. In [15], a generic conceptual framework
for such migrations, called SOA-MF, is presented. Based on
this conceptual framework, several existing approaches are
categorized into eight so-called migration families in [14]. A
major shortcoming of these existing approaches is described
in [16]. The authors conclude from expert interviews that
migrations in industrial practice employ a similar approach,
which, however, is fundamentally different from existing re-
search approaches. While research approaches aim at fully
comprehending and transforming the as-is state of the ap-
plication, practical approaches focus the to-be state of the
application and tend to design from scratch based on expert
knowledge. Research challenges resulting from these find-
ings are presented in [5]. Specific challenges in migrating to
Microservices are discussed in [11].

Performance properties of migrations to service-oriented
systems have been investigated by several authors. Perfor-
mance pitfalls when migrating to Web Services are discussed
in [9]. Furthermore, the author presents a performance
model based on Layered Queueing Networks. Quality-of-
Service issues of the migration are also discussed in [12]. A
tool for performance modeling of service-oriented systems
is presented in [3]. Furthermore, architectural performance
models like Palladio [2] can be used for simulating per-
formance properties of service-oriented systems. However,
these approaches are created for analyzing a system at a
specific point in time, and do not provide means for struc-
tural model evolution. Furthermore, the approaches do not
allow to simulate the effects of transactional behavior.

3. APPROACH
In order to improve increment planning with respect to

runtime performance and to address the shortcomings dis-
cussed above, we propose the following approach. Our ap-
proach assumes that the following pattern is used to sepa-
rate a service from the monolith, which is based our expe-
rience from industrial projects and similar to the Branch-
by-Abstraction pattern.2 First, an existing service provided
by the monolith is identified, e.g., from expert knowledge,
and its to-be signature is specified. Then, implementation
elements (e.g., modules, methods, or database tables) cur-
rently providing this service are localized inside the mono-
lith, and a service implementation is provided. Note that
this may be a temporary implementation wrapping or adapt-
ing the existing monolith’s functionality. Once the imple-
mentation is available, accesses to the existing implemen-
tation are changed to use the new service. According to
our experience, there is often a significant mismatch of the
as-is and to-be signature, even to the extent that multiple
services have to be invoked to substitute an existing access
site. If a temporary implementation was provided earlier, it
may be replaced during the substitution process. As soon as
the substitution is completed and the final implementation
is available, the original implementation can be retired.

Our approach targets development teams who wish to in-
crementally migrate a transactional, monolithic software ap-
plication towards a Microservice architecture. It aims to
guide and support increment planning by predicting the per-
formance impact of the future increments. As the prediction
is performed during the design phase, the findings can be an-

2See martinfowler.com/bliki/BranchByAbstraction.

ticipated in the current increment. We propose an iterative
approach, where each iteration consists of the eight steps
described below. The process is also depicted in Figure 1.

In Step S1, the expected workload and performance con-
straints are specified based on usage scenarios. Usage sce-
narios are instantiations of use cases that are immediately
executable using the existing application. For each usage
scenario, performance constraints (response times, transac-
tion duration, throughput) and a workload intensity distri-
bution are defined.

Step S2 consists of a hybrid analysis of the current evo-
lution state of the monolith. Using dynamic analysis tech-
niques, the usage scenarios are profiled to investigate which
parts of the application take part in each scenario, and to
determine current timing information. Furthermore, trans-
action boundaries and deployment information are recorded
during the profiling. The results of the dynamic analysis
can optionally be complemented with a static analysis to
improve coverage. The structural information gathered by
this step is stored in an Application Structure Model (ASM).

In Step S3, the planned modernization path alternatives
are specified, where each path consists of several increment
models. Each such model describes the planned changes
to the application in the corresponding implementation in-
crement. According to our experience, it is impractical to
plan the entire modernization in advance, as such projects
commonly take several years. Therefore, we propose that
only the next few increments are modeled. We intend to use
a domain-specific language (DSL) for this task, which pro-
vides a set of operations on ASMs. Currently, we envision
the following operations: (i) introduction of a new service,
which includes an effect specification of its implementation,
(ii) substitution of an access site by one or more service invo-
cations, (iii) replacement of a service implementation, (iv)
change of deployment of a service, (v) changes of the de-
ployment infrastructure (e.g., addition of servers), and (vi)
retirement of a service.

Steps S4 to S6 are performed separately for each moder-
nization path. We aim at fully automating these steps. In
Step S4, a sequence of future ASMs is generated by applying
the specified increments to the current ASM. Subsequently,
a corresponding performance model is derived in Step S5 for
each of these ASMs. In Step S6, the increments are also ap-
plied to the traces obtained in Step S2. Then, the modified
traces and workload distributions are used to simulate the
expected performance using the performance models gener-
ated by the previous step.

Once the simulation is complete for all modernization
paths, the results are checked against the defined perfor-
mance constraints. In Step S7, the simulation results as well
as the check results are presented to the developer. Based
on these results, he or she may then choose to select a path
for implementation, or to return to Step S3 to improve the
paths if the expected performance is deemed insufficient.

If a path has been selected for implementation, the first
increment of this path is implemented in Step S8. We ex-
plicitly refrain from“frozen zones”during the modernization.
Therefore, the changes made due to the modernization are
also merged with the independent changes in the course of
this step.

With the completion of Step S8, the iteration ends. Un-
less the migration is considered complete, a new iteration
is started. In subsequent iterations, the existing models are

122

Application Structure
Model and Execution Traces

Usage Scenario Models,
Load Profiles, and

Performance Constraints

Modernization Path
Alternatives

Δ ΔΔ Δ
Δ ΔΔ Δ

Δ ΔΔ Δ

Aggregated Results and
Constraint Violations

Monolithic
Application

before Increment

Monolithic
Application

after Increment

Generated Application
Structure Models

Generated Performance
Models

Performance Simulation
Results

S3

S4

S5

S6

S7

S8

S1

S2

Legend:
S1: Learning of Scenarios, Load Profiles, and Constraints
S2: Hybrid Analysis
S3: Specification of Modernization Paths
S4: Generation of Future State Models
S5: Generation of Performance Models
S6: Performance Simulation
S7: Analysis of Simulation Results
S8: Implementation and Merging

int foo(int i) {
 ...
}

int bar(String x) {
 ...
}

int baz() {
 ...
}

int foo(int i) {
 ...
}

int bar(String x) {
 ...
}

int baz() {
 ...
}

int foo(int i) {
 ...
}

int bar(String x) {
 ...
}

int baz() {
 ...
}

int foo(int i) {
 ...
}

int bar(String x) {
 ...
}

int baz() {
 ...
}

int foo(int i) {
 ...
}

int bar(String x) {
 ...
}

int baz() {
 ...
}

int foo(int i) {
 ...
}

int bar(String x) {
 ...
}

int baz() {
 ...
}

Figure 1: Overview of the proposed approach

updated to appropriately reflect the current state of the ap-
plication. The first increment of the modernization path
that was taken is removed, and, if applicable, a new in-
crement is appended. The paths that were not taken are
removed entirely.

4. RESEARCH PLAN
Our planned research is structured into five work pack-

ages, which are described below. For every work package,
the associated research questions, intended research meth-
ods, and expected results are presented, where applicable.

The first work package, WP1, is almost completed and
was concerned with initial research, topic development, and
research planning. In addition, we were able to acquire in-
dustrial case studies for our intended research, and to ini-
tiate research collaborations for later work packages. One
of these collaborations already led to a joint publication on
extending the Palladio Component Model to support trans-
actional behavior [10]. Work on this package has begun in
Q4 2014, and its completion is scheduled for Q4 2015.

Work package WP2 aims at further confirmation of the
assumptions of our approach. The guiding research ques-
tions of this work package are: What challenges exist in
the transition to Microservices with respect to performance?
What are common source and target architectures? What
are preferred modes of transition? To address these ques-
tions, we plan to carry out further literature research. In
addition, we intend to conduct expert interviews with archi-

tects of monolithic applications to gather knowledge about
common source and target architectures as well as transition
modes and migration architectures. For the identification
of performance challenges, we furthermore plan to perform
exemplary migrations of benchmark applications in labora-
tory experiments. Work on this package is scheduled from
Q4 2015 to Q2 2016.

Work package WP3 is concerned with the development
of the required metamodels, domain-specific languages, and
tools to create and edit them. Of particular interest are the
models for the specification of the modernization paths. The
guiding research questions of this work package are: Which
elements and operations are required for modeling moderni-
zation paths? How can the models be efficiently created and
edited? How can the models be kept in sync with the ac-
tual implementation? To answer these questions, we intend
to perform laboratory experiments with benchmark appli-
cations and our industrial case studies. To evaluate the
usability of our tool set, we plan to have developers from
our case studies use our tools and answer a questionnaire
afterwards. For the dynamic analysis, we intend to employ
Kieker [18], which also provides support for legacy languages
such as COBOL [7]. Work on this work package is scheduled
from Q1 2016 to Q3 2016.

Work package WP4 is concerned with the generation of
state and performance models from modernization paths,
and the performance simulation thereof. The guiding re-
search questions of this work package are: How can ASMs
and performance models be generated from modernization

123

path models? How can the existing execution traces be trans-
formed? How can transactional behavior be appropriately
simulated? How can patterns common to Microservice ar-
chitectures (e.g., circuit breakers) be simulated? How precise
are the simulation results? To answer these questions, we
intend to perform laboratory experiments with benchmark
application and our case studies. In order to simulate trans-
actional behavior, we are working to extend the Palladio
Component Model accordingly, as described in [10]. Work
on this package is scheduled from Q2 2016 to Q4 2016.

In work package WP5, we plan to focus on the analysis
and presentation of the simulation results, and the imple-
mentation of appropriate tools. The guiding research ques-
tions are: How can the results be aggregated and presented so
that the developer can choose an appropriate path? Which
information is required to quickly locate causes for perfor-
mance constraint violations? To answer these questions,
we intend to conduct experiments with developers, who are
asked to analyze results from an analysis containing known
violations. After the analysis is complete, it is evaluated
whether the probands were able to correctly locate the cause
of the violations, how much time they took to locate them,
and how usable they found our tool set. Work on this pack-
age is scheduled from Q4 2016 to Q2 2017.

Work package WP6 is concerned with the overall evalu-
ation of our approach in industrial migration projects. We
intend to evaluate the approach using three industrial case
studies, a medium-sized Java EE application, a large Java
EE application, and a large COBOL application. The guid-
ing research questions are: Is the approach and tool set scal-
able enough to handle industrial projects? Is it flexible and
adaptable enough to handle migrations of software in dif-
ferent programming languages and environments? To what
extent can the migration process be guided by our strategies
and tools? To answer these questions, we plan to create
models of our case studies to investigate the scalability and
flexibility of the tool set. In addition, we intend to migrate
selected parts of the case studies using our approach to check
the overall applicablility. Work on this package is scheduled
from Q2 2017 to Q4 2017. In the course of the evaluation,
we furthermore intend to investigate to which extent cultural
aspects associated with Microservices, such as DevOps, are
adopted in industrial practice.

The work packages can be mapped to the steps of the
approach as follows. WP3 addresses Steps S1 to S3 and
S8, WP4 addresses S4 to S6, and WP5 addresses S7. The
remaining work packages cross-cut the entire approach.

5. REFERENCES
[1] A. A. Almonaies, J. R. Cordy, and T. R. Dean. Legacy

System Evolution towards Service-Oriented
Architecture. In Proc. Intl. Workshop on SOA
Migration and Evolution (SOAME 2010), 2010.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
Component Model for Model-Driven Performance
Prediction. Journal of Systems and Software, 82(1),
2009.

[3] P. Brebner, L. O’Brien, and J. Gray. Performance
Modeling for Service Oriented Architectures. In
Companion of the 30th Intl. Conf. on Software
Engineering, 2008.

[4] U. Breitenbücher, O. Kopp, F. Leymann, M. Reiter,
D. Roller, and T. Unger. Six Strategies for Building

High Performance SOA Applications. In Proc. 4th
Central-European Workshop on Services and their
Composition (ZEUS 2012), 2012.

[5] E. Di Nitto, D. Meiländer, S. Gorlatch, A. Metzger,
H. Psaier, S. Dustdar, M. Razavian, D. A. Tamburri,
and P. Lago. Research Challenges on Engineering
Service-oriented Applications. In Proc. 1st Intl.
Workshop on European Software Services and Systems
Research: Results and Challenges, 2012.

[6] R. Khadka, A. Idu, A. Saeidi, J. Hage, and S. Jansen.
Legacy to SOA Evolution: A Systematic Literature
Review. In Migrating Legacy Applications – Challenges
in Service Oriented Architecture and Cloud Computing
Environments. Premier Reference Source, 2013.

[7] H. Knoche, A. van Hoorn, W. Goerigk, and
W. Hasselbring. Automated Source-Level
Instrumentation for Dynamic Dependency Analysis of
COBOL Systems. In Proc. 14. Workshop
Software-Reengineering (WSR 2012), 2012.

[8] J. Lewis and M. Fowler. Microservices, 2014.
http://martinfowler.com/articles/microservices.html,
last accessed: 2015-09-21.

[9] M. Litoiu. Migrating to Web Services: A Performance
Engineering Approach. Journal of Software
Maintenance and Evolution: Research and Practice,
16(1-2), 2004.

[10] P. Merkle and H. Knoche. Extending the Palladio
Component Model to Analyze Data Contention for
Modernizing Transactional Software Towards
Service-Orientation. In Symposium on Software
Performance (SSP 2015), 2015. To appear.

[11] S. Newman. Building Microservices. O’Reilly,
Sebastopol, CA, 2015.

[12] L. O’Brien, P. Brebner, and J. Gray. Business
Transformation to SOA: Aspects of the Migration and
Performance and QoS Issues. In Proc. 2nd Intl.
Workshop on Systems Development in SOA
Environments, 2008.

[13] G. Pardon and C. Pautasso. Atomic Distributed
Transactions: A RESTful Design. In Proc. 23rd Intl.
Conference on World Wide Web, 2014.

[14] M. Razavian and P. Lago. A Frame of Reference for
SOA Migration. In Towards a Service-Based Internet,
volume 6481 of Lecture Notes in Computer Science.
Springer, 2010.

[15] M. Razavian and P. Lago. Towards a Conceptual
Framework for Legacy to SOA Migration. In
Service-Oriented Computing, volume 6275 of Lecture
Notes in Computer Science. Springer, 2010.

[16] M. Razavian and P. Lago. A Lean and Mean Strategy
for Migration to Services. In Proc. WICSA/ECSA
2012 Companion Volume, 2012.

[17] R. C. Seacord, D. Plakosh, and G. A. Lewis.
Modernizing Legacy Systems: Software Technologies,
Engineering Processes, and Business Practices.
Addison-Wesley, Boston, 2003.

[18] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A Framework for Application Performance Monitoring
and Dynamic Software Analysis. In Proc. 3rd Intl.
Conf. on Performance Engineering (ICPE 2012),
2012.

124

